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Abstract 

An analytic full-dimensional diabatic potential energy matrix (DPEM) for the lowest three 

singlet states of thiophenol (C6H5SH) at geometries accessible during photodissociation is 

constructed using the anchor points reactive potential (APRP) scheme. The data set used for 

modeling is obtained from electronic structure calculations including dynamic correlation via 

excitations into the virtual space of a three-state multi-configuration self-consistent field 

calculation. The resulting DPEM is a function of all the internal coordinates of thiophenol. The 

DPEM as a function of the S−H bond stretch and C−C−S−H torsion and the diabatic couplings 

along two in-plane bend modes and nine out-of-plane distortion modes are computed using 

extended multi-configurational quasi-degenerate perturbation theory followed by the fourfold 

way determination of diabatic molecular orbitals and model space diabatization by 

configurational uniformity, and this dependence of the DPEM is represented by general 

functional forms. Potentials along 31 tertiary internal degrees of freedom are modeled with 

system-dependent, primary-coordinate-dependent nonreactive molecular mechanics-type force 

fields that are parametrized by Cartesian Hessians calculated by generalized Kohn-Sham density 

functional theory. Adiabatic potential energy surfaces and nonadiabatic couplings are obtained by 

a transformation of the DPEM. The topography of the APRP PESs is characterized by vertical 

excitation energies, equilibrium geometries, vibrational frequencies, and conical intersections, 

and we find good agreement with available reference data. This analytic DPEM is suitable for 

full-dimensional electronically nonadiabatic molecular dynamics calculations of the 

photodissociation of thiophenol with analytic gradients in either the adiabatic or diabatic 

representation. 
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I. Introduction 

The concepts of adiabatic electronic states and adiabatic potential energy surfaces (PESs) 

are consequences of the Born-Oppenheimer (BO) separation.1,2 For molecular scattering, energy 

transfer processes, and chemical reactions that involve only a single electronic state, the BO 

separation has been enormously successful. Although the BO approximation was originally 

proposed for the ground electronic state, it is now common to use adiabatic electronic states as a 

basis for multi-state dynamics; this is sometimes called the generalized Born-Oppenheimer 

(GBO) approximation.3 Electronically nonadiabatic processes are important in photochemistry, 

photocatalysis, photovoltaics, transition metal chemistry, combustion chemistry, the atmosphere, 

surface chemistry, and a number of biological processes.4–14 

The adiabatic representation is uniquely defined by having a diagonal electronic 

Hamiltonian whose diagonal matrix elements (labeled as Vi) are the adiabatic PESs governing 

nuclear motion. For multi-state dynamics, one must also consider the couplings of the electronic 

states due to nuclear momentum and nuclear kinetic energy, and the associated matrix elements 

in the GBO are called nonadiabatic couplings (NACs); these couplings are usually small enough 

to be neglected when electronic states are well separated. However, nonadiabatic couplings 

usually become large and rapidly varying when the energies of two or more electronic states 

approach closely, and they become singular at conical intersections (CIs) where electronic states 

are degenerate. In general, conical intersections form a (3N − 8)-dimensional seam in the (3N − 

6)-dimensional internal-coordinate space, where N is the number of atoms in the system. 

Nonadiabatic transitions occur most efficiently near conical intersection seams where 

nonadiabatic couplings cannot be neglected.15–25 

Whereas the GBO framework is based on coupled adiabatic states, electronically 

nonadiabatic processes may also be simulated in terms of a diabatic representation.26 A diabatic 

representation is any representation in which the effect of the electronic state coupling due to the 

nuclear momentum and nuclear kinetic energy is negligible relative to the coupling by the 

electronic Hamiltonian; thus diabatic representations are not unique. (Strict diabatic states with 
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 3 

vanishing nuclear momentum couplings do not exist.27) In a diabatic representation, the 

electronic Hamiltonian matrix is not diagonal; we will call it the diabatic potential energy matrix 

(DPEM). The diagonal elements (labeled as Uii) are the diabatic PESs (also called diabatic 

potentials), and the off-diagonal elements (labeled as Uij with i ≠ j) are called diabatic couplings.  

To simulate the full dynamics of electronically nonadiabatic processes requires 

high-dimensional PESs and state couplings. Calculations with the full dimensionality, with the 

required ensemble averaging for comparison to experiment, and with high-accuracy electronic 

structure methods are usually affordable only if the PESs and couplings are fitted to analytic 

functions to avoid the cost of direct dynamics. It is impossible to fit the adiabatic PESs and 

couplings directly to an analytic form because the adiabatic PESs have cuspidal ridges at the (3N 

– 8)-dimensional conical intersections, the NACs (which are the couplings in an adiabatic 

representation) are singular at these ridges, and one must also consider the geometric phase. In a 

diabatic representation, on the other hand, the PESs and couplings are smooth functions of 

nuclear coordinates, and there is no geometric phase. Therefore, our strategy is to fit a DPEM, 

but we note that once this is done the adiabatic PESs and couplings can be calculated by an 

inexpensive transformation from the diabatic fit so the dynamics may be carried out in either a 

diabatic or an adiabatic representation. 

Photodissociation of thiophenol produces a phenylthiyl radical in which the singly 

occupied molecular orbitals (SOMOs) for the both the ground and first excited states are 

dominated by the occupied 3p orbital on sulfur. We use the notation nσ and nπ to represent the 

nonbonding in-plane 3p orbital and out-of-plane 3p orbital, respectively. For thiophenol 

molecule, the 3p valence orbital of the sulfur is strongly delocalized and the out-of-plane 3p 

orbital contributes significantly to the π orbital that dominants the S0→S2 excitation, therefore 

we have chosen nπ to represent this π orbital and nπ𝜎* to represent S0⟶S2 excitation. This nπ𝜎* 

notation is also consistent with the labeling by Kim et al.28 

Photoinduced bond fission processes proceeding via an nπσ* excited state are prototypes of 

electronically nonadiabatic reactions.29–37 The photodissociation of thiophenol is a 
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representative of these nπσ*-mediated reactions that has been extensively studied both 

experimentally and theoretically.28,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 The photo-induced S−H 

fission of thiophenol mainly involves the ground state and the first two excited singlet states (the 

participation of triplet states is uncertain but probably minor); these singlet states are labeled as 

1ππ, 1ππ*, and 1nπσ* in the diabatic representation and as S0, S1, and S2 in the adiabatic 

representation. The 1nπσ* state is repulsive along the S−H dissociation coordinates and intersects 

the 1ππ* and 1ππ states; the conical intersections are (3N – 8)-dimensional subspaces of these (3N 

– 7)-dimensional diabatic crossings. The resulting S1–S2 and S0–S1 conical intersections are 

labeled respectively as CI1 and CI2. Wave-packet simulations48,52 with reduced-dimensional 

PESs and couplings have been performed to investigate the photodissociation of thiophenol, but 

these 2D or 3D simulations only consider a few degrees of freedom and cannot explore how the 

other degrees of freedom are coupled to the bond fission process. 

