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This chapter overviews the status of three dual-level approaches for
potential surface calculations that use quantum mechanics for both the upper
and lower level. Three types of approach are singled out for discussion:
SEC and SAC calculations, IMOMO calculations with harmonically capped
correlated small systems, and dual-level direct dynamics. The scaling
external correlation (SEC) and scaling all correlation (SAC) methods are
semi-ab initio approaches to the calculation of bond energies and barrier
heights for chemical reactions. The IMOMO calculations are very similar in
spirit to QM/MM methods, but the lower level is quantum mechanical.
Dual-level direct dynamics is a general technique for combining levels in
dynamics calculations that include quantum mechanical tunneling
contributions. :

Dual-level methods have become very popular in modern quantum chemistry. The
recent surge of interest in methods that combine quantum mechanical solutions for a small
part of a system with molecular mechanics for the rest of the system (/~6) prompts one to
place these methods in the perspective of a larger set of dual-level and multi-level -
approaches. These approaches have certain elements in common, but additionally they have
interesting differences. The purpose of the present overview is to discuss some dual-level
methods from this viewpoint.

The diversity of dual-level methods is such that even classifying them creates a
stimulating challenge (and, like all review tasks, is doomed to incompleteness).
Nevertheless, here is an attempt to enumerate some of the main varieties:

1. Double slash (//) methods for energies of stationary points. This is perhaps the
most ubiquitous dual-level approach. A common example would be an
MP2/6-311G(d,p)//HF/6-31G(d) calculation in which a stationary-point geometry is
optimized at the HF/6-31G(d) level, and then a more accurate energy is calculated by the
MP2/6-311//G(d,p) method (7). This method can be used for both minima and saddle
points. One can denote such a theory L2//L.1 where L2 and L1 denote the higher and lower
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“levels.” A variant is L3//L2[LL1] where the geometry is optimized at level L1 and
vibrational frequencies are also calculated at this level; then the geometry is optimized at a
higher level L2, but without a vibrational frequency calculation. The L2 geometry is then
used for a single-point calculation at level L3.

2. Gaussian-2 theory. The Gaussian-2 (often abbreviated G2) approach to
estimating thermodynamic quantities (§) has been extremely successful, and has spawned
several variants. G2 theory and its variants are actually carefully layered multi-level
theories. The theory assumes that various effects of improving the lower level electronic
structure calculation (i.e. by using a larger one-electron basis set or a more accurate
treatment of the electron correlation) are additive. Thus, instead of carrying out a full higher
level calculation, a sequence of “intermediate” level calculations directed to estimating the
effects of several enhancements on the lower level is carried out.

3. CBS. The truncation of the one-electron basis sets used in ab initio calculations
is frequently the major source of error in the results. The increase in the basis set size
involves an increase in the required computational resources that makes impossible to
converge a calculation with respect to the size of the basis set even in most small systems.
When the interest is mainly focused on differences in the calculated energy for a series of
systems or a series of points on a potential energy surface, one can expect some
compensation between the errors introduced in the various energy calculations, but even for
relative energies, the incompleteness of the one-electron basis set may be severe. In order
to minimize the effects of the basis set truncation, an extrapolatory scheme derived by
means of perturbation theory and based on the asymptotic basis-set dependence of the pair
natural orbital energies has been proposed (9). The goal is to obtain an energy comparable
to the one that would be obtained with a complete basis set (CBS). Several variants have
been proposed (10), accounting for a variety of choices of basis sets and methods for
including correlation energy.

4. SEC and SAC. The calculation of bond energies is a critical step in the
calculation of heats and free energies of reaction, and the calculation of barrier heights is a
first step in the calculation of enthalpies and free energies of activation. Unfortunately,
although there has been great progress in ab initio electronic structure methods, including
the G2 and CBS approaches mentioned above, the calculations can be very expensive.
Thus semiempirical dual-level approaches can also prove useful, especially for calculating
barrier heights, and in this paper we discuss two such methods, namely the scaling-
external-correlation (SEC) (/7) and scaling-all-correlation (SAC) (/2-15) methods. These
methods are designed to circumvent the difficulty that the differential electron correlation
energies between species with made and broken bonds or partial broken bonds (as at
transition states) are very slowly convergent with respect to the mixing of electronic
configurations and the completeness of the one-electron basis sets for electronic structure
calculations.

Section 2 of the present chapter provides a review of the SEC and SAC methods.

