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8.1 Introduction
Quantum mechanical tunnelling is one of the earliest studied phenomena
that is qualitatively different in quantum mechanics and classical mech-
anics. It was first proposed for electrons by Hund in his studies of electrons
or atoms penetrating a potential barrier,1–3 by several others in molecular
and solid-state physics,3 and most famously by Gamow in the context of the
escape of a particles from the nucleus,3–6 but it was slow to be widely ap-
preciated in chemical kinetics. In a broad review of general and physical
chemistry in 1932, it was stated7 that ‘‘Chemical differences between
hydrogen and diplogen [as the authors called deuterium] are to be expected
on theoretical grounds for several reasons, but the dominating factor is
likely to be the smaller half-quantum of zero-point energy possessed by di-
plogen in virtue of its greater mass.’’ Notably there is no mention of tun-
nelling in this generalization. A similar review in 1934 has large sections on
deuterium and kinetics, but tunnelling is again not mentioned.8 The role of
tunnelling in chemical reactions seems to have first been speculated by
Applebey and Ogden in 19369 and discussed more fully by Bell at a Faraday
Discussion in 1938,10 who advanced it as a possible cause of nonlinear
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Arrhenius plots. His discussion, however, takes no cognizance of transition
state theory, and he discusses tunnelling as a one-dimensional phenomenon
governed by the raw potential energy surface, an oversimplification that
continued to be made by many workers for many decades into the future.
Bell stated, ‘‘So far no evidence has been produced that directly demon-
strates the presence of the ‘tunnel effect.’’ At the same Faraday Discussion,
Wigner11 explained how tunnelling could lead to a leveling out of Arrhenius
plots at low temperature, leading to a smaller pre-exponential factor, but
concluded that ‘‘apart from reactions involving H, the tunneling effect
cannot be made responsible at ordinary temperatures for any large decrease
of the temperature independent factor.’’

Nevertheless, there was valuable theoretical work on tunnelling in the
1930s. Already, in 1932, Wigner12 showed how classical transition state
theory, with the transition state at the saddle point, could be quantized to the
lowest order, O(h�2), in h�, including the leading term due to tunnelling. And
Bell, in 1933,13 derived the tunnelling probability for a one-dimensional
Eckart barrier and concluded that calculations in the literature on ortho-para
conversion in hydrogen were ‘‘probably in error’’ due to neglect of tunnelling.
Bell said ‘‘The barrier is treated as one-dimensional. This is permissible,
since there is in general a definite direction of approach of two reacting
molecules for which the activation energy is a minimum,’’ which is generally
not a good approximation, as discussed below. He also said ‘‘It is concluded
that a quantum-mechanical treatment is necessary for any reaction involving
the motion of a hydrogen atom or proton, while heavier atoms may be con-
sidered to behave classically,’’ which is very true as a general rule, noting that
general rules usually have some exceptions (and there indeed some ‘‘ex-
ceptional’’ cases of non-hydrogenic tunnelling), although it took decades
before the community routinely took this into account.

Moving ahead in time, I note a 1970 review on proton transfer reactions,
where Caldin said ‘‘The question is not whether tunnelling occurs, but whether
it is detectable.’’ In the same article Caldin said, ‘‘The first definite indication
that the tunnel effect was significant in controlling the rate of a reaction
in solution was published in 1956’’ by Bell et al.14 in their study of the
deuterium kinetic isotope effect in the base-catalyzed bromination of
2-carbethoxycyclopentanone. Caldin also concluded that ‘‘The tunnel effect is
by now the likeliest interpretation of the evidence on several reactions,’’ with
which I agree. However, he added ‘‘It remains true that such reactions appear
to be exceptional and that in most proton-transfer reactions the tunnelling
corrections can probably be ignored,’’ with which I disagree. In my opinion,
theoretical work has now established that it is most likely that any hydrogen-
atom transfer or proton transfer with a barrier of about 5 kcal mol�1 or higher
is probably dominated by tunnelling at room temperature and below (and
often too much higher temperatures), and the burden of proof in interpreting
experiments on such reactions should shift from ‘‘Is there any evidence of
tunnelling?’’ to asking if there is any reason to doubt that the reaction is
dominated by tunnelling, since that is the usual finding when such reactions
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are examined with modern theoretical analysis. The goal of this chapter is to
review the methods used to calculate tunnelling probabilities realistically.

8.2 Theory
In 1970, LeRoy et al.15 showed that the tunnelling probability for realistic
shapes of potential energy barriers could differ significantly from tunnelling
by an Eckart barrier or the even simpler parabolic approximation. The in-
adequacy of an Eckart barrier is also discussed in other papers.16,17 Never-
theless, one still sees papers in the current literature using the approximation
of an Eckart barrier. However, in order to obtain a more accurate tunnelling
probability, it is necessary not just to use a realistic shape of the potential
energy barrier, but also to go beyond the one-dimensional tunnelling model
to obtain an effective potential or an ensemble of effective potentials.

