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Expressions for the number and density of states of a clas-
sical Hamiltonian are used widely in statistical theories of
chemical kinetics (1-3). The number of states, represented
by G(£), is a census of the available states in the Hamiltonian
from an energy of zero to£. The density of states, N(E), is the
derivative of G(E) with respect to energy evaluated at E. The
classical expressions for G(i?) and N(E) can be derived by
treating the quantum numbers for the Hamiltonian as con-

tinuous variables. Though this is a straightforward procedure,
the physical meaning of the classical number and density of
states is obscured and correspondences which exist between
classical and quantum mechanics are not readily apparent.
In this article, classical expressions are formulated for the
number and density of states of harmonic oscillators and rigid
rotors by using a semiclassical principle and volumes of n-
dimensional hypersurfaces. It is anticipated that this pre-
sentation, which is direct and easily understood, will retain
some of the analogies between classical and quantum me-
chanics and provide some physical insight into the significance
of the classical number and density of states.

The significance of the number and density of states is
readily apparent if one considers the classical parition function
Q. Since the number of states in the interval E E + dE is
dG(£) = N(,E)d,E, the classical partition function is

Q = WE) exp(—fc'/A’V'i dE (1)

From Q and its derivative dQ/dT, all the macroscopic ther-
modynamic properties such as the Gibbs free energy, entropy,
and internal energy can be determined (4). Thus, the density
of states is the microscopic element in the macroscopic ther-
modynamic properties.

A theorem in classical statistical mechanics (5) says that
the number of states for one degree of freedom with momenta
p and coordinate q is

dpdq/h (2)

where dpdg is the phase space volume associated with p and
q, and h is Planck’s constant. Thus, for one degree of freedom
the volume of phase space associated with a single state is h.
The number of states G(£) is then the total phase space vol-
ume V divided by h, i.e.,

G(E) = V-jh (3)

where the subscript 1 is attached to V to indicate we are only
considering one degree of freedom.

Equation (3) is readily understood by applying it to a har-
monic oscillator for which the classical Hamiltonian is

H (p,q) = p2/2m + fq2/2 = p2/2m + 2ir2mv2q2 (4)

where v is the frequency for the oscillator. The phase space
volume is that enclosed by the energy E and is formally given
by

Vi ffJJw
U(p.q)=E

H(p,q)=0
dpdg (5)

Though eqn. (5) looks rather intimidating, the phase space
volume is simply the area of an ellipse, since the Hamiltonian
for the harmonic oscillator is the equation for an ellipse. The
area of an ellipse is irab where a and b are the semiaxes. For

& a

Figure 1. (a) The n= 0, 1, 2, and 3 energy levels for a harmonic oscillator, (b)
Phase space volumes for the n = 0, 1, 2, and 3 harmonic oscillator energy
levels.

the harmonic oscillator Hamiltonian the semiaxes equal
(2mE)1/2 and (E/2ir2mv2)1/2. Thus, the phase space volume
for the harmonic oscillator is

Vi = E/v (6)

and the classical number of states is then

G (E) = E/hv (7)

It is meaningful to compare the classical expression for the
harmonic oscillator number of states with the quantal one.
The quantal energy levels are given by E = (n + 1/2)hv and
are illustrated in Figure 1(a). In Figure 1(b), the phase space
volumes for the quantum levels n = 0, l, 2, and 3 are depicted.
The area inside the inner ellipse is h/2 and the areas between
the remaining ellipses are each h. The reader can verify this
relationship between the areas by measuring the length at the
semiaxes in Figure 1(b). For a specific quantum level n, the
classical number of states from eqn, (7) is n + 1/2. The quantal
number of states is n + 1, and at sufficiently large n the dif-
ference between the classical and quantal G(E) is negli-
gible.