In the present study, we have constructed a set of full-dimensional potential energy surfaces 

and state couplings for thiophenol in the diabatic representation. The DPEMs are obtained by the 

orbital-dependent fourfold-way54,55,56 model-space57 diabatization scheme that was applied to 

limited geometries of this system in a previous study,53 and we fit them here using the anchor 

points reactive potential (APRP) scheme developed in our group.58,59,60,61 In the APRP method, 

the reactive degrees of freedom that are most relevant to the bond breaking (the S−H bond 

stretch and the C−C−S−H torsion) are fitted with general functional forms, and the other degrees 

of freedom are modeled with system-specific, geometry-specific, local, nonreactive molecular 

mechanics (MM) force fields. The resulting full-dimensional PESs and state couplings are 

functions of all 33 internal degrees of freedom of thiophenol. 

The rest of this paper is arranged as follows. Section II describes the methods for the 

construction of PESs and state couplings. Section III presents the computations of system 

properties from the APRP PESs, in particular calculations of equilibrium geometries, excitation 

energies, vibrational frequencies, and conical intersections, and it compares these results with 

available experimental and high-level theoretical data. Section IV is a summary. 
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II. Methods and computational details 

II.A. Anchor points reactive potential (APRP) method 

The APRP scheme involves fitting the dependence of the potential on a few degrees of 

freedom to a general functional form and fitting the dependence on the other degrees of freedom 

to nonreactive molecular mechanics (MM) force fields. The latter degrees of freedom should 

only include those restricted (in the process to be studied) to small-amplitude vibrations or 

well-defined torsions. This method can be applied to either a single adiabatic PES58 and or to a 

whole DPEM.59,60,61 Here we employ the latter. We will treat most of the modes as undergoing 

only small-amplitude vibrations or well-defined torsions during the photodissociation process, 

and this is justified in part by the experimental observation of the short S1 excited state lifetime 

(~50 fs) of thiophenol.49,50 

The first step of the APRP scheme is to divide the internal coordinates into reactive 

coordinates (which include primary and, if any, secondary coordinates) and tertiary coordinates. 

The reactive coordinates are the ones that involve bond breaking or wide amplitude motion such 

that they cannot be accurately described by interpolation between geometry-dependent 

nonreactive MM force fields. The remaining coordinates are the tertiary coordinates. The 

reactive coordinates can be further divided into two subsets, the primary and secondary 

coordinates; the difference between the two subsets is how they are coupled to the tertiary 

coordinates. The coupling between the tertiary and primary coordinates can be strong, while the 

coupling between the secondary and tertiary coordinates should be insignificant. The DPEM 

matrix elements are written as  

 ( )   ( )   ( )
1,2 3

, , ,ij ij ijU U U= +q s Q q s Q q   (1) 

where q is the collection of primary coordinates; s is the collection of secondary coordinates; Q 

denotes the remaining internal coordinates that treated as tertiary coordinates; and the first and 

second terms on the right-hand-side are the reactive term and the tertiary term, respectively. In 

the current study, the first and second terms on the right-hand-side will be called reactive diabatic 

potentials and tertiary diabatic potentials, respectively, for the diagonal elements of the DPEM; 
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and they will be called reactive diabatic couplings and tertiary diabatic couplings, respectively, 

for the off-diagonal elements of the DPEM. The notation ( ),q s  denotes a functional 

dependence on q and s; the notation ( )Q q  denotes a functional dependence on Q and a 

parametric dependence on q. 

Our treatment builds on previous applications of the APRP to similar problems.61,62,63 The 

reactive terms are fitted to general system-dependent functional forms with the tertiary 

coordinates frozen at the reactant ground state equilibrium geometry. Then we select a set of 

values of qa (with a = 1, NA) called anchor points. At each qa we optimize the Q to find a 

“constrained equilibrium” geometry for the each electronic state. Then we express each element 

of the DPEM for small-angle vibrations or torsions about the constrained equilibrium structure 

by using nonreactive molecular mechanics. The tertiary terms for each element of the DPEM are 

finally obtained as weighted linear combinations of these anchor-point fits.  

II.B. Electronic structure calculations 

All the data used in the fitting were obtained by electronic structure calculations. The 

potentials and couplings as functions of the primary coordinates and the diabatic couplings in the 

tertiary coordinates were obtained by extended multiconfigurational quasidegenerate 

perturbation theory (XMC-QDPT)64,65,66 followed by fourfold-way model-space 

diabatization,54,55,56,57 with a minimally augmented-multiply polarized valence triple zeta 

(MG3S)67 basis set. Technical details of the diabatization methods (active orbitals, diabatic 

molecular orbitals, and diabatic prototypes et al.) can be found in our previous study.53 These 

calculations were performed with the GAMESS68,69 electronic structure package. 

The anchor-point geometry optimizations and Cartesian Hessian calculations for the 

construction of tertiary diabatic potentials were performed using Kohn-Sham density functional 

theory (KS-DFT)70,71 for the ground state and linear-response time dependent DFT (TDDFT)72 

for excited states. We used the MN1573 and τ-HCTHhyb74 density functionals with the 

def-TZVP75 basis set for the KS-DFT and TDDFT calculations, respectively. These calculations 

were performed using the Gaussian 1676 electronic structure package.  
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II.C. Reactive coordinates 

For photoinduced S–H fission of thiophenol, we have previously reported (without fitting) 

the diabatic and adiabatic potentials along the S–H bond stretch and C–C–S–H torsion, and both 

coordinates were shown to be important for the adiabatic-to-diabatic transformation.53 However, 

the C–C–S–H torsion represents the orientation of the S–H bond well only when the benzene 

ring is planar. Following a similar treatment in a previous study on thioanisole,60 we have chosen 

the S–H bond stretch (labeled as R) and an alternative angle labeled as ϕ to be the reactive 

coordinates. The angle ϕ is the average of two other angles, ϕ1 and ϕ2, as illustrated in Fig. 1, 

where ϕ1 is the angle between the C6–C2 vector and the projection of the S7–H13 vector onto 

the plane defined by the C6–C2 vector and the normal to the C6–C2–C1 plane; ϕ2 is the angle 

between the C5–C3 vector and the projection of the S7–H13 vector on the plane defined by the 

C5–C3 vector and the normal to the C5–C3–C4 plane. Following the above definitions, the 

reactive coordinates are calculated as 

 7 13R −= r   (2) 

 
( )1 2

2

 


+
=   (3) 

 
6 2 p1

1
6 2 p1

cos
−

−


=

r v

r v
  (4) 

 
5 3 p2

2
5 3 p2

cos
−

−


=

r v

r v
  (5) 

 7 13
p 7 13 2

,   1,2i
i i

i

i−
−


= − =

v r
v r v

v
  (6) 

 ( )1 6 2 6 1 1 2− − −=  v r r r   (7) 

 ( )2 5 3 5 4 4 3− − −=  v r r r   (8) 

where ri–j is the vector from atom i to atom j. 

