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ABSTRACT
Potential energy surfaces for high-energy collisions between an oxygen molecule and a nitrogen atom are useful for modeling chemical
dynamics in shock waves. In the present work, we present doublet, quartet, and sextet potential energy surfaces that are suitable for studying
collisions of O2(3Σ−g ) with N(4S) in the electronically adiabatic approximation. Two sets of surfaces are developed, one using neural networks
(NNs) with permutationally invariant polynomials (PIPs) and one with the least-squares many-body (MB) method, where a two-body part is
an accurate diatomic potential and the three-body part is expressed with connected PIPs in mixed-exponential-Gaussian bond order variables
(MEGs). We find, using the same dataset for both fits, that the fitting performance of the PIP-NN method is significantly better than that of the
MB-PIP-MEG method, even though the MB-PIP-MEG fit uses a higher-order PIP than those used in previous MB-PIP-MEG fits of related
systems (such as N4 and N2O2). However, the evaluation of the PIP-NN fit in trajectory calculations requires about 5 times more computer
time than is required for the MB-PIP-MEG fit.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0039771., s

I. INTRODUCTION

The interactions of nitrogen and oxygen species are impor-
tant in atmospheric and planetary chemistry.1–9 In addition, these
interactions are especially important for modeling shock-heated
air in aerospace re-entry.9–23 We are developing potential energy
surfaces for simulating collisions between nitrogen and oxygen
species—both four-body potentials involving N2 and O2

24–27 and
three-body potentials involving N and O collisions with N2 and O2.
Our initial goal, which governs the present work, is to develop the
potentials needed for modeling Born–Oppenheimer collisions (i.e.,
collisions in which the electronic state does not change) of ground-
electronic-state N, O, N2, and O2.28,29 In this work, we neglect spin–
orbit coupling; therefore, the electronic spin quantum number (S) is
conserved.

When collisions occur between collision partners with elec-
tronic degeneracy due to spatial symmetry, as in the present

case, one must consider more than one potential energy sur-
face.30 The goal of the current work is to calculate the global
surfaces of the NO2 system that are needed to describe the
collisions of ground-electronic-state O2 (3Σ−g ) with the ground-
state N atom (4S). Since there is no spatial degeneracy in
the ground states (and spin–orbit coupling is neglected) and
if we make the Born–Oppenheimer approximation, collisions
occur in the lowest-energy doublet (S = 1/2, where S is the
quantum number of total electronic spin), lowest-energy quartet
(S = 11/2), and lowest-energy sextet (S = 21/2) spin state, and hence,
we need three potentials. These are the surfaces in this paper; they all
correspond to the A′ irrep for the spatial part of the electronic wave
function.

To avoid misuse of the present potentials, it is important to
specify that although they are sufficient for O2 (3Σ−g ) + N (4S) col-
lisions, they are not sufficient for NO (2Π) + O (3P) collisions.
The reason for this is as follows: If one considers the collision of
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ground-electronic-state NO (2Π) with a ground-state O atom (3P)
because of the higher spatial degeneracy of the collision partners,
collisions occur on the six lowest doublet and six lowest quartet sur-
faces. The current surfaces are important for those collisions but are
just a small part of the required surfaces for studying NO + O colli-
sions. In a similar vein, we note that our previously published N2 +
O2 four-body potential27 is not applicable for the present purposes
because the four-body potential corresponds to conservation of the
four-body electronic spin, but the spins of the three-body subsys-
tems and atomic subsystem can change when only the four-body
spin is constrained. In summary, the previous N2 + O2 potential
is not applicable for the present purposes, but the potentials pre-
sented here are sufficient (in the Born–Oppenheimer approximation
and with neglect of spin–orbit coupling) for studying O2 (3Σ−g ) + N
(4S) collisions; however, the present surfaces are not sufficient for
simulating experimental results on NO (2Π) + O (3P) collisions.

Similarly, these surfaces are insufficient for a complete study
of 2O + N intermolecular collisions, where the reactants are the
separated atoms. Such three-body collisions, with all atoms in
their ground electronic states, could occur—even if electronically
adiabatic—on any of nine doublet surfaces, nine quartet surfaces,
nine sextet surfaces, and nine octet surfaces.

Nitrogen dioxide is of special interest because of its role in
environmental chemistry31 (smog and ozone production) and in
combustion processes.32 Therefore, many local or global surfaces
of the doublet NO2 system have been developed in the past three
decades.33–49 The quartet potential of the NO2 system was also
fitted by Sayós et al.,45 but as far as we know, no sextet sur-
face has been fitted yet. It is especially important to eliminate this
lacuna in our simulation database because statistically one half of
the collisions of N(4S) + O2(3Σ−g ) occur in the sextet state with
only one-third in the quartet state and one-sixth in the doublet
state.

For aerospace applications, the simulations of hypersonic flow
require a very high temperature range, up to 20 000 K or even
30 000 K, and our potentials are designed according to this require-
ment. Thus, the precise structure of the low-energy surfaces, which is
very important for studying ambient-temperature processes, is less
important in our consideration, and we accept a larger absolute error
in fitting surfaces over a wide energy range for high-energy processes
than would be desirable when fitting surfaces in a narrow energy
range for low-energy applications.

In this article, two approaches were used to fit the three poten-
tials of NO2. The first approach is a permutationally invariant poly-
nomial50,51 (PIP) fit in bond order variables to the many-body (MB)
potential part of the potential, retaining only connected terms,52

with separate fits to the two-body parts, where the bond order vari-
ables are taken as mixed-exponential-Gaussians (MEGs).24 The full
name of this set of three potentials is MB-PIP-MEG, but we will
use the shorthand name MEG in the rest of this article. The second
approach is a permutationally invariant-polynomial neural-network
(NN) fit,53–55 without separating the two-body and three-body parts.
The full name of this set of three potentials is PIP-NN, but we will
use the shorthand name NN in the rest of this article. As we know
from past work56 and as we reconfirm below for the present case,
these two approaches are complementary in that the MEG fit is
computationally more efficient while the NN fit has smaller fitting
errors.

II. METHODS
A. Electronic structure calculations

All electronic structure calculations are performed with the
2012.1 version of the Molpro software package.57,58 We used
dynamically weighted59 state-averaged60 complete-active-space self-
consistent-field61,62 (DW-SA-CASSCF) calculations to obtain the
multireference reference state. The active space consists of 17 elec-
trons distributed in the 12 valence orbitals. In these DW-SA-
CASSCF calculations, for each spin, three states with the same S were
averaged (we do not need the energies of the two higher states for
fitting, but including them in the calculations makes the energy of
the lowest-energy state smoother as a function of geometry). The
dynamical weighting factor was set to the recommended value,59

which is 3 eV. With the lowest-energy state of the DW-SA-CASSCF
calculation for the given spin state serving as the reference state, a
single-state complete active space second-order perturbation theory
(CASPT2) calculation was carried out with the rs2 keyword;63 this
corresponds to using a level shift64 of 0.3 hartree and to using the g4
version of the modified Fock-operator.65,66 The electron correlation
included all the valence electrons.