Johnston and Rapp18 were the first to try to include multidimensional
effects in tunnelling, and Johnston described their method as resulting from
‘‘several bold assumptions about the appropriate tunnelling path or
paths.’’19 This is very stimulating work, but the method itself is not quan-
titative and is only of historical interest.

Attempts to treat quantum mechanical tunnelling more accurately were held
back by two factors: (i) the lack of appreciation of how to include quantum
effects in transition state theory so that one could test predictions against
experimental rate constants and kinetic isotope effects (or accurate theoretical
results, when they became available) and (ii) insufficient knowledge of po-
tential energy surfaces. The first impediment involved understanding what we
now call quasiclassical transition state theory. Quasiclassical transition state
theory refers to calculating all partition functions quantum mechanically but
treating the reaction coordinate (which does not appear in the transition state
partition function because it is the degree of freedom missing in the transition
state) classically; quantizing the partition functions of bound modes was done
already by Wigner in 193212 and was assumed in Eyring’s classic paper of
1935.20 A convenient name for the set of modes excluding the reaction co-
ordinate is the ‘‘modes transverse to the reaction coordinate’’, and we can say
that Eyring quantized the transverse modes.

The above-mentioned papers dealt with canonical transition state theory,
i.e., the evaluation of rate constants for a canonical ensemble characterized
by a temperature. To treat tunnelling rigorously one needs at least a mi-
crocanonical theory where the dynamics are calculated for each total energy
(which is a parameter in the time-independent Schrödinger equation) and
then thermally averaged. More specifically one must ask the question of
what reaction probabilities are implied by quasiclassical transition state
theory, and then one could ask how to modify these reaction probabilities by
including energy-dependent tunnelling probabilities. It was shown, first
partially21,22 and then more completely,23 that transition state theory cor-
responds to an adiabatic treatment of all motions except the reaction co-
ordinate; adiabaticity in this context means that their quantum numbers are
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conserved as the system proceeds along the reaction path (where the re-
action coordinate measures progress along the reaction path). In fact, it was
later shown that a calculation assuming such adiabaticity leads to micro-
canonical variational transition state theory, in which the transition state
dividing surface is chosen to minimize the flux through the transition state
for each total energy, rather than conventional transition state theory, where
the transition state dividing surface is located at the saddle point.24,25

It is conventional to add tunnelling to transition state theory by multi-
plying by a transmission coefficient that makes up for the simplifications
inherent in quasiclassical transition state theory. In general there can be
several contributions to the transmission coefficient, including the cor-
rection for the breakdown of the equilibrium assumption of transition state
theory, correction for the breakdown of the no-recrossing approximation of
transition state theory (i.e., that the net flux through the transition state
dividing surface is equal to the one-way flux, which in classical mechanics
would mean that trajectories do not recross the transition state dividing
surface), and correction for the classical treatment of the reaction coordin-
ate. One can consider the overall transmission coefficient to be a product of
three correction factors corresponding to these effects.26 The third factor is
called the tunnelling transmission coefficient, and it is the one of primary
interest here. The tunnelling transmission coefficient may be defined as the
ratio of the reaction rate calculated when reaction-coordinate motion is
treated quantum mechanically to that calculated when it is treated classic-
ally. The considerations in the previous paragraph imply that the tunnelling
correction to transition state theory should involve barrier heights deter-
mined by adding zero point energy in modes transverse to the reaction co-
ordinate to the potential energy surface along reaction paths. The simplest
general version of such a theory is as follows. One starts by calculating a
steepest descents path down from the saddle (both toward reactants and
toward products) in isoinertial coordinates, which are coordinates scaled so
that the reduced mass is the same in all directions.16,25 We call such a path
the minimum-energy path25 (MEP); it is also often called the intrinsic re-
action coordinate27 (IRC, although a more semantically correct name would
be intrinsic reaction path). One usually then makes (often only implicitly)
the ground-state tunnelling approximation, which is simply that the tun-
nelling transmission coefficient is calculated for ground-state reactions but
used for all reactions, even those that do not emanate from the ground state
of the reactants. For reaction from the ground state, one adds the local zero
point energy in transverse modes all along the path, which replaces the
potential energy barrier by the vibrationally adiabatic ground-state barrier.
[The potential energy along the reaction path is the Born–Oppenheimer
potential along that path and is called VMEP(s); the highest point of VMEP(s)
occurs at the saddle point, and subtracting the value at reactants yields what
is called classical barrier height. The barrier maximum on the ground-state
vibrationally adiabatic potential curve, which is called V G

a (s), is not neces-
sarily at the saddle point, and the barrier height, again obtained by
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subtracting the value at reactants, may be greater or smaller than the clas-
sical barrier height.] Given the vibrationally adiabatic barrier, one then
calculates the tunnelling as if the reaction path were rectilinear, which is an
approximation since the reaction path is curved and the kinetic energy op-
erator is different in curvilinear coordinates. This simple scheme, first re-
ported in 1971,16 has been called by several names, such as the vibrationally
adiabatic zero-curvature approximation, the vibrationally adiabatic ground-
state approximation, and the minimum-energy-path adiabatic approxi-
mation; I here call it the zero-curvature tunnelling (ZCT) approximation,
which is a name for it that we have used in many papers since 1991.