For modeling the diabatic potentials, R is treated as primary coordinate, and ϕ is treated as 
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 8 

secondary coordinate, but for the modeling of diabatic couplings, R and ϕ are both treated as 

primary coordinates. We can therefore write the following as a more specific version of eq. (1): 

 ( )   ( )   ( )
1,2 3

, , ,ii ii iiU R U R U R = +Q Q  (9) 

 ( )   ( )   ( )
1 3

, , , , ,  ij ij ijU R U R U R i j  = + Q Q   (10) 

II.D. Construction of the diabatic potential energy matrix 

II.D.1. Reactive diabatic potentials and reactive diabatic couplings 

As mentioned above, the data used for modeling the reactive terms of the DPEM were 

calculated by XMC-QDPT/MG3S followed by fourfold way model-space diabatization (see Ref. 

53 for details). These single-point calculations were performed within the (R,ϕ)-two-dimensional 

space with all the other coordinates fixed with their values at the ground-state equilibrium 

geometry. Then the diabatic potentials and couplings were fitted with selected analytic functions. 

The potential of the diabatic 1ππ state (which is S0 in the Franck-Condon region) is fitted 

using 

 

  ( ) ( )( ) ( )( )

( )( )
( )

1 1

2
2 2

1,2
0 1 1 111

3

2
1

, 1

                     cos 2
n n

B R R

B R R

n
n

U R D D B R R e

D e n





− −

− −

=

= − + −

− 
  (11) 

where D0, D1, B1, R1, D2n, B2n, and R2n (n = 1, 2, 3) are parameters to be fitted, and where the D1 

term is a Rydberg77 potential. 

The potential of the diabatic 1ππ* state (which is S1 in the Franck-Condon region) is fitted 

using  

 

  ( ) ( )( )

( )( )
( )

1 1

2
2 2

2
1,2

0 122

2

2
1

, 1

                     cos 2
n n

B R R

B R R

n
n

U R D D e

D e n





− −

− −

=

 
= + − 

 

− 

  (12) 

where D0, D1, B1, R1, D2n, B2n, and R2n (n = 1, 2) are parameters to be fitted, and where the D1 

term is a Morse78 potential. 

The potential of the diabatic 1nπσ* state (which is S2 in the Franck-Condon region) is fitted 
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 9 

with eq. (11), the same functional form as used for the 1ππ state as these two diabatic states are 

similar in potential shape. 

The symmetry of the diabatic couplings of thiophenol are the same as those of thioanisole 

(see Ref. 60 and its supporting information for more detail); in particular U12 is even and U13 and 

U23 are odd under reflection in the plane formed by the phenyl group. The following forms for 

the primary diabatic couplings are chosen to satisfy these symmetries for ϕ = nπ/2 (where n = 0, 

1, 2, 3, …): 

 
  ( ) ( )

( ) ( )( )
( )

2
12 12

2
1 12 2

12
1

, sin 2
n nB R R

n
n

U R D e 

 
− −  
 

=

=    (13) 

 
  ( ) ( )

( ) ( )

( )

2
13 13

2 23
1 13

13 2
1

, sin 2
n nB R R

n
n

U R D Re n 

  
− −     

=

=    (14) 

 
  ( ) ( )

( ) ( )

( )

2
23 23

2 22
1 23

23 2
0

, sin 2
n nB R R

n
n

n

U R D e 

  
− −     

=

=    (15) 

where 
( )ij

kD , 
( )ij

kB , and 
( )ij

kR  (i, j = 1, 2, 3, and k is an integer) are parameters to be fitted. 

II.D.2. Tertiary diabatic potentials 

The tertiary diabatic potentials are calculated using the following form, 

 
  ( )  ( ) ( ) ( ) ( )
3 3

1

AN
a a

ii ii
a

U R U T R
=

= Q Q   (16) 

where 
 ( ) ( )
3 a

iiU Q  are the MM-like potentials with specific parameters at each anchor point a; 

and 
( ) ( )a

T r  are tent functions that specify the weight of each anchor point during the 

interpolation, as given by 
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( ) ( )

( )

( ) ( )

1
4

1 2
1 24 4

2 1

1

   

otherwise0

  

R R

R R
T R R R R

R R R R

 


−
=  

− + −



 (17) 

 

( ) ( )

( )

( ) ( )

( )

( ) ( )

4
1

14 4
1

4
1

1
4 4

1

 

   

otherwise
0

          for   2,  3,  ...,  1

a
a a

a a
a

a
a a

a a

A

R R
R R R

R R R R

T R R R
R R R

R R R R

a N

−
−

−

+
+

+

 −
  
 − + −


=  −
 

 − + −



= −

 (18) 

 ( ) ( )

( )

( ) ( )

4

1
14 4

1     

1

0 otherwise

A

A A
A

A A

A

N
N N

N
N N

N

R R
R R R

R R R RT R

R R

−
−

−


−  


 − + −= 
 



 (19) 

where Ra is the value of coordinate R at anchor point a, and the order of the anchor points is 

arranged with ascending Ra; NA is the last anchor point. 