The minimally augmented correlation-consistent polarized
valence triple zeta basis set, maug-cc-pVTZ,67 is used for all calcula-
tions.

Since a three-atom system always has a plane of symmetry, the
three surfaces were constructed using electronic structure calcula-
tions carried out in Cs symmetry, and we found that, for all three
spin states, the spatial symmetry of the lowest-energy state is A′.

B. DSEC method for NO2 systems
The accuracy of calculated energies was improved by using the

dynamically scaled external correlation27 (DSEC) method. In the
DSEC method, the parameter F of the original scaled external cor-
relation (SEC) method68 is replaced by a new parameter p, which is
unitless and equals 1/F. The general equation for the DSEC energy
at a given geometry is

EDSEC = ECASSCF + p(ECASPT2 − ECASSCF), (1)

where p (unlike F) depends on geometry. We parameterize p such
that the DSEC relative energies agree with best estimate relative
energies at key geometries. The best estimate relative energies are
taken from experiment.

Let rNO1, rNO2, and rO1O2 be the three internuclear distances of
the NO2 system. We define

g1,NO1 = {0 if rNO1 < re,NO
rNO1 − re,NO otherwise, (2a)

g1,NO2 = {0 if rNO2 < re,NO
rNO2 − re,NO otherwise, (2b)

g1,O1O2 = {0 if rO1O2 < re,OO
rO1O2 − re,OO otherwise, (2c)

for the diatomic subsystems, and we define
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g2,NO1 = {
0 if rNO1 < re,NO(NO2)

rNO1 − re,NO(NO2) otherwise, (3a)

g2,NO2 = {
0 if rNO2 < re,NO(NO2)

rNO2 − re,NO(NO2) otherwise, (3b)

g2,O1O2 = {
0 if rO1O2 < re,OO(NO2)

rO1O2 − re,OO(NO2) otherwise, (3c)

for triatomic NO2, where re,X is an equilibrium internuclear distance
given in Table I. Based on Eqs. (2) and (3), geometry-dependent
weights are defined as

w1,NO1 = exp[−aNOg2
1,NO1], (4a)

w1,NO2 = exp[−aNOg2
1,NO2], (4b)

w1,NO = {w1,NO1 if w1,NO1 > w1,NO2
w1,NO2 otherwise, (5a)

w1,O1O2 = exp[−aOOg2
1,O1O2], (5b)

w2 = exp[−aNO(NO2)g
2
1,NO1−aNO(NO2)g

2
1,NO2−aOO(NO2)g

2
2,O1O2], (5c)

where ax are parameters.
For each of the three NO2 surfaces, the dynamically weighted

scaling factor for a given geometry is

p = 1 + c(O2+N)w1,O1O2 + c(NO+O)w1,NO + c(NO2)w2

+ c(cross)
3
√
w1,O1O2w1,NOw2, (6)

where c(O2+N) and c(NO+O) are diatomic scaling factors, c(NO2) is a
triatomic scaling factor, and c(cross) is a cross-term scaling factor.

Let Etarget
x be the best estimate energy of geometry x, as obtained

from experiment,69,70 and a best estimate (BE) relative energy is then
defined by

EBE
xy = EBE

x − EBE
y , (7a)

and a DSEC relative energy is given by

ΔEDSEC
xy = ECASSCF

x − ECASSCF
y + px(ECASPT2

x − ECASSCF
x )

+ py(ECASPT2
y − ECASSCF

y ). (7b)

The BE relative energies used to obtain the parameters are
collected in Table I.

First, the range parameters were obtained from Morse models,
as indicated in Table II. Then, the scaling parameters were obtained
from the BE energies in Table I. First, the scaling factors c(O2+N),
c(NO+O), and c(NO2) were calculated from Eqs. (7b) and (6) for sta-
tionary structure x by taking the y structure to be the three separated
atoms (where p = 1). Note that these scaling factors are the same
for doublet, quartet, and sextet surfaces because all three potentials
agree in the asymptotic regions. Then, based on these scaling factors,
c(cross) was adjusted to eliminate the effect of scaling factors c(O2+N)
and c(NO+O) in Eq. (6) at the stationary geometry of the doublet NO2
structure. Although this parameter was obtained for the doublet sur-
face, the same scaling parameters are applied consistently to all three
NO2 surfaces.

The DSEC parameters are collected in Table II. The applica-
tion of the DSEC correction to the electronic structure calculations
is carried out prior to the fitting procedure.

C. Selection of geometries to include
in the fitting datasets

Most of the geometries used for the fits come from two grids
that were used for all three spin states. In grid 1, the three atoms
are placed in the O1–O2–N order. Then, the r(O1–O2) and r(O2–
N) distances and the α(O1–O2–N) angle were varied. In grid 2, the
three atoms are placed in the O1–N–O2 order, and the r(O1–N) and
r(O2–N) distances and the α(O1–N–O2) angle were varied, with the
restriction that r(O1–N) ≥ r(O2–N). For these two grids, the values
of the distances used are 0.8 Å–1.6 Å with a 0.1 Å increment plus 1.8
Å, 2.0 Å, 2.2 Å, 2.5 Å, 2.7 Å, 3.0 Å, 4.0 Å, and 5.0 Å, and the angles
were varied from 30○ to 180○ with a 5○ increment. The potentials for
longer distances are dominated by the diatomic potentials, which are
fit separately (see below).

We also carried out a multi-dimensional scan to find regions
with poor data coverage. For this purpose, the Cartesian coordinates
in the dataset were converted to internuclear distances. The OO
internuclear distance is unique, and two NO internuclear distances
were arranged in an ascending order. In the multi-dimensional scan,
the OO and the shorter NO distances were varied from 0.7 Å to

TABLE I. Equilibrium distances and best-estimate relative energies (in kcal/mol) and the calculated CASPT2 relative energies
before the DSEC correction (in kcal/mol).

System State re,X Best estimate CASPT2a

NO2 X 2A1 1.204(NO), 2.215(OO)b 0.0 0.0
O2 + N 3Σ−g + 4S 1.208c 106.9d 102.7
NO + O 2Π + 3P 1.1508c 74.5d 77.5
O + O + N 3P + 3P + 4S . . . 227.1d 226.4

aThe geometries were optimized by CASPT2.
bFrom geometry optimized by CASPT2.
cExperimental from Ref. 69.
dExperimental from Refs. 69 and 70.
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TABLE II. The parameters of the DSEC method.a

Range parameters Scaling factors

aNO 7.5076b c(O2+N) −0.012 325
aOO 7.0225c c(NO+O) 0.002 178
aNO(NO2) 7.5076b c(NO2) 0.012 766
aOO(NO2) 2.65d c(cross) −0.134 681

aThe range parameters are in Å−2 , and the scaling factors are unitless.
bThe square of 2.74 Å−1 , which is the Morse parameter of the ground-state NO molecule
derived from Ref. 71.
cThe square of 2.65 Å−1 , which is the Morse parameter of the ground-state O2 molecule
derived from Ref. 71.
dThe square root of diatomic parameter aOO .