Note that although the ZCT approximation involves a one-dimensional
tunnelling calculation, it is actually a multidimensional tunnelling approxi-
mation because the vibrationally adiabatic potential used along the reaction
path involves contributions from the transverse modes. Furthermore, these
contributions vary with the distance s along the reaction path. If the reaction
coordinate were separable, as assumed in quasiclassical transition state the-
ory, these contributions would, by the definition of separability, be in-
dependent of s. Hence the tunnelling transmission coefficient corrects not just
for quantum effects but for non-separability. (Whereas the tunnelling trans-
mission coefficient corrects for quantal non-separability, one may consider
that the recrossing transmission coefficient, which is the second factor men-
tioned above, corrects for classical non-separability since trajectories would
not recross the dividing surface if the reaction coordinate were separable.)

The second impediment to progress in tunnelling theory for chemical
kinetics began to disappear when accurate calculations of the HþH2 po-
tential energy surface finally appeared. Early work on the potential energy
surface for this reaction was clouded by the question of whether there was a
single symmetric barrier or two asymmetric barriers on either side of a well
sometimes called ‘‘Lake Eyring’’; predictions of asymmetric saddle points
persisted as late as 1967, as reviewed elsewhere.28 Nevertheless, the Porter–
Karplus surfaces of 1964,29 with a collinear symmetric saddle point, correctly
became accepted as qualitatively correct. Another important advance critical
to the development of accurate methods for quantum mechanical tunnelling
was the calculation of accurate quantum mechanical rate constants for the
collinear HþH2 reaction, which is a two-dimensional problem.30 These rate
constants now allowed the testing of approximate tunnelling methods
against accurate quantum mechanics in more than one dimension. One
immediately found that ZCT tunnelling is inaccurate, leading to rate con-
stants underestimated by factors of 19 and 3.4 at 200 and 300 K, respectively.
This was a serious impasse for theory, and it was argued that it was due
either to the breakdown of the adiabatic approximation or the assumption of
zero curvature.30 (We now know that the latter is the chief culprit.)

The impasse began to be resolved in 1977 when Marcus and Coltrin31

proposed a new tunnelling path for collinear HþH2. This path corres-
ponded to a path along the vibrational turning points on the concave side of
the reaction path, and they justified this path based on a semiclassical
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argument (the Wentzel–Kramers–Brillouin (WKB) approximation) in which
the decay of the probability density |c|2 in a classically forbidden region is
e�2y where y is an action integral given by

y¼
ð

tunnelling region
dx px;eff
�� ��

y¼
ð

tunnelling region
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE � VeffðxÞ

p
Þ

(8:1)

where x measures distance (in the isoinertial coordinate system) along the
tunnelling path, px,eff is the x-component of the effective momentum, m is the
reduced mass to which the isoinertial coordinates are scaled, E is the energy,
and Veff(x) is the effective potential. Since Veff(x)4E in a tunnelling region,
px,eff is imaginary, and this is an imaginary-action integral. The semiclassical
argument is basically that any path within the zero-point vibrational
amplitude (transverse to the MEP) has the same effective potential for tun-
nelling, namely the ground-state vibrationally adiabatic potential curve, also
called V G

a (s). Therefore, in isoinertial coordinates, the path with the least
exponential decay, i.e., the dominant path, is the shortest path, i.e. (for
smooth MEPs with smoothly changing local zero-point energy), the path is
along the concave-side vibrational turning points. Later work showed that it
is best to calculate the tunnelling along such a dominant path rather than
averaging over many paths within the width of the vibrational wave packet.32

The Marcus–Coltrin path was generalized to treat the HþH2 reaction in the
real three-dimensional world,33 and again good results were obtained.

Because this approach involves a path on the concave side of the reaction
path, it may be called a corner-cutting tunnelling approximation. Path curva-
ture in classical mechanics leads to a system veering to the convex side of the
path, as occurs at the first turn of a bobsled run. The direction of the effect gets
turned around in quantum tunnelling, leading to motion on the concave side
of the MEP. This is sometimes called the quantum bobsled effect.