5. OM/MM methods. The most rapidly growing area of activity in dual-level
methods is in the development of algorithms that combine quantum mechanics (QM) with
molecular mechanics (MM), where “molecular mechanics” refers to any “classical” force
field. Since this subject is covered extensively by the other chapters in the present volume,
we will not review it here, but we simply mention that there are two main approaches. The
first approach, which is more common (/-5), involves applying QM to the primary
subsystem and MM to the rest. The second approach, called IMOMM (6), involves
applying QM to the primary subsystem and applying MM to both the primary subsystems
and the entire system—then combining all three calculations. Both methods involve
technological challenges in how to treat the boundary, where one locates so called “link
atoms” and/or “capping atoms.”

6. IMOMO methods. An appealing feature of the IMOMM method mentioned above
is that it is very general as to the kinds of levels that are combined, and in particular one can
equally well choose a QM level as an MM level for treating the entire system. This is called



IMOMO (16). For moderate-size systems, the QM level can be as high as one can afford
(17), although for very large systems, economic considerations may limit one to
semiempirical molecular orbital theory. An alternative approach for very large systems is to
use a triple-level scheme, and IMOMO is easily generalized to accommodate this (18).

Section 3 of the present chapter reviews two aspects of IMOMO. The first is its
ability to include electronic substituent effects (“inductive effects”) of the rest of the system
on the primary subsystem (/7,19,20). Second is a new approach we have developed,
called a harmonic cap, for optimizing geometries with IMOMO methods (21). The
approach is actually equally applicable to QM/MM methods, and we believe that it
eliminates the “link atom problem,” and so it is liable to be particularly interesting to readers
of this volume.

7. SCRF/SASA models. Another dual-level approach, albeit of quite a different
nature, has been employed for the problem of modeling solvation effects. In this approach,
one combines a quantum mechanical method for electrostatics with a classical mechanical
method for first-solvation shell effects. In particular one uses the self-consistent reaction
field (SCRF) molecular orbital method (22) for the former with a treatment based on
solvent-accessible surface area (SASA) (23,24) and atomic surface tensions (25,26) for the
latter. The most completely developed set of models of this type is the SMx series (27) of
“solvation models.” These have culminated in a suite of models called SM5 models, and
these are overviewed in another chapter in this volume (28).

8. Dual-level direct dynamics. Direct dynamics is the calculation of dynamical
quantities using electronic structure calculations for all required energies, forces, and
Hessians, without the intermediacy of an analytic potential energy function (29-31). The
treatment of atomic motion in direct dynamics calculations can be either classical (29,32) or
quantal, although quantal effects on nuclear dynamics are included most efficiently by
semiclassical (30,31,33) methods. (The distinction should not be confused with the use of
quantum mechanics or classical molecular mechanics for the potential energy function,
which is an entirely separate issue.) Dual-level direct dynamics has been developed so far
for calculations based on quasiclassical variational transition state with semiclassical
multidimensional tunneling contributions, usually abbreviated VIST/MT for variational
transition state theory with multidimensional tunneling (30,31,33-38). In practice we use
up to four levels, e.g., for OH + NH3 (37) we used QCISD(T)/MP2/aug-cc-
pVTZ[MP2/aug-cc-pVDZ])///MP2/6-31G* and ...///[PM3-SRP, where L3//L2[L1] is
explained above and /// separates the method for high-level calculations at stationary points
(before the triple slash) and the method used (prior to interpolation corrections) for
everywhere else (after the triple slash). The notation PM3-SRP denotes the use of specific
reaction parameters (30) starting from the PM3 general parameters (39) at the neglect of
diatomic difference overlap (NDDO) level of semiempirical molecular orbital theory.

Section 4 of this chapter presents a brief review of dual-level direct dynamics and
SRP methods.

2. SEC and SAC

SEC. Correlation energy is defined as the difference between the Hartree-Fock
energy and the true energy (40). This is usually calculated by optimizing the orbitals of a
restricted form of wave function, called the reference state, and adding electron correlation
by mixing in additional configurations, either by a variational configuration interaction (CI)
method or by perturbation theory or a coupled cluster approach. For some molecules,
primarily open-shell systems, transition states, systems with partially broken bonds, and
systems with low-lying excited states, the Hartree-Fock self-consistent-field (HF-SCF)
method based on a single configuration does not provide a good zero-order description. In
such cases, we need a multi-configuration SCF (MCSCEF) reference state for a qualitatively
correct description (41), and when correlation energy is added to such a state, the resulting



calculation is called a multi-reference one. The correlation energy may be decomposed into
two parts: internal correlation, also called static correlation, which is the part included in a
minimal MCSCF wave function, and external correlation (also called dynamical
correlation), which is the remainder even after a good zero-order description has been
achieved. The remainder would typically be calculated by a multi-reference CI calculation
(MRCI) (42). One could equally well include such configuration mixing effects by multi-
reference perturbation theory (MRPT), e.g., CASPT2 (43). Computationally we have
found (/1) that the fraction of external correlation energy is more a function of the level of
theory and the one-electron basis set than of the geometry. By taking advantage of this for a
given level, one can scale the external correction energy by a factor that is independent of
geometry. In particular, if one assumes that one recovers a fraction F' of the external
correlation energy, independent of the geometry of the system, one can write (/1)

E(MRCI) -~ E(MCSCF)
- .