4.0 Å with a 0.1 Å increment, and the longer NO was run from
the actual value of the shorter NO distance to 4.0 Å, with the three
distances forming a valid triangle structure. To represent the dis-
tance between any geometries in the dataset and any geometry in the
multi-dimensional scan, the absolute values of the differences of the
three internuclear distance pairs (OO, shorter NO, and longer NO)
were calculated and added together. If a geometry point in the multi-
dimensional scan lays further than 0.33 Å from the closest point in
the dataset, then that point is considered to be in a vacant geome-
try region. Since the original geometry grid was already very dense,
we only found 150–200 geometries for each three surfaces, and all of
them were added to the set to be calculated.

After that mentioned above, the points on the grids and those
resulting from the scan were augmented by additional geometries
that were different for the different spin states. For example, these
state-specific points are geometries close to stationary points of that
given potential or geometry points used for tests specific to the given
state. In these calculations, r(O1–O2) is fixed at 1.208 Å, which is
the equilibrium bond length of O2, and the r(O2–N) distance and
the α(O1–O2–N) angle are varied.

In some cases, points with relatively large fitting errors, as well
as their surroundings, were reinvestigated to see if the error comes
from wrong electronic structure calculations, since one must be
extra careful as to whether multiconfigurational self-consistent field
calculations have converged to the desired wave function. For this
purpose, the calculations were repeated with a different set of guesses
for the orbitals to attempt to get a better solution. There are many
ways to generate an initial guess, and finding a good initial guess
is situation-dependent. In general, an initial guess can come from
a HF calculation with the same spin as the state under considera-
tion, from a higher spin state, or from a (SA-)CASSCF calculation in
which the number of states is different from that used in the actual
calculation. The initial guess can be obtained at the same geome-
try as the actual calculation, or at a different geometry, which can
be relatively far from the geometry of the actual point and possibly
changed gradually along a scanning parameter (at each point of the
scan, the guess comes from the previous calculation) to reach the
geometry point. Trading active orbitals with virtual orbitals is also
used to generate initial guesses. In certain cases, the best guess is the
default option, where natural orbitals of a diagonal density matrix
are constructed using atomic orbitals and atomic occupation num-
bers (in the present work, we have not generated initial guesses by

changing the active space, but that is another option sometimes used
in previous work).

To test the surfaces, two series of trajectory calculations were
carried out with the program ANT72 on all the NO2 surfaces. In
the first series of tests, only MEG fits were used, and trajectories
were calculated for O2 + N and NO + O collisions. For each spin
state, we ran 500 trajectories with relative translational energies in
the range 0.3 eV–4.3 eV, impact parameters in the range 0 Å–1.6 Å,
vibrational quantum numbers in the range 1–8, and initial rotational
quantum numbers in the range 3–200. For these calculations, the
initial atom–diatom separation is 8 Å, and a trajectory is terminated
when any of the internuclear distances becomes longer than 9.2 Å or
if the propagation time reaches 800 fs. The Bulirsch–Stoer integrator
with adaptive step size is used. All of these trajectories ran without a
problem, and the geometry of every second step was saved. Then, we
randomly picked ten trajectories for each potential surface (doublet,
quartet, and sextet) to select 150–200 points for each spin state (the
number of geometry points depends on the trajectory) for additional
electronic structure calculations. The calculated and fitted energies
were compared and found to be in good agreement. In particular,
for the points that were calculated, the maximum deviation was less
than 13 kcal/mol and the mean unsigned errors of the test fits were
2.4 kcal/mol, 3.2 kcal/mol, and 3.4 kcal/mol for the doublet, quartet,
and sextet surfaces, respectively (the acceptable error level was not
formulated as a hard-and-fast rule; we required smaller errors at low
energy and near stationary points, but allowed larger errors on high-
energy repulsive walls). Then, these points were added to the dataset
to make the final fit of each NO2 surface.

In the second series of trajectory tests, all NO2 surfaces fit-
ted by both NN and MEG were used. In these tests, the colliding
partners are O2 + N. For each surface, altogether, 1100 trajectories
were run with 11 different sets of the collision energy (within range
0.2 eV–30 eV), initial vibrational quantum number (1–12) of the
diatom, and initial rotational quantum number (1–24) of the diatom.
The initial atom–diatom separation was set to 8 Å. The other input
parameters were the same as those for the first series. Since the tra-
jectories did not show any odd behaviors, the fitted NN and MEG
surfaces used in these tests are considered the final ones (these tra-
jectory calculations only served to test the usability of the potentials
and the geometry coverage; they are insufficient to generate cross
sections or rate constants).

Based on the above-mentioned procedures, each of the spin
states has a different number of points used to fit the surfaces. In par-
ticular, the datasets of the doublet, quartet, and sextet surfaces have
8434, 7818, and 8386 points, respectively. The lowest-energy point
on any of the potentials is the equilibrium geometry of the doublet
potential, and this will be used as the zero of energy in the rest of
this article. With this zero of energy, all points used for the fits have
energies below 2000 kcal/mol.

III. INTRODUCTION TO FUNCTIONAL FORMS
OF THE FITS

The potential energy V for each spin state is expressed as a
global function V modified with a local patch function VPF,

V = VG(r1, r2, r3) + VPF(r1, r2, r3), (8a)
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where r1 denotes the O1–O2 distance, r2 denotes the N–O1 distance,
and r3 denotes the N–O2 distance. The patch function is explained
in Sec. III D. Here, we explain the global function.

The NN fit uses VG without a many-body expansion, but the
MEG fit uses the following expansion:

VG = V0 +∑3
i=1 VPA,Z(i)(ri) + VMB(r1, r2, r3), (8b)

where V0 is a constant, VPA,Z is a pairwise additive potential (i.e.,
a sum of diatomic potentials) with Z(i) = dNO, qNO, or OO, dNO
denotes doublet NO, qNO denotes quartet NO, OO denotes triplet
O2, and VMB is the many-body term (which is a three-body term
in the present application). The pairwise terms have Z(1) equal to
OO for all three potentials (doublet, quartet, and sextet), Z(2) and
Z(3) equal to dNO for the doublet and quartet surfaces, and Z(2)
and Z(3) equal to qNO for the sextet. The constant V0 is set to
227.0 kcal/mol, which is the sum of the dissociation energy of O2
(120.2 kcal/mol) and singlet N2 (228.4 kcal/mol) molecules minus
the dissociation energy of NO2 (121.6 kcal/mol); this is required to
make the functional form used have the zero of energy specified in
the last paragraph of Sec. II C.