The relation between the classical and quantal number of
states for a harmonic oscillator can be further understood by
considering the Einstein-Brillouin-Keiler semiclassical
quantization rule (6). This rule states that, for any physical
system in which the coordinates are periodic functions of time,
there exists for each coordinate the quantum condition

f p(g)dg = (n + a/i)h (8)

where the cyclic integral f means the integration is taken over
one period of the coordinate q. The integer a is called the
Maslov index and is equal to 2 for the harmonic oscillator. In
the Sommerfeld-Wilson quantization rule of the “old”
quantum theory, a was assumed to equal zero for all systems
(7) .

The cyclic integral in eqn. (8) is an equivalent way of finding
the phase space volume in eqn. (5), and one can write Vi = (n
+ 1/2)h. Since (n + 1/2)h - E/v for a harmonic oscillator, eqn.
(8) is in essence the same as eqn. (6), Therefore, the funda-
mental basis for eqns. (2) and (8) is the same.
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With very little difficulty the above discussion can be ex-
tended to Hamiltonians with more than one degree of free-
dom. We will first consider a collection of harmonic oscillators
and then rigid rotors. For s degrees of freedom the classical
number of states is an extension of eqn. (2) (5);

G (E) = VJh* (9)

where Vs takes the form

Vs= ff dpi... dpsdqi... d<js (10)JJh-o

The Hamiltonian for s harmonic oscillators is

H(pi. . . psQj       q„) = Z (pf/2m; + 2ir2m^fq2) (11)
;=i

Evaluation of the phase space volume for s harmonic oscilla-
tors is straightforward if one recognizes that eqn. (11) is the
equation for a 2s-dimensional ellipsoid with semiaxes along
Pi and qi. For a specified energy E eqn. (11) can be written in
the more general form Figure 2. Illustration of a rigid rotor with two degrees of freedom.

E = Z (pf/af + qf/bf) (12)
i-l

where a; = (2m;)1/2 and 6; = (l/2ir2mivf)1^2.
If we define p\ = p,/at and q   = qi/b,, eqn. (12) is transformed
to the equation of a 2s-dimensional hypersphere (ball)

E = t [(Pi)2 + (<?i)2] (13)
i= 1

which has a well known volume of (<S)

yhypersphere = xsEs/s\ (H)
The volume of the ellipsoid is easily found from eqn. (14) by
recognizing that the volume elements dpi.., dpsdgi... dqs
and dpi.. . dpjdg'j... dq', are related via

dp!... dpsdcfi. .. dr;.,
dpi dp i

dpi" dq's

dq« dqs

dpi
"

dqs

dpi. .. dpidr/i ... dpi

(15)

The determinant in eqn. (15) is the Jacobian for the trans-
formation and all of its elements are zero except the diagonal
ones. The value of the determinant is the constant term

II 0,6,
i-i

and the volume element

dpi... dpsdpi... d</s = fl aibi dp,.. . dpi,dpi .. . dqs
i = 1

Thus, the volume of the ellipsoid is equal to the volume of the
hypersphere times the multiplicative factor

i.e.,

11 aLbi
i-l

^ellipsoid = jq
1 = 1

(16)

The phase space volume for the s harmonic oscillators is
found by inserting the values for a,; and bt into eqn. (16). The
resulting expression for the number of states is

0(E) = Es/sl n hvi
i=i

(17)

The quantal number of states for s harmonic oscillators is
found exactly by a direct count of the available energy levels,
and important differences are found between the classical and
quantal number of states at low energies (1). However, as the
total energy is increased, the classical and quantal number of
states become the same. This can be seen by considering the
semiempirical Whitten-Rabinovitch expression for the
quantal G(£)

GwJE) = (£v + afizp)s/s! n hiq (19)
;=i

which is an excellent approximation (1). The quantal vibra-
tional energy £v plus the zero-point energy Ezp equals the
classical energy E; i.e., E = Ev -F Ezp. The factor a is a function
of Ev, ranging from 0 at Ev = 0 to 1 at large values of Ev. Thus,
at high vibrational energies a = I and the classical and quantal
expressions for G(£) are identical.