Two technical issues needed to be resolved to make the method practical
and accurate for general polyatomic reactions. First, the distance to the vi-
brational turning point sometimes exceeds the distance at which curvilinear
coordinates attached to the reaction path become multivalued. This was
solved34 by reformulating the theory in terms of an effectively reduced mass
so that the integration is carried out along the MEP instead of along the
actual dominant tunnelling path:

y¼
ð

tunnelling region
ds ps;eff
�� ��

y¼
ð

tunnelling region
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffðsÞðE � V G

a sð ÞÞ
q (8:2)

where meff is smaller than m in regions where the reaction path is curved.
Because the tunnelling path can lie in a region where the coordinate system
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based on the MEP is multivalued, the actual tunnelling path is not well
defined in this method, but meff is well defined and is formulated such that
eqn (8.1) and (8.2) give the same result in the limit where the MEP has small
curvature; in such a limit the concave side vibrational turning point is in the
region describable by the curvilinear coordinates based on s. However, meff is
also defined such that it remains well defined and smooth in all cases and is
generally applicable.34

The three-dimensional HþH2 reaction has three transverse vibrational
modes, but the curvature (which is a vector) has only a single nonzero com-
ponent because the reaction path is collinear and so it never curves into the
bending coordinate directions. The reaction path of a general polyatomic
reaction, though, has multidimensional curvature. The second technical issue
to be resolved in turning the Marcus–Coltrin idea into a general scheme
concerned the physically correct calculation of the amount of corner cutting
when there is multidimensional reaction path curvature. When this was done
properly,35,36 the method was called the centrifugal-dominant small-curvature
semiclassical adiabatic ground-state approximation, but the shorter name
of small-curvature tunnelling (SCT) approximation soon replaced the long one.

Marcus and Coltrin had pointed out that their physical model would break
down for the common mass combination where a hydrogen or proton tun-
nels between two massive molecular subsystems,31 and later Babamov and
Marcus37,38 (following earlier qualitative considerations by Marcus39) pre-
sented another approximation designed to treat the transfer of a hydrogen
atom or proton between two heavier particles in a collinear reaction using
polar coordinates. In order to understand why a different treatment is nee-
ded for this case, it is useful to consider what the potential energy surface
and MEP for a bimolecular atom transfer reaction look like when plotted in
isoinertial coordinates. Figure 8.1 illustrates the key points. On the left we
see that the reaction valley and the product valley are perpendicular when
plotted vs. the bond distances of the forming and breaking bonds. However,
this is not the case in isoinertial coordinates. The angle between the reactant
valley and the product valley in isoinertial coordinates is called the skew
angle b, and for a reaction of the form AþBC-ABþC, where A, B, and C are
atoms, molecules, or molecular fragments (B is a hydrogen atom or a proton
for the cases of most interest here) it is given by

b¼ arcosImAmC/mABmBCm (8.3)

where mX is the mass of X. We see that b¼ 601 for the case of equal masses
(center panel of Figure 8.1), but it gets very small (cos bE1) when mB{mA

and mBcmC (rightmost panel of Figure 8.1). Figure 8.1 shows that a large
skew angle corresponds to low curvature of the MEP, and a small skew angle
corresponds to large curvature of the MEP. With this in mind, it is also
useful to review the motivation for using isoinertial coordinates. If we did
not use isoinertial coordinates, the reduced mass in eqn (8.1) would be a
function of the location on the curvilinear tunnelling path. To find the
optimized tunnelling path, one would have to find the best compromise of a
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path with small reduced mass (to minimize the radicand), a path with a low
barrier (also to minimize the radicand), and a short path (to minimize the
length of the interval over which the integration is carried out). When we use
isoinertial coordinates, all paths have the same reduced mass and we just
need a compromise of low barrier and short path. In the small-curvature
limit, any path shortening due to cutting the corner more than the outer
vibrational turning point of the vibration transverse to the reaction path
would involve an increase in effective potential that would outweigh the
advantage of a shorter path, and in this way we arrive at the SCT tunnelling
approximation. When the skew angle is small, one can obtain a much
shorter path by severe corner cutting because the product valley is close to
the reactant valley. This is illustrated by the nearly vertical path in the right
panel of Figure 8.1. In the limit of large reaction-path curvature, the distance
criterion totally dominates, and the optimum tunnelling path should be a
straight line from the reactant valley to the product one.

In our own work, we developed a method to treat the large-curvature limit
for general polyatomic reactions by using straight-line tunnelling paths as
motivated above. Early versions were called the large-curvature ground-state
method,40–45 and the theory achieved its final form in version 4. The version
4 approximation46 (LCG4) is called the large-curvature tunnelling (LCT)
approximation. It differs from SCT in three key ways: (1) The tunnelling path
is not restricted to the region inside the ground-state vibrational amplitude
where one may use the vibrationally adiabatic potential curve, and large-
curvature approximations use a diabatic effective potential in the region
beyond the outer turning points of the transverse vibrational motion. (2)
A given tunnelling path need not conserve the transverse vibrational quantum
numbers, but rather a system beginning in the ground vibrational state of
the reactants may tunnel into excited vibrational states of the product (when
the reaction is considered in the exothermic or thermoneutral direction).