A. Functional form of the NN fit
For each electronic state, the following NN function form53–55

with two hidden layers is used:

VG = b(3)1 +∑K
k=1(w

(3)
1,k f2(b

(2)
k +∑J

j=1(w
(2)
k,j f1(b

(1)
j

+ ∑I
i=1 w

(1)
j,i Gi)))), (9a)

Gi = Ŝ
N

∏
i<j

plijij , (9b)

where the permutation invariant polynomials51,73 (PIPs) are used
as the input layer of the NN with the Morse like variables pij
= exp(−λrij) (λ is a parameter adjusted to 1.0 Å−1) of internuclear
distances between atoms i and j (i, j = 1–3); Ŝ is a symmetrization
operator that permutes the two identical oxygen atoms; I is the num-
ber of the input PIPs; J and K are the numbers of neurons in the two
hidden layers; f i (i = 1, 2) are nonlinear transfer functions for the
two hidden layers; ω(l)j,i are weights that connect the ith neuron of

the (l-1)th layer and the jth neuron of the lth layer; b(l)j is the bias of
the jth neuron of the lth layer; and the ω and b variables are fitting
parameters.

In the present work, the maximum order of the input PIPs is
3, resulting in 12 PIPs. The fitting parameters were optimized by
nonlinear least squares fitting in which the root-mean-square error,

RMSE =

¿
ÁÁÀNdata

∑
i = 1
(Ei

output − Ei
target)

2/Ndata, (10)

was used to measure the performance of the fitting. The “early stop-
ping” algorithm74 was used to avoid overfitting with the dataset ran-
domly divided into three parts: the training (90%), validation (5%),
and test (5%) sets for each NN fitting.

Several combinations of the numbers of the neurons in NN
architectures with two hidden layers were tested. Our experience has
been that the improvement of fitting with a larger number of neu-
rons is not drastic. Furthermore, the number of fitting parameters
should be relatively small (less than 1/5) as a ratio to the total num-
ber of data points in the training set. As a result, we typically choose a
structure with a moderate number of neurons that has a sufficiently
high fitting fidelity. Based on these considerations, the final numbers
of the neurons in the two hidden layers (J and K) were both cho-
sen to be 20, resulting in 701 nonlinear fitting parameters for each
potential. For each architecture, 100 NN trainings with different ini-
tial fitting parameters and different training, validation, and test sets
were carried out. To minimize the random error, the final NN poten-
tial was selected as the average of three best fittings according to the
NN ensemble approach.75

The edge points randomly selected in the validation/test sets
could lead to false extrapolation. Consequently, to decrease such
possible errors, the fit was chosen only if all three sets have simi-
lar RMSEs. The maximum deviation is also used as a criterion for
selecting the final NN potential.

Very recently, another paper appeared76 (to be denoted VGJ)
applying neural networks to fitting potential energy surfaces for
aerospace applications, in particular for N4. Here, we contrast the
approach in that work to our approach here for NO2 and in our own
previous work56 on N4. The key differences are the input coordinates
(permutationally invariant polynomials vs fundamental invariants),
the use of separate diatomic potentials (for NO2, these were not
used in our NN calculations, but they were used in both their and
our NN work on N4 and in all of our work with conventional least-
squares fits), VGJ’s use of a tapering function to eliminate nonphys-
ical behavior at long-range distances (for our NN fit on N4 and for
all of our work with conventional least-squares fits, we removed the
non-connected terms of the permutationally invariant polynomials
to improve the treatment at long range, but this was not carried out
for the NN fits in the case of NO2), VGJ’s use of relatively small
networks to keep the computational costs low, our practice of aver-
aging three fits (to further eliminate surface errors), whereas VGJ
apparently did not average.

B. Diatomic potentials
Each diatomic function VPA,Z(ri) has two terms that were

originally introduced in Ref. 25,

VPA,Z(ri) = VSR,Z(ri) + VD3(BJ),Z(ri), (11)

where the long-range term for molecule Z, VD3(BJ),Z(ri), is a damped
dispersion term based on Grimme’s D3 dispersion parameters
with the Becke–Johnson damping (BJ) function.77,78 For all three
diatomic potentials, the unitless parameters s6 and s8 are 1.0 and
2.0, respectively, and we also set a1 = 0.5299 a.u. and a2 = 2.2 a.u.
based on Ref. 79. For the potential energy curve of the ground state
of triplet O2 (Z = O2), the C6 was fixed at 176.37 kcal⋅Å6/mol (C8 is
obtained from C6); for more details, see Ref. 25. The parameters of
the short-range term, VSR,O2(r1), are determined by fitting Eq. (12)
to the accurate O2 potential curve of Bytautas et al.80 For VSR,O2(r1),
we use the even-tempered Gaussian fitting function of Bytautas
et al.,79 given by
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VSR,O2(r1) = ∑7
k=0 ak exp(−αβkr2

1), (12)

where we obtain the coefficients ak by linear regression and the expo-
nent parameters α and β by nonlinear minimization. The VSR,O2(r1)
parameters are listed in Table III (they are also given in the supple-
mentary materials of Refs. 25, 26, and 29).

In the case of doublet and quartet NO2 surfaces, the poten-
tial energy curve of ground state doublet NO was used (Z = dNO).
However, for the sextet NO2 potential, the potential energy curve of
the lowest quartet NO was used (Z = qNO). In both cases, the NO
distances are denoted with i = 2 and 3 as it was mentioned above.
The BE doublet NO curve, VPA,dNO(ri), was taken from our previous
work,27,28 and the 230.11 kcal⋅Å6/mol C6 parameter was used in the
VD3(BJ),dNO(ri) term. The other parameters of the VD3(BJ),dNO(ri) term
correspond to the parameters of VD3(BJ),O2(ri). The VSR,dNO(ri) term
was refitted as a difference of terms VPA,dNO(ri) and VD3(BJ),dNO(ri).
For the fit of VSR,dNO(ri), Eq. (13) was used,

VSR,dNO(ri) = BdNO(∑10
k=1 ckX

k
i,dNO), (13)

Xi,dNO = exp(−(ri − re,dNO)/α1 − (ri − re,dNO)2/α2), (14)

where re,dNO is the equilibrium bond length (1.1508 Å) of doublet
NO. The non-linear parameters α1 and α2 and the BdNO parameter,
as well as the coefficients, ck, were fitted, and they are collected in
Table IV.

In the case of the quartet NO curve, VPA,qNO(ri), CASPT2 cal-
culations (with the g4 option, a level shift of 0.3 hartree, and the
two 1 s orbitals excluded from the electron correlation) were car-
ried out based on SA(3)-CASSCF(8o,13e) reference wave function,
where the spin state was set to quartet, the three states were dynam-
ically weighted, and Cs symmetry was applied. The NO distance was
scanned from 0.6 Å to 10.47 Å, by a 0.01 Å increment. Based on
the dissociation energy of the doublet NO (De,dNO = 152.6 kcal/mol)
and the Te (109.9 kcal/mol)81 energy between the X 2Π and a 4Π
states, the dissociation energy of a4Π state was calculated, and this
BE energy was used in the static version of Eq. (7) to get the scaled
external correlation, i.e., the original SEC, where px = py = 1.13. Since
the a 4Π state dissociates to the same limit as the X 2Π state, we

TABLE III. Re-optimized parameters for the short-range term, VSR,O2(r1), for the
diatomic O2 potential.

