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     In my work “The limits of validity of the theory of ideal crystals and 
overcoming them,"1 I separated the motion of electrons by an approximation 
method that differs from the usual "adiabatic" way. I believed that this was the 
only way to achieve a calculation in which the mean nuclear positions X remained 
unspecified throughout the entire calculation. I have now seen that the same result 
can also be achieved in an adiabatic way. 
    The Hamiltonian of the entire system is the same as before: 

 
where  F is the potential (Coulombic) energy. 
     If the nuclei are held fixed, the Hamiltonian of the electrons is 

 
It is assumed that the electronic problem has been solved, so that the  Schrödinger 
equation  

 
is satisfied for a complete set of normalized eigenfunctions  and 
eigenvalues  which depend on arbitrarily chosen nuclear coordinates Xk  as 
parameters. 
     For the Schrödinger equation of the overall system 

 
we postulate 



 
When this is inserted into (4), multiplying the result by  and integrating 
over the electronic coordinates gives 

 
where 

 
is a differential operator containing coefficients  

that are functions of the Xk. 
     The diagonal elements  and  must be considered separately. For 
stationary states one can choose the  as real functions; then, with 

, it follows that 

 
since the  are at identical Xk and are normalized. Therefore, in Cnn the term 
with Pk is omitted and there remains only a multiplicative operator that can be 
combined with : 

 
One can now write (6) in the form 

 
where the term n' = n is to be omitted in the sum. The term without a sum 
obviously describes the nuclear motion under the effect of the potential Un(X), 
which is essentially the electronic energy in state n. The sum expresses the 
coupling of the nuclear motions in different electron states. 
     When applied to crystals, a distinction must be made between conductors and 
non-conductors. For the conductors, the electronic spectrum is continuous and 
(11) becomes an integral equation. It seems to me that this method may be 
important for the development of Frohlich's theory of superconductivity. 
     For nonconductors, all higher electronic states are energetically far away from 
the ground state. Then you can neglect the coupling of the ground state with the 
higher states as a first approximation, and if you omit the sum, you have 



 
This is the usual Hamiltonian of nuclear motion, which provides the nuclear 
vibrations. 
     The difference between this method and the one used in the work cited is that 
there U(X) was the potential energy averaged over the electronic motion, whereas 
here, apart from a small correction term, it means the total energy [of the electrons 
with the nuclei fixed]. All further explanations in the work cited remain unchanged 
if one now chooses a nuclear configuration  arbitrarily and expands U(X) in the 
deviations . 
     Finally, the difference between the method given here and that of Born and 
Oppenheimer2 should be pointed out. The latter uses an expansion in powers of x = 
(m/M0)1/4, where M0 is an average nuclear mass, and the differences  are 
assumed to be of order x. It turns out that the expansion is only possible if the  
are chosen so that the linear terms in the U(X) power series in disappear. 
So the  are fixed from the start. Furthermore, an equation of the form (13), 
without coupling to excited electronic states, is only valid up to terms of order 4 in 
x. The new procedure has no such limitations. In particular, the choice of  can 
be postponed until the end of the statistical calculation, and that was the aim of my 
previous work. 
 
1) M. Born, Festschrift Gött. d. Wiss., I: Math.-Phys. KI. 1 (1951). 
 

2) M. Born and R. Oppenheimer, Ann. d. Phys., 84, p. 45 (1927). 