Figure 8.1 Three views of the potential energy contours and minimum energy path
(MEP) for AþBC-ABþC reactions. The saddle point (SP) is also
labeled. Left: plotted vs. the lengths of the forming and breaking
bonds. Center: plotted vs. two mass-scaled coordinates (x and y) for
the case where A, B, and C have the same mass. Right: plotted vs. two
mass-scaled coordinates (x and y) for the case where the mass of B is
much less than the masses of A and B. The right-hand plot is for an
exothermic reaction, and it also shows two possible straight-line paths
along which tunnelling might occur.
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(3) The tunnelling, even for a given initial and final vibrational state, is not
dominated by a single tunnelling path for each energy but rather there is an
average over a sequence of tunnelling paths, each starting somewhere on the
MEP in the reactant valley and proceeding along a straight line to a point
(determined by a quantization criterion) on the MEP in the product valley.
Plots showing examples of large-curvature tunnelling paths for tunnelling
from the ground state of reactants into either the ground state or excited vi-
brational states of the product are available in previous papers.43,44,47

Two points about curvature of the reaction path can be emphasized. First of
all, it is not the skew angle alone that determines the effect of reaction-path
curvature on tunnelling because the skew angle is a global characteristic of the
path. The key issue is how big is the curvature in the region of the barrier, and
an exothermic reaction may have the barrier very early where the reaction path
is not yet very curved. In such a case, the effect of curvature on the tunnelling
may be small or negligible. For bimolecular hydrogen-transfer or proton-
transfer reactions, the region of largest curvature tends to be where the form-
ing bond is about half made and the breaking bond is about half broken; this is
also the region where thermoneutral and nearly thermoneutral reactions have
their barriers and also where intrinsic barriers tend to be largest (the intrinsic
barrier for a symmetric reaction is the same as the barrier; the intrinsic barrier
for a non-thermoneutral reaction is the barrier in the exoergic direction) and
hence where tunnelling effects can be most significant. The second point to be
made is that it is not as easy to guess the curvature for unimolecular reactions as
it is for concerted bimolecular ones,48 because the skew angle in a bimolecular
reaction is calculated from the cosine of the angle between the relative trans-
lation of the reactants and the relative translation of the products, but the
directions of entrance and exit for a unimolecular reaction are very case specific.

Because the LCT approximation requires more extensive calculations than
the SCT approximation, it was originally much more expensive, but now
efficient interpolation algorithms are available to make it very affordable.49,50

While the SCT and LCT formalisms represent two limiting cases, both of
them seem to be accurate for intermediate curvature, so they cover all
possible cases. A simple procedure to cover all cases is simply to perform
both kinds of calculation and choose whichever gives a larger tunnelling
probability.51 When this is done for each value of the energy the result is
called microcanonical optimized multidimensional tunnelling (mOMT).52

In classical mechanics, Hamilton’s principle states that solving the equations
of motion are equivalent to finding the least-action path.53 Eqn (8.1) shows that
the dominant tunnelling path is the one with the least imaginary action, and
this may be considered an analytic continuation of Hamilton’s principle to
complex momenta (the classical momentum is imaginary or complex when the
classical kinetic energy is negative, as it would be in a tunnelling region where
the potential energy is greater than the total energy). It is natural to ask if this
can be used to obtain a more general approximation to the tunnelling prob-
ability than the small-curvature and large-curvature limiting approximations
discussed above. In a sense, this is done by classical S matrix theory, where one
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calculates a trajectory in imaginary time with complex coordinates and mo-
menta,54 but this is impractical for real systems because it is hard to make the
trajectory satisfy the correct real boundary conditions. However, one can find a
variational approximation to the tunnelling trajectory by finding the least-
imaginary-action path from among a sequence of paths that satisfy the correct
boundary conditions. One major problem that needs to be solved in such an
approach is determining the individual components of the complex mo-
mentum since the action integral involves p � dq, where q is a vector of co-
ordinates, and therefore we need the components of p in order to calculate the
exponential decay. This was accomplished by using the same kind of diabatic
model as used in the LCT method, and this results in a least-action ground-
state tunnelling approximation that is also called the least-action tunnelling
(LAT) approximation.55,56 Usually we expect that the LAT approximation is not
needed, and it is sufficient to use the mOMT approximation, but in a set of cases
where it was applied to polyatomic reactions,57 namely the reaction of CF3 with
CH4, CD3H, and CD4, it did give kinetic isotope effects in consistently better
agreement with experiment. Least-action tunnelling approximations have also
been proposed by Taketsugu and Hirao58 and Tautermann et al.59

It has not been emphasized so far, but the tunnelling transmission
coefficient also includes quantum mechanical effects on reaction-coordinate
motion when the energy exceeds the effective barrier height. Just as a
quantum mechanical system shows non-classical transmission across a
barrier at energies below the barrier top, it also shows non-classical
reflection for energies above the barrier top (this may be thought of as a
diffraction effect). The situation is particularly clear for a parabolic barrier
(i.e., a purely quadratic barrier), where the quantum results can be obtained
analytically. If P(E) is the transmission probability at energy E, and Vmax is
the maximum potential energy of the parabolic barrier, one finds17