Parameter (unit) Value

α (Å−2) 9.439 784 362 354 936 × 10−1

β (-) 1.262 242 998 506 810
a0 (millihartree) −1.488 979 427 684 798 × 103

a1 (millihartree) 1.881 435 846 488 955 × 104

a2 (millihartree) −1.053 475 425 838 226 × 105

a3 (millihartree) 2.755 135 591 229 064 × 105

a4 (millihartree) −4.277 588 997 761 775 × 105

a5 (millihartree) 4.404 104 009 614 092 × 105

a6 (millihartree) −2.946 204 062 950 765 × 105

a7 (millihartree) 1.176 861 219 078 620 × 105

TABLE IV. Re-optimized parameters for the short-range term, VSR,dNO(r i ), for
diatomic doublet NO potential.

Parameter Value

α1 (Å) 0.896 601 839 395 554
α2 (Å2) 2.069 542 710 330 37
BdNO (kcal/mol) −149.478 44
c1 −0.138 534 305 380 708
c2 1.889 990 874 379 91
c3 −4.297 653 558 650 66
c4 21.430 539 556 708 7
c5 −44.347 827 069 026 3
c6 41.072 408 288 420 3
c7 −10.909 962 575 954 4
c8 −10.687 260 815 907 1
c9 9.189 735 457 956 48
c10 −2.201 965 266 358 97

assume that the long-range term in Eq. (11) is very similar for these
two states. Therefore, the parameters set for VD3(BJ),dNO(ri) are used
for the term of VD3(BJ),qNO(ri) as well. Then, the VSR,qNO(ri) term was
fitted as a difference of terms VPA,qNO(ri) and VD3(BJ),qNO(ri). For the
fit of VSR,qNO(ri), Eq. (15) was used,

VSR,qNO(ri) = BqNO(∑10
k=1 ckX

k
i,qNO), (15)

Xi,qNO = exp(−(ri − re,qNO)/α1 − (ri − re,qNO)2/α2). (16)

Here, re,qNO is the equilibrium bond length (1.4219 Å)52 of a4Π
NO. The parameter BqNO was fixed at 42.7 kcal/mol. The non-linear
parameters α1 and α2, as well as the coefficients, ck, were fitted, and
they are collected in Table V.

TABLE V. Optimized parameters for short-range term, VSR,qNO(r i ), for diatomic
quartet NO potential.

Parameter Value

α1 (Å) 0.512 278 626 249 86
α2 (Å2) 1.122 416 809 737 78
c1 −0.803 736 202 408 199
c2 12.803 364 029 556 2
c3 −38.692 021 976 777 6
c4 69.709 031 444 894 8
c5 −77.248 460 068 776 5
c6 49.276 565 279 387 6
c7 −15.248 280 905 310 6
c8 0.323 472 459 125 756
c9 0.990 405 801 350 144
c10 −0.174 629 129 756 616
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C. Many-body potential of the MEG fit
The many-body term of the potential energy is expressed as

VMB(r1, r2, r3) =
l

∑
connected,
n1+n2+n3

Dn1n2n3S[Xn1
1 Xn2

2 Xn3
3 ], (17)

where S[. . .] is a permutationally invariant polynomial basis func-
tion obtained by symmetrization of a primitive monomial basis
function, as also used by Xie and Bowman.50,51 The restriction to
connected terms was introduced in Ref. 82. For all three potentials,
twelfth-order (l = 12) many-body functions were used. The bond
order variables, Xi, are mixed-exponential-Gaussian functions,24

Xi = exp[−(ri − re,Z)/aZ − (ri − re,Z)2/bZ], (18)

where aZ , aZ , and re,Z (Z is either O2 or NO) are nonlinear parame-
ters collected in Table VI.

As we already used recently for fitting the N2O and O3 sur-
faces,28,29 the four-body frame of a general A2B2 system was applied.
Considering this general scheme as an O2N2 system, one of the N
atoms was placed far apart from the other three atoms.

To carry out of the fit of the many-body term, the following
error function is minimized:

F = ∑n
j=1 Wj(V0,PA

j − Vj +∑m
k=1 dksjk)

2
, (19)

with respect to the linear coefficients dk, where m and n are the
number of basis functions and the number of fitted data points,
respectively, V0,PA

j is the sum of the constant and pairwise terms at
geometry point j, V j is the energy of geometry point j, dk is the kth
Dn1n2n3 coefficient, sjk is the kth basis function S[Xn1

1 Xn2
2 Xn3

3 ] eval-
uated at geometry point j, and W j is a weighting function used to
avoid too much emphasis on the high-energy data points,

Wj = { 1 for Vj ≤ (Ec + Esh)
[(Ec + Esh)/Vj]p for Vj > (Ec + Esh),

(20)

where Ec is a parameter of the fitting process that reduces the weights
of very-high-energy data points. Parameter Esh is arbitrarily set equal
to 121.6 kcal/mol, which is the energy difference of stationary points
N2 + O2 and NO2 + N, i.e., the difference between the reference ener-
gies of the four- and three-body frames. We chose Ec and the power
p to be 227.0 kcal/mol and 1.5, respectively, for all three NO2 fits.

TABLE VI. The nonlinear parameters of the many-body MEG variables for the NO2
surfaces.

Surface Z re,Z (Å) aZ (Å) bZ (Å2)

Doublet O2 1.208 1.350 2.75
NO 1.1508 1.150 2.75

Quartet O2 1.208 0.97 1.51
NO 1.1508 0.75 1.30

Sextet O2 1.208 1.25 2.10
NO 1.4219 0.94 3.90

The doublet, quartet, and sextet MEG surfaces of NO2 were
fitted by a modified version of our PIPFit program.83

D. Patch functions for the MEG and NN fits
Test fits showed that the functional forms of the terms

described so far are not flexible enough to properly fit the barrier
between the 2A1 and 2B2 minima of doublet NO2.

We first consider the MEG fit. We originally used a 10th-order
MEG fit [l = 10 in Eq. (17)], and increasing this to a 12th-order fit did
not solve the problem (we have not seen signs of overfitting at the
12th order, but going to higher order could be risky in that regard).
The switching of the 2A1 and 2B2 states is only a few kcal/mol higher
in energy than the energy of the minimum energy structure of the
2B2 state, and the crossing seam of these states is also very close to the
minimum energy structure of 2B2. Since the MEG fitting function
does not have the flexibility to follow the proper shape of these states,
the location of the 2B2 structure rather appears as a shoulder instead
of a well. To restore the barrier and give a well shape of the surface
around the 2B2 structure, we added a local patch function, VPF(r1,
r2, r3), to the doublet NO2 potential,

VPF(r1, r2, r3) = a0 exp[Y(r1, r2, r3)], (21)

Y(r1, r2, r3) = −(r2 − rfp)
2/a1 − (r3 − rfp)

2/a1

−[(r2
2 + r2

3 − r2
1)/(2r2r3) − cos θfp]

2/a2. (22)

The parameters of the patch function are collected in Table VII.
The first two terms on the right-hand side of Eq. (22) correspond
to the two N–O distances. By plotting the potential in the geom-
etry region near the crossing seam of the 2A1 and 2B2 states close
to the minimum of the 2B2 state, we found that using the O–N–
O angle (α1) is more straightforward than using the O–O distance
to describe the shape of the crossing seam. Therefore, the third
term on the right-hand side of Eq. (22) uses the deviation of O–
N–O angle from a fixed angle. Nevertheless, this patch function
was parameterized such that it decreases very quickly as the bond
lengths start deviating from the focus point (defined by rfp and θfp).
Figure 1 shows an example cut with three sets of data: the tar-
get DSEC-CASPT2/maug-cc-pVTZ energies, the fitted MEG surface
without the patch function, and the fitted MEG surface with the
patch function.