The final two illustrations of using volumes in phase space
to find the classical expression for the number of states are for
rigid rotors with one and two degrees of freedom. A rigid rotor
with one degree of freedom is an important model for internal
rotations in molecules, while a rigid rotor with two degrees of
freedom is used to describe the external rotational motion of
diatomic molecules. A depiction of a rigid rotor with two de-
grees of freedom, <p and (?, is given in Figure 2. For a rigid rotor
with one degree of freedom there is only motion in the <p

plane.
The Hamiltonian for a rigid rotor with one degree of free-

dom is

H(p*,0) = p%!21 (20)

where / is the moment of inertia, and in the absence of any
symmetry, <p varies from 0 to 2¶. For a fixed value of <p the
phase space volume is

X(2/E)V2 dp, = (8 IE)1'2 (21)

To find the total phase space volume integration over all
possible values of <P is necessary, and assuming no sym-
metry

Vlr= f2,: VLr(<P)d<t> = 2(8Ir2£7)1« (22)Jo

From eqn. (7), the number of states for the rigid rotor is

and one should note the similarity with eqn. (7). The density
of states dG(E)/dE is

N(£) = £S'-V(s - 1)! fl hv, (18)

G,r(£) = 2(8ir2EI)1/2/h (23)

If the rigid rotor has symmetry, G(£) is divided by the sym-
metry number a, since integrating over 2tt yields equivalent
structures.
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The quantal expression for the number of states of a rigid
rotor with one degree of freedom is nearly identical to the
classical one. The quantal energy levels are given by Elr =

m2h2/8ir2/, m = 0,1,2.,., where m is the rotational quantum
number (9). All levels except m = 0 are doubly degenerate.
Therefore, the quantal number of states is 2m* + 1, where m*
is the quantum number corresponding to the energy E at
which G(£) is calculated. Thus, m* = (?>ir2EI)ll2/h and the
quantal and classical number of states only differ by the
number 1, which is not a significant difference for large m*.

The last example is a rigid rotor with two degrees of freedom
for which the Hamiltonian is

H (po,p*,0,<t>) = pf/2/ + p\/21&m26 (24)

where 6 varies from 0 to ir and 0 from 0 to 2ir as above. This
Hamiltonian is also the equation for an ellipse with semiaxes
of a = (2IE)1/2 and b = (27£sin20)1/2. Therefore, for fixed
values of 9 and 0 the phase space volume is VV(0>0) = 2IE-
sinfl. Integration over 9 and <j> is necessary to find the total
phase space volume to give

V2r = f2" P V(0,0)d0d0 = 8tt2£7 (25)Jo Jo

Thus, the expression for the classical number of states for a

rigid rotor with two degrees of freedom is

G2r(E) = 8 ir2EI/h2 (26)

As above, if there is symmetry GaA^) is divided by the sym-
metry number. For a rigid rotor with two degrees of freedom
the quantal energy levels are E2r = J(J + 1 )A2/8x2/, J = 0,
1, 2 .... It is easily shown if J2 » J the quantal and classical
expressions for the number of states are identical (9).

Conclusion
Following the above discussion, expressions can be easily

derived for the classical number and density of states of
Hamiltonians which consist of harmonic oscillators and rigid
rotors with one and two degrees of freedom. What is required
is finding the volume of the 2s-dimensional ellipsoid, eqn. (16),
defined by the classical Hamiltonian. In many situations os-
cillators must be treated as anharmonie and there is also
coupling between vibrational and rotational degrees of free-
dom, To date, general expressions have not been derived for
the number and density of states for such situations. If
equations can be found for the phase space volumes of these
Hamiltonians, the number and density of states can be found
as described above. Though difficult, the derivation of equa-
tions for such volumes seems to be a particularly worthwhile
research project.
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