As mentioned above, the tertiary diabatic potentials 
 ( ) ( )
3 a

iiU Q  are modeled by a 

nonreactive force field at each anchor point (for a = 1, 2, …, NA). The parameters of these force 

fields are optimized so as to reproduce the Cartesian Hessian matrix of each anchor point 

geometry which has been partially optimized by DFT or TDDFT. Although the tertiary space 

could in principle be modeled by 31 nonredundant coordinates (thiophenol has 33 internal 

coordinates, and 2 of them are in the reactive coordinate space), in this application we actually 

use redundant internal coordinates for each 
 ( ) ( )
3 a

iiU Q . All the coordinates and their 

corresponding types are listed in Table I with the connectively and numbering of the atoms 

shown in Fig. 1. The force field formula can then be written as composition of different 

contributions based on the type of coordinates as follows, 
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 ( )3 S, B, T, D,

rel,
a a a a a a

iiii ii ii ii iiU U U U U U= + + + +   (20) 

where rel,
a

iiU  is the energy of state i at the constrained equilibrium geometry with primary and 

secondary coordinates fixed at the corresponding anchor point, relative to the energy of the 

reference geometry; the last four terms on the right-hand-side are harmonic bond stretches 
S,a
iiU , 

valence angle bends 
B,a
iiU , cosine torsions 

T,a
iiU , and harmonic out-of-plane distances 

D,a
iiU  

which are given by the following forms, 

 

2

0, ,S, S,
,

1

2

a
n n iia a

ii n ii
nn

R R
U k

R

 −
 =
 
 

   (21) 

 ( )
2

B, B,
0, ,,

1
cos cos

2

a a a
n n iiii n ii

n

U k  = −   (22) 

 ( )( )
2

T, T,
0, ,,

1
1 cos

2

a a a
n n n iiii n ii

n

U k m   = − −
  

   (23) 

 ( )
2

D, D,
0, ,,

1

2

a a a
n n iiii n ii

n

U k d d= −   (24) 

where the sums are over all tertiary coordinates of the given type; the k parameters are force 

constants; the subscript (0,n,ii) represents the equilibrium value of that term for coordinate n; the 

mn parameters in eq. (23) are dihedral multiplicities. Note that there are no cross terms coupling 

different tertiary coordinates in the current study; although the neglect of cross term cannot be 

justified if one uses Cartesian coordinates, it is a good approximation when one uses internal 

coordinates.79 

To determine the MM parameters, we first need to specify the anchor points, which for the 

tertiary diabatic potentials are simply specified by the value of R. The anchor points are chosen 

to include the regions of the ground-state equilibrium (R = 1.34 Å), the first conical intersection 

(CI1 with R ≈ 1.4 Å), the second conical intersection (CI2 with R ≈ 2.7 Å), and the asymptotic 

limit. We used seven anchor points with R = 1.20, 1.35, 1.60, 2.10, 2.50, 3.40, and 5.00 Å for 
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 12 

 3

11U  (the 1ππ potential), three anchor points with R =1.25, 1.35, and 1.60 Å for 
 3

22U  (the 1nπσ* 

potential), and seven anchor points with R = 1.25, 1.35, 1.60, 2.10, 2.50, 3.40, and 5.00 Å for 

 3

33U  (the 1ππ* potential). For most anchor points, the MM potential is expressed in terms of 61 

redundant internal coordinates; However, the last anchor point represents the asymptotic limit 

with Hessian matrix calculated from optimized thiophenoxyl radical, so only 60 internal 

coordinates are used at the last anchor point (the C–S–H bend δ31 no longer exists in the radical). 

The anchor point geometries are obtained by constrained geometry optimizations at each R for 

each state. All the anchor point geometries are planar with ϕ = 0° and Cs. The constrained 

geometry optimizations and Cartesian Hessian calculations are performed with DFT for the 

ground state and with TDDFT for the excited state (the functionals used are τ-HCTHhyb for 

anchor points with R = 3.40 and 5.00 Å and MN15 for anchor points with other R values; the 

def-TZVP basis set is used for all of these calculations). 

The next step is MM parameter optimization for each anchor point, and this is performed 

with our modified version80 of the QuickFF81 package. We assume the tertiary diabatic 

potentials are equal to the tertiary adiabatic potentials, which is justified by the fact that the 

tertiary coordinates are largely spectator coordinates. With this assumption, we use Cartesian 

Hessians of the adiabatic states to calculate the MM parameters for modeling the tertiary diabatic 

potentials. The input information needed by QuickFF consists of the anchor point geometry 

(obtained by the constrained optimization), the corresponding Cartesian Hessian matrix, the 

pre-defined internal coordinates listed in Table I, and the selected functional forms in eqs. (21)

-(24). The force field parameters are then optimized to minimize the error between the force filed 

and ab initio Cartesian Hessian. The details of this kind of calculation can be found in the Ref. 

81. The main change we made in the QuickFF package is that we replaced the simple quadratic 

functions (eq. (2.6) and (2.7) in Ref. 81) with our more globally valid functions (eq. (21) and 

(22)) for bond stretches and angle bends. 

II.D.3. Tertiary diabatic couplings 

The tertiary diabatic couplings are constructed in a different way than the tertiary diabatic 
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potentials. The first difference, as mentioned above, is that for the diabatic couplings we treat 

both reactive coordinates, R and ϕ, as primary coordinates. Therefore we need a product of tent 

functions to interpolate, and the tertiary couplings are written as, 

 
  ( ) ( ) ( ) ( ) ( ) ( )

2 3
3 [3]( , )

1 1

, ( ) cos 2
a ba b

ijij ij
a b

U R s U T R T  
= =

= − Q Q   (25) 

where tent functions 
( ) ( )a

T R  are for the interpolation along R; and tent functions 

( ) ( )cos 2
b

T −  are used for the interpolation along ϕ. The argument of the latter tent function is 

chosen because it increases monotonically for 0 ≤ ϕ ≤ 𝜋/2 and give the correct periodicity along 

ϕ. The factor ( )ijs   is used to enforce the correct parity of the tertiary couplings and the overall 

diabatic couplings Uij (U12 is even, and U13 and U23 are odd about ϕ = n𝜋/2, where n = 0, 1, 2, 

3, …, as discussed in Section C.1 and Ref. 60): 

 

( )

( ) ( )

12

13 23

1

1, sin 2 0

0,    sin 2 0

1, sin 2 0

s

s s





  



=




= = =
− 

   (26) 

A second important difference from the treatment of the diabatic potentials is that for 

modeling the tertiary diabatic couplings, we use a subset of the 33 nonredundant internal 

coordinates, and in particular, following our previous work on phenol59 and thioanisole,60 only 

internal angular coordinates are employed for this part of the potential. The selection of which 

coordinates to use was based on examination of the changes of the couplings along each of the 

angular coordinates (valence bends, dihedral torsions, and out-of-plane bends). As a result, we 

selected two in-plane bends (denoted Q1 and Q2) and nine out-of-plane distortion coordinates 

(denoted Q3 to Q11), and their definitions are listed in Table II. Then 

 
 ( )  ( )11
3 3, ,

,
1

( ) ( )
a b a b

nij ij n
n

U U Q
=

= Q   (27) 

where 
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 ( ) ( ) ( ) ( ) ( ) ( )

( )
2

2 0,3 , , ,
0, 0,, 1, , 2, , 2

exp
n na b a b a b

n n n n nij n n ij n ij

Q Q
U Q K Q Q K Q Q



 
− −   = − + −

      
 

  (28) 

where the parameters 
( ),

1, ,

a b

n ijK , and 
( ),

2, ,

a b

n ijK  are the force constants to be fitted; and 0,nQ  

denotes the value at the ground-state equilibrium geometry. (Notice that although we use the 

state-specific origins of the Taylor series for the tertiary diabatic potentials, we take 0,nQ  to be 

independent of state index i for the tertiary couplings.) The Gaussian function is used to damp 

the polynomial for large ( )0,n nQ Q−  to avoid unphysical results for large deviations from the 

reference geometries, and the parameter σ is set to the large value of 50° so as not to unduly 

disrupt the Taylor series in its region of validity. 