When the NN fits were used, we found the same problem.
The NN fit has a better performance than that of the MEG fit, i.e.,
the energies of the NN fit lie closer to the energies in the dataset,

TABLE VII. Parameters of the patch functions of the doublet NO2 surfaces.

Parameter (unit) MEG NN

a0 (kcal/mol) 5.0 3.0
a1 (Å2) 0.010 0.008
a2 (unitless) 0.002 0.0008
rfp (Å) 1.25 1.25
θfp (deg) 107.0 107.0
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FIG. 1. An example (r2 = r3 = 1.25 Å) showing the effect of the patch function on
the MEG fit to the doublet surface.

but the cusp of the state crossing of the 2A1 and 2B2 states is
still cut off. Thus, this patch function was also added to the NN
fit, but with a different set of parameters, which are also given in
Table VII.

For the quartet and sextet NO2 surfaces, such patch functions
are not needed, and they were not applied.

IV. RESULTS AND DISCUSSION
The fitting errors of the NN and MEG fits are collected in

Table VIII, in which the mean unsigned errors (MUEs) and root-
mean-square errors (RMSEs) are shown for various energy ranges,
as well as for the entire (2000 kcal/mol) energy range [recall that
all energies are relative to the equilibrium energy of NO2 (2A1)].
Although the order of the many-body part in the MEG fits increased
to 12 from the previously used 9 (for N4) or 10 (for all other systems),
the MEG fits are still unable to match the performance of the NN fits.
This observation is consistent with our recent comparison of the N4
potential using different fitting techniques,56 and it is attributable to
the ultra-flexibility84–87 of the NN functional form.

Table IX compares the current fits for NO2 to some of our pre-
vious fits for similar systems, in particular to the 1 1A′, 1 1A′′, 1 3A′,
1 3A′′, 1 5A′, and 1 5A′′ surfaces of O3

29 and the 3A′ and 3A′′ sur-
faces of N2O.28 The error of the MEG fit of 2A′ of NO2 is about half
that of the MEG fit of the 1 1A′ and 1 1A′′ surfaces of O3. There
is another approximate halving of the error in going to the NN fit.
For the surface with middle spin state, the improvement of the quar-
tet NO2 surface compared to the triplet O3 and NO2 surfaces is less
than that in the singlet and doublet surfaces; the MUE of the 4A′ sur-
face of NO2 is about 70% of the average MUE of the two triplet O3
surfaces and about 90% of the two triplet N2O surfaces. For this 4A′

surface of NO2, the MUE of the NN fit is 1/3 of that of the MEG fit.
The MUEs of the current and previous MEG fits are similar for the
high-spin-state surfaces. The performance of the NN fit is outstand-
ing for the 6A′ surface of NO2, and the MUE of the NN fit is about
1/6th of that of the MEG fit.

TABLE VIII. Mean unsigned error (MUE) and root-mean-square error (RMSE) of the
fitted potential energy surfaces with respect to DSEC-CASPT2/maug-cc-pVTZ results
for various energy ranges (in kcal/mol).

NN MEG

Energy range Number of points MUE RMSE MUE RMSE

Doublet
0 ≤ E < 100 1664 0.8 1.3 1.3 1.9
100 ≤ E < 200 3559 0.8 1.4 1.2 1.8
200 ≤ E < 400 2177 0.8 1.8 1.6 2.6
400 ≤ E < 1000 880 1.6 2.5 4.2 5.8
1000 < E > 1850 154 2.3 3.5 8.6 10.8
All data 8434 0.9 1.7 1.8 3.1
Quartet
76 < E < 100 443 0.3 0.4 0.9 1.3
100 ≤ E < 200 3769 0.7 1.2 2.0 2.7
200 ≤ E < 400 2277 0.7 1.4 2.0 2.7
400 ≤ E < 1000 1107 1.7 2.9 3.8 5.4
1000 < E > 1914 222 2.2 3.5 10.3 14.3
All data 7818 0.8 1.7 2.4 4.0
Sextet
106 ≤ E < 200 2493 0.3 0.4 1.5 2.0
200 ≤ E < 400 3800 0.6 1.0 2.6 4.1
400 ≤ E < 1000 1728 0.8 1.4 5.5 8.1
1000 ≤ E < 1998 365 0.7 1.1 7.3 9.8
All data 8386 0.5 1.0 3.1 5.1

Some of the improvements in the current fits are due to the fact
that the fits of the NO2 surfaces used significantly more points than
were used in the previous O3 and N2O surfaces. Since the O3 system
has a higher permutation symmetry than the other two systems, one
expects to require lower number of points for that system than for
the others; however, the fits of the NO2 surfaces also used about 3.5
times more points than those used for the N2O surfaces, although
both have the same permutational symmetry. Not only does having
more points in the fitting datasets improve the quality of the fits for a
given order of polynomial but also it allows the application of higher
order without overfitting; thus, the present fits used l = 12, whereas
we used many-body functions with l = 9 for our N4 fit and l = 10 for
all our other fits prior to the present work.

Table IX also compares the data distribution in the energy bins
for the O3, N2O, and NO2 systems. For the O3 system, the general
trend is that the number of points used was a continuously decreas-
ing function of the bin energy. Also, as the spin increased from low
to high, the relative contribution of the higher energy bins increased
since higher spin states are usually more repulsive than the lower
spin states, and the energies of all spin states are given relative to the
global energy minimum, which belongs to the deepest energy well of
the lowest spin state. The middle or high spin states usually do not
have such deep wells as can be seen, for instance, in Figs. 7, 10, and
13 of Ref. 29 for O3 or later in this article for NO2. In the cases of
NO2 and N2O, this trend with spin state is the same as that for O3,
but the number of points does not monotonically decrease as a func-
tion of bin energy. In the article on O3,29 the fitting errors suggested
that a fit becomes easier and more accurate for higher spin states.
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TABLE IX. Comparison of the mean unsigned error (MUE), the number of points, and the distribution of points in the different
energy bins (in kcal/mol) of the current fits of NO2 and our previous fits of O3 and N2O.