P Eð Þ¼ 1
1þ e2y ;E oVmax (8:4)

P(Vmax)¼ 0.5, (8.5)

P(VmaxþD)¼ 1� P(Vmax�D), D40. (8.6)

For non-parabolic barriers, the probability is not necessarily 0.5 at the
barrier top, and these equations do not hold precisely; nevertheless, they are
enforced in all of our tunnelling approximations discussed above with Vmax

replaced by the maximum of V G
a (s). This maximum is called V AG

a . Note that
eqn (8.4) reduces to the WKB approximation, e�2y, when y is large. Replacing
e�2y by 1/(1þ e2y) is called parabolic uniformization; it can also be derived by
phase integral methods.60

Equations (8.4)–(8.6) show that the effect of tunnelling is to broaden the
reaction threshold. Although the semiclassical tunnelling approximations we
are discussing here correspond to reactions emanating in the ground state
(when the reaction is considered in the exothermic or thermoneutral
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direction), this broadening actually occurs at all reaction thresholds (where
each threshold is associated with a quantized energy level of the transition
state).61–65 The broadening may be understood as energy–time uncertainty
broadening because the transition state energy level has a finite lifetime. The
amount of broadening at each threshold may be understood quantitatively in
terms of the lifetime of a quantum mechanical resonance state associated with
the reaction threshold, and this lifetime may be correlated with the width of
the barrier on the vibrationally adiabatic potential energy curve. The ground-
state approximation that we have made may be recast in this language as the
assumption that the broadening is the same at all thresholds. It is not, but this
assumption can still be used to get useful tunnelling transmission coefficients.

Note that if we used eqns (8.4) and (8.5), and if we assumed no tunnelling,
i.e., if we set y¼ 0, the probability of passage through the transition state
dividing surface would be a Heaviside function rising from 0 to 1 at E¼ Vmax;
that is, the rate would be controlled by V AG

a rather than by V G
a (s) at the saddle

point, as in conventional transition state theory. Since the low-temperature
limit of variational transition state theory has the variational transition state
at the maximum of V G

a (s) rather than at the saddle point, the correct inclu-
sion of tunnelling in transition state theory is more consistent with vari-
ational transition state theory than with conventional transition state theory.
The fact that the variational transition sate is not exactly at the maximum of
V G

a (s) at finite temperature leads to a small consistency factor called the
classical adiabatic ground-state correction,42,66 or the consistency may be
enforced by using improved canonical variational theory (ICVT),42,50 but
these are small effects and the technical details need not concern us here.

Another point worth mentioning is that the transmission coefficient is not
necessarily larger for deuterium-substituted system than for a protium system,
in contrast to what one would find if tunnelling were one-dimensional. The
simplest-to-understand example of the counterintuitive case occurs as a special
case for the common situation where the zero point effects make the
vibrationally adiabatic ground-state barrier height smaller than the classical
barrier height because the zero-point energy of the transition state is smaller
than the zero-point energy of the reactants. Then, for a small classical barrier,
the vibrationally adiabatic barrier might be low but above the zero-point energy
of reactants for deuterium transfer but even lower and below the zero-point
energy of reactants for protium transfer. So there would be tunnelling for
deuterium but not for protium. Further discussion of this counterintuitive case
is given elsewhere.66a,66b

8.3 Validation
The methods described above (ZCT, SCT, LCT, mOMT, and LAT) have been
widely tested against exact quantum mechanical solutions of the
Schrödinger equation for the rate constants of many collinear atom–diatom
reactions and a few three-dimensional atom–diatom reactions, and they
have also been widely used for more complicated reactions where they can
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be compared to experiment. The tests against exact quantum mechanics are
direct tests of the accuracy of the calculated rate constant that are of special
interest because the transmission coefficients and the accurate quantum
mechanical rate constants are calculated for the same potential energy
surface, so the comparison is not compounding the error due to the dif-
ference in the surfaces with the error due to the semiclassical tunnelling
calculation. However, since the comparisons are done for the rate constant,
they also test the underlying transition state theory to which the tunnelling
transmission coefficient is applied. For the tests reported here the under-
lying transition state theory is anharmonic ICVT.

We summarized a series of such tests comparing kapprox and kacc (where
kapprox is the approximate rate constant computed by ICVT with the given
tunnelling transmission coefficient, and kacc is the accurate quantum
mechanical rate constant) in a review article.67 The tests include up to
52 collinear and three-dimensional rate constants for various atom–diatom
reactions at each temperature (the precise number for each temperature
is in Table 8.1). In order to allow the errors to be averaged without bias
toward overestimates or underestimates and without cancellation of errors
between overestimates and underestimates, test results were averaged in
terms of positive percentage error, where positive percentage error is
defined, for example, such that it is þ50% when kapprox and kacc differ by a
factor of 1.5 (in contrast to the signed percentage error, which is þ50%
when kapprox/kacc¼ 1.5 but –33% when kacc/kapprox¼ 1.5). The logarithmically
averaged positive percentage errors are shown in Table 8.1.