To determine the force constants in Eq. (28), we first need to specify anchor point locations. 

Three R values (1.45, 2.90, and 4.00 Å) and five ϕ values (0°, 30°, 50°, 70°, and 90°) are chosen; 

therefore we have 15 anchor points for the modeling of tertiary diabatic couplings. The first two 

R values are near CI1 and CI2, respectively, where the state couplings are most significant. The 

last R value is used to decay the tertiary diabatic couplings to zero in the asymptotic region, and 

this is achieved by setting all force constants in eq. (28) equal to zero when R = 4.00 Å. For each 

of the remaining 10 anchor points, 6 distorted geometries are generated for each of the 11 

internal coordinates (Q1 to Q11) listed in Table II by displacing corresponding coordinate at 

values of -30°, -20°, -10°, 10°, 20°, 30°. The diabatic couplings of the distorted geometries (660 

in total) are then obtained in the same way as for the reactive diabatic couplings (by performing 

XMC-QDPT calculations followed by fourfold way and model space diabatization). Finally, the 

force constants are obtained through one-dimensional fitting to ab initio data for each coupling 

(U12, U13, and U23) for each selected internal coordinate at each selected anchor point. 

II.D.4. Gradients, adiabatic potentials, and nonadiabatic couplings 

The adiabatic potential energies are obtained from the diagonalization of the diabatic 

matrix,  
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 = -1V C UC , (29) 

where V is diagonal, and C is the orthogonal matrix with elements Uij that diagonalizes the 

DPEM. The Cartesian components of the adiabatic gradients and nonadiabatic couplings are 

given by82 

 
jki

ji ki
j k

UV
C C

x x 


=

 
   (30) 

 

( )

( )

,

1
   

0                                       

kl
ki lj

j i k l
ij i j

U
C C i j

V V x
F

x
i j






 


  − 

= = 
 

=


  (31) 

where xα denotes a Cartesian coordinate. As described above, all elements of the diabatic matrix 

are fitted with respect to internal coordinates; the transformation of the internal-coordinate partial 

derivatives to Cartesian gradients as needed in eqs. (30) and (31) is performed by the chain rule 

and the Wilson B matrix:83  

 
ij ij n

nn

U U q

x q x 

  
=

  
   (32) 

where qn is an internal coordinate, and nq x   is obtained from the Wilson B matrix. 

II.E. Fortran routines 

A Fortran subroutine with all optimized parameters is provided in the Supporting 

Information and also available in the POTLIB library. The subroutine can provide the DPEM and 

the adiabatic potential energy surfaces, their analytic gradients, and the nonadiabatic couplings. 

II.F. Additional computational details 

The geometry optimization and vibrational analysis with the fitted APRP PESs were 

performed using Polyrate84 software package. The minimum energy conical intersections 

(MECIs) between adiabatic state i and adiabatic state j were calculated by minimizing a penalty 

function 
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( )

( )
2

2

i j
i j

V V
V V

+
+ −   (33) 

using a BFGS85 optimizer, where Vi and Vj are adiabatic energies and 5 210 hE −= . We have 

run thousands of trajectories with the coupled APRP PESs using the ANT86 software package to 

make sure that the total energy and angular momentum are conserved and that trajectories do not 

visit regions that give unphysical results. 

II.G. Excitation energies 

We calculate three kinds of excitation energies. The vertical excitation energy (VEE) is the 

potential energy difference calculated at the ground state equilibrium geometry. The adiabatic 

excitation energy is defined as the potential energy difference of 1ππ* and 1ππ states, with each at 

its own equilibrium geometry. The 0−0 excitation energy is the adiabatic energy plus the 

harmonic zero-point vibrational energy difference of 1ππ* and 1ππ states. We do not calculate 

adiabatic or 0−0 excitation energies for the 1ππ-1nπσ* excitation because the 1nπσ* state of 

thiophenol is repulsive and does not have a minimum in the Franck-Condon region. 

III. Results and discussion 

III.A. Vertical excitation energies 

The vertical excitation energies (VEEs) of thiophenol and thiophenoxyl radical as well as 

the S−H bond dissociation energies (BDEs) as calculated from the APRP PESs and various 

electronic structure methods are listed in Table III. For the 1ππ-1ππ* excitation, we also present 

the adiabatic and 0−0 excitation energies; these are in Table IV.  

Table III shows that the vertical excitation energies predicted by the APRP PESs are in 

good agreement with the XMC-QDPT/MG3S values that were used to generate the data used for 

the fit. This is especially significant since first the XMC-QDPT adiabatic energies were 

converted to diabatic energies, then they were fit in the diabatic representation, and then the 

diabatic fit was converted to adiabatic energies for this comparison.  

The APRP vertical excitation energies also agree well with our best estimates given by 

completely renormalized equation-of-motion coupled cluster theory with singles, doubles, and 
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noniterative connected triples (CR-EOM-CCSD(T))87,88 with aug-cc-pV(T+d)Z basis set89,90,91,92 

and by XMC-QDPT/aug-cc-pV(T+d)Z.  

The S−H bond dissociation energy to the X̃2B1 state of thiophenoxyl and the vertical 

excitation energy of thiophenoxyl radical that given by the APRP PESs also agree well with the 

XMC-QDPT/MG3S and best estimate values.  

The adiabatic and 0−0 excitation energies calculated from APRP PESs compare quite well 

with XMC-QDPT and experimental43,49 results (with small deviation of ~0.06 eV), as shown in 

Table IV. 