E(SEC) = E(MCSCF) + (1

The SEC method has proven particularly useful for the calculation of barrier heights
for chemical reactions. In this case one determines the value of F such that the reactant and
product bond energies are correct or the overall exoergicity is correct. Then with F
determined on the basis of reactants and products, it can be used at transition state
geometries to calculate barrier heights. Some examples (44-47) of SEC calculations of
barrier heights are provided in Table 1. In all cases, the barrier heights calculated by the
SEC method or potential energy surfaces (47-50) adjusted to have a barrier height equal to
the SEC barrier heights are consistent with experiment.

SAC. Scaling the entire correlation energy, even the internal part, is expected to be
less reliable than scaling the external correlation energy, but it is computationally much
more tractable since MRCI and MRPT calculations are much more difficult than single-
reference ones based on a single-configuration reference state. (A single-reference
correlated calculation is one in which there is only a single configuration in the zero-order
wave function that serves a starting point for estimating the effect of configuration mixing.)
Thus scaling all correlation (SAC) can be very useful. In this approach we write ‘

E(SRPT)— E(HF)
F

E(SAC)= E(HF) + (2)

Table 1. Computation of barrier heights by MRCI-SEC calculations
Barrier (kcal)

Reaction Ref.
MRCI SEC
F+H, collinear 3.7 1.6 (44)
bent e 1.3 45
H+DF— HClI+D 43.2 38.4 11
H+DCl— HCl+D 20.0 ) 18.1 (46)
Br + H2 2.7 1.9 (47.,48)

H+DBr — HBr+D 13.4 11.9 (47,48)




where HF denotes Hartree-Fock and SRPT denotes single-reference perturbation theory.
One would probably not want to use single-reference CI (SRCI) in eq. (2) because it has
severe size-consistency failures, whereas SRPT and single-reference coupled-cluster theory
are size consistent. (We use “size consistency” and “size extensivity” as synonymous here.
Size consistency (51) is not strictly required for using eq. (2), but a method that is not at
least approximately size extensive would not be expected to have a geometry-independent F
value. MRCI is not strictly size extensive, but it is better than SRCI.)

In early work with the method (/2-14) we developed general scale factors for
various types of bonds with both Mgller-Plesset second-order- (MP2) and Mgller-Plesset
fourth-order (MP4) perturbation theory, which are single-reference methods. These general
scale factors were determined for several common basis sets. In later work (15), we
considered other single-reference correlated methods, in particular the coupled-clusters
method with double excitations (CCD) (52,53) and the quadratic configuration interaction
method with single and double excitations (QCISD) (54). (The latter method, although
named as a CI method, is actually size extensive.)

The basic conclusions of the early systematic studies of the SAC method (12-14)
are that F is indeed reasonably consistent across systems (for a given basis set and order of
perturbation theory), and furthermore there does not appear to be much advantage in
MP4-SAC as compared to MP2-SAC. It is instructive to summarize some of the recent
results (/5) we obtain with the SAC method for bond energies. In order to test the SAC
method with general scale factors, we considered 13 molecules with experimentally known
atomization energies. This test suite consists of Hyp, CHy, NH3, HoCO, HpO, HF, CyHp,
HCN, Fp, CO, CO,, N», and N7O, and we will consider the results for the cc-pVDZ (55)
basis set. For the MP2-SAC calculations, we found that we could not get particularly
accurate results with a constant value of F (constant across systems), so we chose F =
0.918 — 0.143x — 0.176x, where x is the fraction of atoms that are H. (Note: that F is still
independent of geometry, e.g., we use the same value for CH3 + H as for CH4). We found
a mean |error] per bond of 1.3 kcal per mol. For QCISD-SAC, we used a completely
constant value of F = 0.729, and we found an average |error| per bond of 1.5 kcal. For
CCD-SAC we used F = 0.729, and found an average |error| per bond of 1.4 kcal. Note that
the average |error|s per bond without scaling the correlation energy are respectively 8.4,
14.5, and 15.6 kcal/mol. The results of the scaling are amazingly good considering none of
the three correlation levels considered involves explicit consideration of triple excitations.