Table 8.1 shows that we obtain the best results with the LAT approxi-
mation and that the results are only ever so slightly less accurate on average
with mOMT. Table 8.1 also shows that the results are greatly improved as
compared to ZCT when one includes reaction-path curvature, as in all four of
the methods to the right of ZCT. This is an especially important result when
one considers that essentially all one-dimensional tunnelling results in the
literature may be considered to be approximations to ZCT.

The results at 200 K are especially striking because the error without
tunnelling is very large; an average positive percentage error of 1600% cor-
responds to an underestimate of the rate constant by a factor of 17, whereas

Table 8.1 Average positive percentage error in multidimensional tunnelling calcu-
lations for collinear and three-dimensional atom–diatom reactions.a

T (K) Nb No tunnelling ZCT SCT LCT mOMT LAT

200 41 1576 332 63 49 41 40
250 44 488 167 43 32 28 28
300 52 273 116 34 24 23 21
400 53 124 75 36 22 21 20
600 41 45 33 21 18 17 16
aFrom Table 77 of ref. 67.
bN is the number of comparisons to exact results at this temperature; this is limited by the
number of exact rate constants available for comparison.
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an average positive percentage error of 40% corresponds to an error of a
factor of 1.4. The error is particularly large because the 41 tests of the
semiclassical theory at 200 K are dominated by hydrogen transfers;
the 41 cases at 200 K include 23 protium transfers (17 collinear and six 3D),
11 transfers of muonium, deuterium, or tritium (10 collinear and one 3D),
and seven transfers of a halogen (4 collinear and three 3D).

The improvement continues up to higher temperatures. For example, the
average positive percentage errors at 300 K in Table 8.1 correspond to errors
by a factor of 3.7 for ZCT, 2.2 for ZCT, 1.3 for SCT, and 1.2 for LCT, mOMT, or
LAT. This illustrates a general point, namely that the LCT method (and
therefore also the mOMT and LAT methods) has better across-the-board ac-
curacy than the SCT method. Neverthelesss, the much simpler SCT method
is usually good enough; its average error is higher mainly because it can
greatly underestime the tunnelling in cases with very small skew angles.67

After the review article, a unique opportunity arose to the test multidimen-
sional semiclassical tunnelling methods against an accurate quantum mech-
anical rate constant (for a given potential energy surface) for a polyatomic
reaction,68,69 in particular the reaction HþCH4�H2þCH3, for which accurate
quantum mechanical rate constants were obtained by very difficult calcula-
tions.70 (Actually, the accurate quantum calculations for this case, unlike those
used for tests described above, do involve an approximation, namely that
rotation and vibrations are separable. That assumption is also made in the
calculations to which we compare, so it does not affect the validity of
the comparison.) The ICVT/mOMT calculations were found to agree with the
accurate quantum ones within 22% (maximum error) over the full range
of temperatures from 200 to 1000 K, over which the rate constants vary by
eight orders of magnitude.69

8.4 Extensions
In applications to molecules that have torsions, the transition state may have
several conformations with only small barriers between them. For such a
case we developed multipath variational transition state theory where one
includes tunnelling along the lowest-energy path through each conform-
ation of the transition state.71,72

In addition to gas-phase reactions discussed so far, the multidimensional
semiclassical tunnelling methods have also been used for diffusion at gas–
solid interfaces,73–76 for bulk diffusion and transport from a gas–solid
interface to the bulk,76 for reactions in solid matrices,77 for the reactions
in liquid-phase solutions, and for enzyme-catalyzed reactions.78–87

For solid-state reactions, it is important to pay special attention to the low-
temperature limit. In the low-temperature limit, all the reaction is in the
exothermic direction and it proceeds from the lowest energy state of the
reactants. Therefore the rate constant becomes independent of temperature.
This is easily accommodated in the semiclassical theory by considering
tunnelling only at the quantized energies of the reactants.73–77
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For reactions in liquids and enzymes, the number of minimum energy paths
may become essentially uncountable and one must use statistical methods, in
particular potentials of mean force, rather than an unaveraged potential energy
surface, to calculate the reaction rate.88–91 If implicit solvation models are used
to calculate the free energies of the reacting solute, one does not have a min-
imum energy path, but one can calculate a minimum free energy path, and by
making a practical approximation called the canonical mean shape zero-order
(CMS-0) approximation, the tunnelling probabilities may be calculated using
the potential of mean force rather than the potential energy surface.88 The
potential of mean force is also called the free energy surface.92,93