Low spin Middle spin High spin

O3
a 11A′ 11A′′ 13A′ 13A′′ 15A′ 15A′′

MUE: MEG (l = 10) 4.0 3.3 3.6 3.1 3.4 2.9
Number of points 1686 1622 1645 1605 1617 1587
0 ≤ E < 100 (%) 56 50 48 50 36 35
100 ≤ E < 200 (%) 18 21 21 21 27 26
200 ≤ E < 500 (%) 15 13 15 15 17 18
500 ≤ E < 1000 (%) 8 13 12 11 15 14
1000 < E (%) 3 3 4 3 5 6

N2Ob 3A′ 3A′′

MUE: MEG (l = 10) 2.9 2.5
Number of points 2298 2280
0 ≤ E < 100 (%) 25 26
100 ≤ E < 200 (%) 49 46
200 ≤ E < 350 (%) 19 20
350 ≤ E < 1000 (%) 6 8
1000 < E (%) 0.2 0.3

NO2
2A′ 4A′ 6A′

MUE: MEG (l = 12) 1.8 2.4 3.1
MUE: NN 0.9 0.8 0.5
Number of points 8434 7818 8386
0 ≤ E < 100 (%) 20 6 . . .
100 ≤ E < 200 (%) 42 48 30
200 ≤ E < 400 (%) 26 29 45
400 ≤ E < 1000 (%) 10 14 21
1000 < E (%) 2 3 4

aReference 29.
bReference 28.

FIG. 2. Contour map of 2A′ potential of
NO2, where r3 = r2. The increment in
the contours is 10 kcal/mol; the energies
are 0 kcal/mol–300 kcal/mol (left—MEG,
right—NN). The energy of the plateau is
added at the upper right corner.
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FIG. 3. Contour map of 4A′ potential of
NO2, where r3 = r2. The increment in
the contours is 10 kcal/mol; the energies
are 0 kcal/mol–300 kcal/mol (left—MEG,
right—NN). The energy of the plateau is
added at the upper right corner.

This could be rationalized since a higher spin state surface is—in
general—more repulsive than a lower spin state surface and usually
has lower number of minima. This same trend is observed for the
NN fits of the NO2 surfaces, but it is reversed for the MEG fits of the
NO2 surfaces.

Figures 2–13 are contour plots of the 2A′, 4A′, and 6A′ surfaces,
where the left and right panels are the MEG and the NN fits, respec-
tively. As a reminder, r1 is the O–O distance and r2 and r3 are the two
N–O distances; the O–N–O and N–O–O bond angles are α1 and α2,
respectively.

TABLE X. Optimized coordinates and energies of selected structures of the MB-PIP-MEG and PIP-NN fits.a

Structure Fit r1 (Å) r2 (Å) r3 (Å) α1 (deg) α2 (deg) V (kcal/mol)

D1-min MEG 1.201 1.201 137.3 0.0
(2A1 minimum) NN 1.214 1.214 135.4 0.0
D2-min MEG 1.286 1.286 104.1 36.8
(2B2 minimum) NN 1.286 1.286 105.0 33.9
D3-ts MEG 1.221 1.221 180.0 38.8

NN 1.212 1.212 180.0 36.9
D4-sts MEG 1.710 1.710 54.9 179.4

NN 1.719 1.719 55.0 175.6
D5-min MEG 1.933 1.148 124.8 70.9

NN 1.985 1.145 124.5 68.7
D6-sts MEG 1.257 1.634 180.0 141.4

NN 1.246 1.616 180.0 139.2
Q1-min MEG 1.291 1.291 126.4 88.0

NN 1.294 1.294 130.6 85.8
Q2-sts MEG 1.361 1.361 180.0 127.1

NN 1.344 1.344 180.0 129.2
Q3-sts MEG 1.695 1.695 54.0 162.3

NN 1.694 1.694 54.4 163.8
S1-min MEG 1.343 1.778 180.0 190.2

NN 1.308 1.773 180.0 186.3
S2-ts MEG 1.548 1.548 180.0 194.8

NN 1.565 1.565 180.0 191.6
S3-(s)ts MEG 1.875 1.875 58.3 223.1

NN 1.828 1.828 57.5 224.0

aThe names are given in format mn-c, where m is the first letter of the multiplicity (D, Q, or S), n is the serial number of the struc-
ture, and c is the character of the stationary point; min—minimum, ts—transition structure, and sts—second-order transition
structure (hilltop). Coordinate r1 is the O–O distance, and r2 and r3 are the two N–O distances; the O–N–O and N–O–O bond
angles are α1 and α2 , respectively.
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FIG. 4. Contour map of 6A′ potential of
NO2, where r3 = r2. The increment in
the contours is 10 kcal/mol; the energies
are 0 kcal/mol–300 kcal/mol (left—MEG,
right—NN). The energy of the plateau is
added at the upper right corner.

In Figs. 2(2A′), 3(4A′), and 4(6A′), the α1 angle is varied
from 30○ to 180○ and the two N–O distances (r2 = r3) are var-
ied from 1.0 Å to 3.5 Å. In these three figures, the region of O2
is well separated from N (α1 < 45○ and longer N–O distances),
and the three surfaces are nearly identical because the interac-
tion of O2(3Σ−g ) with the N atom (4S) has not yet split the spin
states. For shorter N–O distances and larger α1 angle, the three sur-
faces are very different; next, we consider these regions of stronger
interaction.

The dominant feature in this region of the doublet surface is
the well of ground-state NO2 (2A1). The geometry of the minimum-
energy structure, as optimized by the Polyrate program88 with the
fitted surfaces, is given in Table X as structure D1-min. The small
well of the 2B2 structure (D2-min in Table X) only appears in Fig. 2
as a small distortion of the contours at of α1 ≈ 100○, and it makes
the dominant well of the 2A1 structure somewhat asymmetric. At
α1 = 180○, there is a transition structure (D3-ts) that connects two
D1-min structures. The wells in the NO2 region and the region of
O2 + N are separated by a relatively high barrier; in Fig. 2, a
second-order transition structure (D4-sts) is the lowest energy point
of this barrier.

One can see a well in the quartet surface (Fig. 3) in the
NO2 region, similar to the doublet well (Fig. 2), but the quar-
tet well is not as deep. Table X has the coordinates of the min-
imum structure Q1-min, and in Fig. 3, the top of the inversion
barrier at α1 = 180○ is a second-order transition structure (Q2-sts),
unlike the case in Fig. 2. To get an inversion transition structure
between two Q1-min minima, we attempted to keep the bending
imaginary frequency of the linear and symmetric Q2-sts structure
by making the two NO distances different. For small or moder-
ate distortion of the two NO bond lengths, the optimization led
back to Q2-sts, and for significant distortion, the longer NO bond
broke.

As on the doublet surface, the wells in the NO2 region and
the region of O2 + N are separated by a relatively high bar-
rier on the quartet surface, and the geometry of the second-order
transition structure (Q3-sts) of the quartet surface is very similar to
that of D5-sts of the doublet surface.

In the plots of Fig. 4 (in which the two NO distances are kept
equal), the sextet surface also shows a shallow well in the NO2
region centered around a linear transition structure (S1-ts), which
leads to an asymmetric linear minimum, S2-min, with different NO

FIG. 5. Contour map of 2A′ potential of
NO2, where r3 = 1.151 Å. The incre-
ment in the contours is 10 kcal/mol; the
energies are 0 kcal/mol–300 kcal/mol
(left—MEG, right—NN). The energy of
the plateau is added at the upper right
corner.
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FIG. 6. Contour map of 4A′ potential of
NO2, where r3 = 1.151 Å. The incre-
ment in the contours is 10 kcal/mol; the
energies are 0 kcal/mol–300 kcal/mol
(left—MEG, right—NN). The energy of
the plateau is added at the upper right
corner.