III.B. Equilibrium geometries and frequencies 

Geometry optimizations with our fitted APRP PESs result in planar equilibrium structures 

with Cs symmetry for both the ground (1ππ, S0 in Franck-Condon region ) and the first excited 

(1ππ*, S1
 in Franck-Condon region) state of thiophenol. For the 1ππ state, bond lengths and bond 

angles obtained from the APRP PES, from microwave spectroscopy,93 and from DFT 

calculations with the M06-2X94 functional are compared in Table V. The APRP geometric 

parameters are in quite good agreement with experimental and DFT results, with deviations for 

all bond lengths less than 0.02 Å and deviations for most bond angles less than 0.7°. The 

C1−S7−H13 APRP bond angle shows a relatively large deviation (1.6° from the experiment and 

2.2° from M06-2X). This large deviation is understandable since geometric parameters are not 

explicitly used in the fit, and the C1−S7−H13 bond angle is treated as a tertiary coordinate. 

Although the 1ππ* state of thiophenol is bound in the Franck-Condon region, the 1ππ* 

vibronic bands are hard to identify in the electronic spectrum.47 In our study, we identified an 

equilibrium structure for the 1ππ* state by CASSCF/MG3S calculations, and it is quite similar to 

the ground state equilibrium geometry. However, similarly to our group’s previous finding for 

thioanisole, unconstrained TDDFT calculations with various functionals (MN15, τ-HCTHhyb, 

and B3LYP95,96,97,98) and basis sets (MG3S, aug-cc-pVTZ, and def2-TZVP99) failed to locate an 

equilibrium structure for the 1ππ* state in the Franck-Condon region.  

Figure 2 shows qualitative agreement between the ground-state harmonic vibrational 
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frequencies of thiophenol calculated from the fit and experimental frequencies. The mean and 

median unsigned percentage differences are 7.0% and 4.6% respectively, and 26 out of 33 

frequencies are reproduced within 10%. 

III.C. Selected cuts of adiabatic and diabatic potentials and nonadiabatic and diabatic 

couplings 

Next we compare the diabatic potential energy surfaces (Fig. 3), diabatic couplings (Fig. 4a, 

Fig. 4b), norms of nonadiabatic couplings (Fig. 4c, Fig. 4d) and adiabatic potential energy 

surfaces (Fig. 5) given by XMC-QDPT/MG3S (when available) and APRP PESs as functions of 

R for selected values of ϕ with other coordinates fixed at the ground-state equilibrium geometry. 

As shown in these figures, the results given by our APRP PESs agree well the XMC-QDPT 

results along the reactive coordinates. The diabatic couplings U13 (Fig. 4a) has a noticeable error 

for R < 1.3 Å and ϕ = 30°, however, the widely separated diabatic potential energies U11and U33 

at this region mean that the deviations in the diabatic couplings in this region do not have a large 

impact on adiabatic energies, as can be seen from the adiabatic energy curves for ϕ = 30° shown 

in Fig. 5b. The bump in diabatic couplings U13 and U23 between R = 2.2 and 2.5 Å, which can be 

seen in Fig. 4a and Fig. 4b, is due to the crossing of the third adiabatic state (1ππ* diabatic state) 

with a higher non-considered state and thus the bump is ignored during the fitting. This is a 

common problem in fitting diabats whose diagonalization reproduces the adiabats, namely that 

the highest-energy considered adiabatic state often has an crossing or locally avoided crossing 

with the first omitted adiabatic state; this occurs at high energy and should not have a big effect 

on the dynamics. The direct calculation of nonadiabatic coupling with XMC-QDPT is not 

affordable currently, especially with the large active space and basis set used here; therefore the 

present method of diabatizing the XMC-QDPT results and calculating the NACs from the 

diabatic-to-adiabatic transformation is way to produce NACs that are not affordable by direct 

calculation. As can be seen in Fig. 4c and Fig. 4d, our APRP PESs give quite reasonable 

nonadiabatic couplings from the diabatic-to-adiabatic transformation. 

Next we test the quality of the APRP PESs for predicting the surfaces beyond the training 
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data. The diabatic potential energy curves along R with C−S−H bond angle (θCSH, which is a 

tertiary coordinate) at four values that not at the equilibrium value (which is 96.7° for the ground 

state) and with other coordinates fixed at values of ground state equilibrium parameters are 

shown in Fig. 6. The errors become larger when θCSH deviates more from the equilibrium value; 

nevertheless, our fit is still in an acceptable range for θCSH = 80-110°.  

To further check the performance of our APRP PESs for arbitrarily distorted geometries 

during trajectory calculations, we randomly selected some points along two trajectories that 

cover important reaction regions. We again get satisfactory results, as can be seen in Fig. 7 which 

compares the adiabatic energies for these arbitrary points as given by APRP PESs and 

XMC-QDPT/MG3S. 

Three-dimensional plots of diabatic and adiabatic energies as function of R and ϕ are 

shown in Fig. 8. The diabatic crossing seams, which correspond to the hypersurfaces where U22 

= U33, U11 = U33, and U11 = U22 are illustrated in Fig. 8a by projection onto the (R, ϕ) 

two-dimensional plane. The crossing seams show where the diabatic states change their order. 

III.D. Conical intersections 

The conical intersections are (3N – 8)-dimensional seams, where N is the number of atoms 

of the molecule. It is difficult to locate conical intersection seams directly by using electronic 

structure calculations, but it can be done more easily with the analytic full-dimensional PESs 

such as we have here. The S1-S2 minimum-energy conical intersection (MECI1) and the S0-S1 

minimum-energy conical intersection (MECI2) obtained with our fitted APRP PESs are both in 

Cs symmetry, with R equal to 1.44 Å and 2.69 Å, respectively, see Table VII. 

It is also possible to map out one-dimensional conical intersection cuts along some paths 

with fitted analytic PESs on hand. We select two paths to illustrate the S1-S2 intersection (CI1) 

and the S0-S1 intersection (CI2). Path 1 is obtained by minimizing eq. (33) with R fixed at 

selected values and the other coordinates relaxed. Path 2 is obtained by minimizing eq. (33) with 

the torsion angle τ2-1-7-13 fixed at selected values, with bond lengths r1-2 and r1-7 and bond angle 

θ2-1-7 fixed at equilibrium values, and with other coordinates relaxed. Four one-dimensional 
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conical intersection cuts are obtained with these two paths computed for each of the CI1 and CI2 

seams; the cuts are plotted against selected R and τ2-1-7-13 values as shown in Fig. 9 and the 

XMC-QDPT/MG3S energies for each APRP CI point are also given for comparison. It can be 

seen clearly from Fig. 9 that the adiabatic energies of the two degenerate states increase when a 

conical intersection seam moves away from the corresponding MECI. Nevertheless, the fact that, 

as shown in Fig. 9, the XMC-QDPT states are nearly degenerate where the APRP states are 

degenerate is very encouraging. Table S1 to Table S4 of the Supporting Information list the 

adiabatic energies (used in Fig. 9) given by APRP PESs and by XMC-QDPT/MG3S and some 

geometric parameters along these four conical intersection cuts. The mean unsigned deviations of 

the APRP energies from the XMC-QDPT results for these CI geometries are 0.06 eV, 0.15 eV, 

and 0.10 eV for S0, S1, and S2, respectively, with maximum deviation of ~0.32 eV for a 

significantly distorted geometry with τ2-1-7-13 = 20°. Here it should be kept in mind that the 

locations of the CI seams are quite sensitive to the potential energies; therefore it is not 

unexpected that potential energies yielded by the APRP PESs are not precisely degenerate where 

the  XMC-QDPT ones are, and vice versa. In this light, the general nature of the results in Fig. 