However, if the solvent is treated explicitly by molecular dynamics simulation
with weighted histogram analysis94 (WHAM) of the free energy, one may em-
ploy a liquid-state multipath tunnelling approximation by selecting a statistical
sample of paths from the variational transition state slice through the WHAM
free energy profile along the reaction coordinate. This is called ensemble-
averaged variational transition state theory, and it has been applied successfully
to many enzyme reactions.78–84 A key finding is that the tunnelling transmis-
sion coefficient can depend strongly on ensemble averaging.95,96

8.5 Concluding Remarks
Computational details of the methods discussed above are given
elsewhere.42,97–99

The present review has focussed on the development of semiclassical
multidimensional tunnelling methods that are available in the Polyrate100

and Pilgrim101 computer programs. Reviews of recent work on tunnelling
effects in chemistry are available elsewhere.83,102–108

Abbreviations
CMS-0 Canonical mean shape zero-order
ICVT Improved canonical variational theory
LAT Least-action tunnelling
LCT Large-curvature tunnelling
MEP Minimum-energy path
mOMT Microcanonical optimized multidimensional tunnelling
SCT Small-curvature tunnelling
WHAM Weighted histogram analysis method
WKB Wentzel–Kramers–Brillouin
ZCT Zero-curvature tunnelling
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V. Moliner and I. Tuñón, Convergence of Theory and Experiment on the
Role of Preorganization, Quantum Tunneling, and Enzyme Motions
into Flavoenzyme-Catalyzed Hydride Transfer, ACS Catal., 2017, 7,
3190–3198.

88. D. G. Truhlar, Y.-P. Liu, G. K. Schenter and B. C. Garrett, Tunneling in
the Presence of a Bath: A Generalized Transition State Theory
Approach, J. Phys. Chem., 1994, 98, 8396–8405.

89. Y.-Y. Chuang, C. J. Cramer and D. G. Truhlar, Interface of Electronic
Structure and Dynamics for Reactions in Solution, Int. J. Quantum
Chem., 1998, 70, 887–896.

280 Chapter 8



90. C. J. Cramer and D. G. Truhlar, Implicit Solvation Models: Equilibria,
Structure, Spectra, and Dynamics, Chem. Rev., 1999, 99, 2161–
2200.

91. G. K. Schenter, B. C. Garrett and D. G. Truhlar, Generalized Transition
State Theory in Terms of the Potential of Mean Force, J. Chem. Phys.,
2003, 119, 5828–5833.

92. Y. Kim, J. R. Mohrig and D. G. Truhlar, Free Energy Surfaces for Liquid-
Phase Reactions and Their Use to Study the Border Between Concerted
and Nonconcerted a,b-Elimination Reactions of Esters and Thioesters,
J. Am. Chem. Soc., 2010, 132, 11071–11082.

93. S. J. Klippenstein, V. Pande and D. G. Truhlar, Chemical Kinetics and
Mechanisms of Complex Systems: A Perspective on Recent Theoretical
Advances, J. Am. Chem. Soc., 2014, 136, 528–546.

94. S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen and
P. A. Kollman, The weighted histogram analysis method for free-energy
calculations on biomolecules. I. The method, J. Comput. Chem., 1992,
13, 1011–1021.

95. J. Pu, J. Gao and D. G. Truhlar, Multidimensional Tunneling,
Recrossing, and the Transmission Coefficient for Enzymatic Reactions,
Chem. Rev., 2006, 106, 3140–3169.

96. L. Masgrau and D. G. Truhlar, The Importance of Ensemble Averaging
in Enzyme Kinetics, Acc. Chem. Res., 2015, 48, 431–438.

97. C. F. Jackels, Z. Gu and D. G. Truhlar, Reaction-Path Potential and
Vibrational Frequencies in Terms of Curvilinear Internal Coordinates,
J. Chem. Phys., 1995, 102, 3188–3201.

98. A. Fernandez-Ramos, B. A. Ellingson, B. C. Garrett and D. G. Truhlar,
Variational Transition State Theory with Multidimensional Tunneling,
Rev. Comput. Chem., 2007, 23, 125–232.

99. J. L. Bao and D. G. Truhlar, Variational Transition State Theory:
Theoretical Framework and Recent Developments, Chem. Soc. Rev.,
2017, 46, 7548–7596.

100. J. Zheng, J. L. Bao, R. Meana-Pañeda, S. Zhang, B. J. Lynch,
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Text Box
Aug. 25, 2020.   Proof corrections.

page	correction
262	near end of middle paragraph
	there indeed some	   ->  indeed there are some
267	third line below equation (8.3)
	mB >> mC                    ->   mB << mC
268	Fig. caption 8.1, third last line
	masses of A and B.   ->   masses of A and C.
271	middle of page
	correction,42,66          ->   correction,42,66a
271	end of section 8.2
	elsewhere.66a,66b       ->   elsewhere.66b
273	line 9
	3.7 for ZCT,               ->   3.7 for no tunneling,