FIG. 7. Contour map of 6A′ potential of
NO2, where r3 = 1.151 Å. The incre-
ment in the contours is 10 kcal/mol; the
energies are 0 kcal/mol–300 kcal/mol
(left—MEG, right—NN). The energy of
the plateau is added at the upper right
corner.

FIG. 8. Contour map of 2A′ potential of
NO2, where r1 = 1.208 Å. The incre-
ment in the contours is 10 kcal/mol; the
energies are 0 kcal/mol–300 kcal/mol
(left—MEG, right—NN). The energy of
the plateau is added at the upper right
corner.
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FIG. 9. Contour map of 4A′ potential of
NO2, where r1 = 1.208 Å. The incre-
ment in the contours is 10 kcal/mol; the
energies are 0 kcal/mol–300 kcal/mol
(left—MEG, right—NN). The energy of
the plateau is added at the upper right
corner.

FIG. 10. Contour map of 6A′ potential
of NO2, where r1 = 1.208 Å. The incre-
ment in the contours is 10 kcal/mol; the
energies are 0 kcal/mol–300 kcal/mol
(left—MEG, right—NN). The energy of
the plateau is added at the upper right
corner.

FIG. 11. Contour map of 2A′ potential of
NO2, where α2 = 120○. The increment in
the contours is 10 kcal/mol; the energies
are 0 kcal/mol–300 kcal/mol (left—MEG,
right—NN). The energy of the plateau is
added at the upper right corner.
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FIG. 12. Contour map of 4A′ potential of
NO2, where α2 = 120○. The increment in
the contours is 10 kcal/mol; the energies
are 0 kcal/mol–300 kcal/mol (left—MEG,
right—NN). The energy of the plateau is
added at the upper right corner.

distances; thus, it is not shown in the plots of Fig. 4. For the sextet
state, the top of the barrier between the NO2 region and the region
of O2 + N is higher in energy than the barriers for the doublet and
quartet surfaces. This is a transition structure by the MB-PIP-MEG
fit, but it is a second-order transition structure by the PIP-NN fit. For
this reason, this structure is denoted as S3-(s)ts in Table X to reflect
both possibilities.

In Figs. 5(2A′), 6(4A′), and 7(6A′), the α1 angle is varied from
30○ to 180○ and one of the two N–O distances (r2) is varied from 1.0
to 3.5 Å, while the other N–O distance (r3) is fixed at 1.151 Å. Just
like Fig. 2, Fig. 5 contains the well of 2A1 structures (D1-min) since
it is lower in energy than the plateau, which corresponds to NO(2Π)
+ O(3P). Since the well region of the quartet surface in Fig. 3 is higher
in energy than the energy of NO(2Π) + O(3P), the well mainly dis-
appears in Fig. 6. The sextet surface, Fig. 7, is many repulsive, and
the plateau lies much higher in energy than those of the doublet and
quartet surfaces due to the quartet spin state of NO (4Π).

In Figs. 8(2A′), 9(4A′), and 10(6A′), the α2 angle is varied from
30○ to 180○ and one of the two N–O distances (r2) is varied from

1.0 Å to 3.5 Å, while the O–O distance (r1) is fixed at 1.208 Å.
The doublet surface (Fig. 8) has two small wells in this cut around
α2 = 125○ and r2 = 1.3 Å, as well as α2 = 30○ and r2 = 2.2 Å. Both wells
are part of the well of the same NOO structure (D5-min); the differ-
ence is only the order of the atoms. This cut also has a hill surface
feature around α2 = 180○ and r2 = 1.6 Å, which belongs to structure
D6-sts. The quartet (Fig. 9) and sextet (Fig. 10) surfaces are mainly
repulsive for this cut.

In Figs. 11(2A′), 12(4A′), and 13(6A′), the α2 angle is fixed at
120○, and the O–O distance (r1) and one of the two N–O distances
(r2) are varied from 1.0 Å to 3.5 Å. The doublet and quartet sur-
faces are again very similar since both the O2(3Σ−g ) + N(4S) and the
NO(2Π) + O(3P) channels appear in both spin states. In the sextet
surface, the channel of O2(3Σ−g ) + N(4S) is still there, but in the other
channel, O(3P) has to combine with NO(4Π); thus, it has higher
energy than the doublet or quartet surfaces.

The computational cost using the surfaces is an important fac-
tor in dynamics simulations. To compare the compute times of
the NN and MEG fits, we used the data from the second series of

FIG. 13. Contour map of 6A′ potential of
NO2, where α2 = 120○. The increment in
the contours is 10 kcal/mol; the energies
are 0 kcal/mol–300 kcal/mol (left—MEG,
right—NN). The energy of the plateau is
added at the upper right corner.
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trajectory calculations described in Sec. II C, where 1100 trajecto-
ries were run for each of the six surfaces. Both the NN and the
MEG subroutines have analytical gradients, and those were used
(unlike the case for the N4 system,56 for NO2, the evaluation of
the analytical gradients89 of the neural network fit is faster than the
evaluation of numerical gradients). We know from a similar com-
parison made for N4 system56 that if the Bulirsch–Stoer integrator
with adaptive step size is used in trajectory propagation, then the
cost ratio of the trajectories is dominated by the cost of calculating
the gradients. Averaging over the whole second series of trajecto-
ries (3300 trajectories for each fitting method), we found that the
average compute time for NN trajectories is 4.9 times larger than
that for MEG trajectories (a ratio of 4.6 for the doublet, 5.0 for
the quartet, and 5.2 for the sextet). The ratio of compute times is
closer to unity for NO2 than for N4, where the ratio of compute
time for NN to MEG was about 17.56 However, in the MEG fits of
NO2, we use a higher-order polynomial (12th order) than that used
for N4 (9th order); thus, the lower ratio of compute times in the
present work is, at least, partially due to making the MEG fit more
expensive.

V. SUMMARY
In this work, we provide potential energy surfaces for study-

ing high-energy collisions between nitrogen atoms and oxygen
molecules. The doublet, quartet, and sextet A′ surfaces presented
here are suitable for collisions of O2(3Σ−g ) with N(4S). The sur-
faces were fitted two ways, using both the MB-PIP-MEG method
and the PIP-NN method against datasets with DSEC-corrected
CASPT2//DW-SA(3)-CASSCF(12o,17e) calculations. The neural
network fit has superior performance to MB-PIP-MEG, although
its gradient evaluation for trajectory simulations is 5 times more
expensive than the gradient of MB-PIP-MEG.

SUPPLEMENTARY MATERIAL

The supplementary material contains the fitting datasets of the
doublet, quartet, and sextet A′ potential energy surfaces of NO2, the
subroutines of the MB-PIP-MEG and the PIP-NN fits of the sur-
faces (which provide both the energy and the gradients calculated
analytically), and two examples of Molpro input files.
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