7 is quite encouraging. 

IV. Summary 

High-dimensional potential energy surfaces and state couplings are very useful for studying 

electronically nonadiabatic processes, but conventional fitting methods cannot fit 

high-dimensional surfaces or surfaces with conical intersections. In the present work, we have 

constructed full-dimensional three-state analytic potential energy surfaces and state couplings 

with analytic gradients for thiophenol using the APRP scheme. The vertical excitation energies, 

equilibrium geometries, and vibrational frequencies obtained from the APRP PESs agree well 

with the available reference data. The fitted APRP PESs cover all degrees of freedom for a wide 

range of geometries from the Frank-Condon region to the dissociation limit of the S−H bond. 

(The surfaces and couplings are full-dimensional but are only designed to be accurate for 

geometries accessible during photolysis of the S–H bond; thus they might be called semiglobal 
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full-dimensional surfaces and couplings.) The potential energies given by our APRP PESs for 

random selected geometries from test trajectories agree well with high-level XMC-QDPT 

calculations, which means our fits can give accurate results for geometries beyond the training 

data and can be used to study the photodissociation of thiophenol to elucidate the role of internal 

motions in this photo-induced electronically nonadiabatic reaction. 

Supplementary material 

Equilibrium geometries, energies, and frequencies obtained from APRP PESs are available. 

Geometries, and energies of conical intersections obtained from APRP PESs are given. A Fortran 

routine for DPEM, adiabatic PESs and corresponding gradients is also provided. The Fortran 

subroutine is also available from the online POTLIB library at 

https://comp.chem.umn.edu/potlib/. 
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Table I. Coordinates used for modeling tertiary diabatic potentialsa 

Coordinates Type Definition 

R1 to R6 bond stretch C–C 

R7 to R11 C–H 

R12 C–S 

δ13 to δ18 valence bend C–C–C 

δ19 to δ28 C–C–H 

δ29 to δ30 C–C–S 

δ31
b C–S–H 

τ32 to τ37 torsion C–C–C–C 

τ38 to τ47 C–C–C–H 

τ48 to τ49 C–C–C–S 

τ50 to τ53 H–C–C–H 

τ54 to τ55 H–C–C–S 

d56 to d61
 out-of-plane distancec  S7–C6–C2–C1 

H8–C1–C3–C2 

H9–C2–C4–C3 

H10–C3–C5–C4 

H11–C4–C6–C5 

H12–C5–C1–C6 

aThe connectivity and numbering of atoms are based on Fig. 1. 

bInternal coordinate δ31 is not used for the anchor point with R = 5Å. 

cOut-of-plane distance a–b–c–d denotes the distance from atom d to the a–b–c plane. 
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Table II. Internal coordinates (S1 to S11) used for modeling tertiary diabatic couplingsa 

Coordinates Definition 

δ1 S7–C1–C2 bend 

δ2 S7–C1–C6 bend 

τ1 C6–C1–C2–C3 torsion 

τ2 C1–C2–C3–C4 torsion 

τ3 C2–C3–C4–C5 torsion 

τ4 C3–C4–C5–C6 torsion 

τ5 C4–C5–C6–C1 torsion 

τ6 C5–C6–C1–C2 torsion 

Q1 2–1/2 (δ1 –δ2) 

Q2 H13–S7–C1 bend 

Q3 6–1/2(τ1 – τ2 + τ3 – τ4 + τ5 – τ6) 

Q4 12–1/2 (–τ1 + 2τ2 –τ3 – τ4 + 2τ5 – τ6) 

Q5 4–1/2 (τ1 – τ3 + τ4 – τ6) 

Q6 S7 out-of-plane bend 

Q7 H8 out-of-plane bend 

Q8 H9 out-of-plane bend 

Q9 H10 out-of-plane bend 

Q10 H11 out-of-plane bend 

Q11 H12 out-of-plane bend 

                             aSee Fig. 1 for atomic numbering. 
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Table III. Gas-phase vertical excitation energies (VEEs) of thiophenol (PhSH) and thiophenoxyl 

(PhS*) and the S–H bond dissociation energy (BDE) to the X̃2B1 state of the thiophenoxyl 

radical (in eV)a,b 

Method 
PhSH  PhS* 

1ππ*-1ππ 1nπσ*-1ππ BDE  Ã2B2-X̃2B1 

APRP 4.61 4.95 3.55  0.32 

XMC-QDPT/MG3S 4.62 5.07 3.51  0.27 

XMC-QDPT/aug-cc-pV(T+d)Z 4.58 5.03 3.60  0.27 

EOM-CCSD/aug-cc-pV(T+d)Z 4.89 5.15 3.66  0.35 

CR-EOM-CCSD(T)/aug-cc-pV(T+d)Z 4.57 4.95 3.66  0.19 

TD-MN15/MG3S 4.95 5.00 3.65  0.10 

TD-B3LYP/MG3S 4.76 5.15 3.63  0.39 

TDA-τ-HCTHhyb/def-TZVP 4.79 5.07 3.63  0.41 

aVertical excitation energies are calculated at the S0 equilibrium geometry optimized by 

M06-2X/aug-cc-pVTZ, unless for APRP. For APRP they are calculated at the S0 equilibrium 

geometry optimized on the APRP ground-state adiabatic potential energy surface. 
bAbbreviations: XMC-QDPT: extended multi-configuration quasidegenerate perturbation theory; 

EOM-CCSD: equation-of-motion coupled cluster theory with single and double; 

CR-EOM-CCSD(T): completely renormalized EOM-CCSD with quasiperturbative connected 

triple excitations; TD: time-dependent density functional theory with the linear response 

approximation; TDA: time-dependent density functional theory with the Tamm–Dancoff 

approximation; MN15, B3LYP, and τ-HCTHhyb: exchange-correlation functionals; MG3S, 

aug-cc-pV(T+d)Z, def-TZVP: basis sets. See Ref. 53 for details about methods and basis sets not 

described in the present paper. 
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Table IV. Adiabatic and 0−0 excitation energies (in eV) for 1ππ-1ππ* excitation of thiophenola  

 Adiabatic 0−0 

APRP 4.44 4.29 

XMC-QDPT/MG3S//CASSCF/MG3S 4.41 4.28 

Exp. not available 4.27b/4.34c 

aSee Section II.G for the definition of adiabatic and 0−0 excitation energies. 
bFrom Ref. 43 
cFrom Ref. 49 
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Table V. Geometric parameters of the S0 equilibrium geometry of thiophenola 

 APRP M06-2Xb Microwavec 

Bond lengths (Å) 

C1–C2 1.395 1.391 

 

C2–C3 1.388 1.387 

C3–C4 1.391 1.387 

C4–C5 1.390 1.388 

C5–C6 1.389 1.386 

C6–C1 1.393 1.392 

C–C (average) 1.391  1.389  1.396  

C1–S7 1.771 1.769 1.773 

S7–H13 1.353 1.338 1.333 

C–H (average) 1.083 1.082 1.080 (Fixed)  

Bond angles (deg.) 

C1–C2–C3 120.1 120.0  

C2–C3–C4 120.5 120.5  

C3–C4–C5 119.3 119.4 120 (Fixed) 

C4–C5–C6 120.5 120.5  

C5–C6–C1 120.0 120.1  

C6–C1–C2 119.6 119.6 120 (Fixed) 

C1–S7–H13 94.5 96.7 96.1 
aSee Fig. 1 for atomic numbering. 
bBasis set: aug-cc-pVTZ. 
cFrom Ref. 39, “fixed” means these values are fixed during fitting procedure. 

 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
24

87
0



 27 

Table VI. Geometric parameters of the S1 equilibrium geometry of thiophenola 
 

APRP MN15b 

Bond lengths (Å) 

C1–C2 1.412 1.413 

C2–C3 1.426 1.423 

C3–C4 1.407 1.405 

C4–C5 1.407 1.406 

C5–C6 1.425 1.422 

C6–C1 1.414 1.408 

C–C (average) 1.415 1.413 

C1–S7 1.724 1.704 

S7–H13 1.311 1.336 

C–H (average) 1.082 1.084 

Bond angles (deg.) 

C1–C2–C3 117.7 117.1 

C2–C3–C4 118.6 118.9 

C3–C4–C5 123.2 123.4 

C4–C5–C6 119.0 118.4 

C5–C6–C1 117.3 117.7 

C6–C1–C2 124.1 124.4 

C1–S7–H13 94.3 97.6 
aSee Fig. 1 for atomic numbering. 
bBasis set: aug-cc-pVTZ. Imaginary frequency of 341i cm-1 is present for the C–C–S–H torsional 

mode. 
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Table VII Adiabatic energies (in eV) and geometric parameters given by APRP and XMC-QDPT 

at some key geometriesa 

Geometry 
APRP  XMC-QDPT/MG3S 

R 
ϕ 

(deg.) 

S1
b 

(deg.) 

S2
b 

(deg.) V1 V2 V3  V1 V2 V3 

S0 equilibrium 0.00 4.61 4.95  0.05  4.65  5.01  1.353 0.0 -3.4 94.5 

S1 equilibrium 0.16 4.44 5.21  0.22  4.47  5.25  1.311 0.0 -3.3 94.3 

MECI1 0.14  4.68  4.68   0.23  4.62  4.70  1.441 0.0 -4.2 90.9 

MECI2 3.39  3.39  6.35   3.39  3.55  6.26  2.690 0.0 -0.9 104.6 
aEnergies are relative to V1 at the S0 equilibrium geometry given by the APRP surface. 
bSee Table II for the definition of coordinates S1 and S2. 
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Fig. 1. (a) Numbering of atoms. (b) Definition of coordinates R and ϕ; the pink plane used for 

defining ϕ1 contains C2 and C6 and is normal to the C2-C1-C6 plane; the pink plane used for 

defining ϕ2 contains C3 and C5 and is normal to the C3-C4-C5 plane (see the text for more 

detail).
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Fig. 2. Ground state frequencies of (a) thiophenol and (b) thiophenoxyl radical as calculated by 

APRP surfaces and by M06-2X/aug-cc-pVTZ for S0 and TD-τ-HCTHhyb/def-TZVP for S1 
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Fig. 3. APRP (solid lines) and XMC-QDPT/MG3S (dots) diabatic energies along R for different 

values of ϕ with other internal coordinates fixed at the S0 equilibrium geometry. (a) ϕ = 0°. (b) ϕ 

= 30°. (c) ϕ = 60°. (d) ϕ = 90°. 
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Fig. 4. APRP (solid lines) and XMC-QDPT/MG3S (dots, when available) diabatic couplings and 

norm of the nonadiabatic couplings along R for two different values of ϕ with other internal 

coordinates fixed at the S0 equilibrium geometry. (a) diabatic coupling, ϕ = 30°. (b) diabatic 

coupling, ϕ = 60°. (c) magnitude of nonadiabatic coupling vector, ϕ = 30°. (d) magnitude of 

nonadiabatic coupling vector, ϕ = 60°. 
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Fig. 5. APRP (solid lines) and XMC-QDPT/MG3S (dots) adiabatic energies along R for different 

values of ϕ with other internal coordinates fixed at the S0 equilibrium geometry. (a) ϕ = 0°. (b) ϕ 

= 30°. (c) ϕ = 60°. (d) ϕ = 90°. 
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Fig. 6. APRP (solid lines) and XMC-QDPT/MG3S (dots) diabatic energies along R for two 

C-S-H bend angles not equal to its value for S0 equilibrium geometry. The other internal 

coordinates are fixed at the S0 equilibrium geometry. (a) ϕ = 80°. (b) ϕ = 90°. (c) ϕ = 100°. (d) ϕ 

= 110°. 
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Fig. 7. APRP (solid lines) and XMC-QDPT/MG3S (dots) adiabatic energies along two randomly 

selected trajectories. (a) first trajectory. (b) second trajectory.
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Fig. 8 Three-dimensional plot of APRP diabatic energies with projected diabatic crossing seams 

(a) and adiabatic energies (b) along R and ϕ with other coordinates fixed at values of ground state 

equilibrium geometry. 
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Fig. 9 One-dimensional conical intersection cuts along (a) path 1 and (b) path 2 as given by 

APRP PESs (solid lines) and XMC-QDPT/MG3S (dots). 
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