Recently Siegbahn et al. (56,57) proposed a closely related method, which they call
PCI-X. In actual applications, PCI-X is basically the same as SAC except that these
authors prefer to use a single universal F value.

Correlation Balance. Clearly the success of the SEC and SAC approaches is
dependent on the quality of the basis set and in particular on its ability to treat the
correlation energy of various geometries and bonds in a consistent way. The idea that a
basis set should be electrostatically balanced so that it yields accurate dipole moments and
bond polarities is a familiar one, but correlation balance has been less widely studied. Once
one attempts to design extrapolation methods (8—15) for electronic structure calculations,
the question of correlation-balanced basis sets becomes paramount, not only for basis sets
but also for approaches to configuration mixing. For example, it is clear from the necessity
(see above) to use a variable F in MP2-SAC that coupled-cluster theory gives a more
uniform treatment of correlation in bonds to hydrogen and bonds between heavy atoms
than MP2 theory does. Some attempts to study the question of correlation balance have
been presented (13,58-61) but much more work needs to be done.

SAC calculations for kinetics. The area where the SAC method has proved most
useful so far (12,14,58-70) is for kinetics calculations. This subsection reviews this body
of work.

The first application of a SAC method to a reaction was an application of the
MP2-SAC scheme for the calculation of the properties of the stationary points along the



CH4 + Cl — CH3 + HCl reaction-path (58). A 6-311G(2d,d,p) basis set (71) was found to
provide a balanced treatment of the effects of electronic correlation on the making and
breaking bonds. Therefore, the average of the F' values obtained for each bond using the
MP2/6-311G(2d,d,p) was used for the scaling. The MP2-SAC/6-311G(2d,d,p) level was
chosen for the optimization of the geometries and frequency calculations at the reactants,
products, and saddle point for this reaction. The properties obtained in this work for the
saddle point were employed as reference data for the calibration of an analytical potential
energy surface (72), which was used in a VIST/MT calculation of the rate constants and
kinetic isotope effects for this reaction.

The first application of MP2-SAC to the calculation of a rate constant was the study
of the hydrogen abstraction from CHy by the OH radical (62). In this study, the basis set
employed for SAC calculations was the 6-311G(2d,p) basis set, since this is the basis set
that provided the most balanced treatment of the correlation energy for the O-H and C-H
bonds. In particular, the values of the factor F' estimated from the H-OH and H-CH3 bond
dissociation energies were 0.875 and 0.864 respectively. The properties of reactants,
products, and saddle point were therefore evaluated at the MP2-SAC/6-311G(2d,p) level
and used in a calculation of the rate constant by means of the zero-order interpolated
variational transition-state theory (IVTST-0) (73), giving rate constants in good agreement
with the experimental results.

The availability of a set of average values for the F factors (/2) allows us to apply
the SAC corrections in a more automatic way, without a check of the balance in the basis
set for the treatment of the correlation energy. Thus, the MP2-SAC method was also used
for calculating single-point energies in a study on the effects of hydration and dimerization
of the formamidine rearrangement (63). In this study, where the MP2-SAC/6-31G(d,p)
method was used for calculating only single-point energies, the value of the F factor
utilized was the average between two previously determined values of the F factor, one for
the N-H bond and one for the O-H bond. In a study on hydrogen abstraction reactions of
ammoniacal compounds (64) involving systems for which experimental dissociation
energies are not available, the MP4-SAC method was used with F equal to the average of
the factors proposed in the original SAC paper for the basis sets and bonds involved in the
calculations.

The same procedure was used in the calculation of the barrier height for the NH3 +

H — NHj + Hj reaction (65). Table 2 shows a summary of the results obtained for this
reaction, in which an MP4-SAC/6-311+G(d,p) single point calculation is compared to
other schemes for extrapolating the Mgller-Plesset series (74, 75). The MP4-SAC results
are close to the more expensive QCISD(T)/6-311+G(d,p) results, and the use of an average
F factor leads to a reasonable reaction endoergicity. We note that since the endoergicity is
the difference between two bond energies, and since F is calculated using experimental
bond energies, the use of an F factor obtained from one bond for calculations involving a
different bond will give energies for this second bond closer to the experimental results
when the F values for both bonds are more similar. Therefore, the accuracy in the
endoergicity is a reflection of the adequacy of an average F factor for different reactions.
The rate constants obtained using the MP4-SAC results (65, 66) are in good agreement
with the experimental results. The same procedure was used for a VIST/MT study of the

reaction OH + NH3z — NH> + H»O (67, 68). The MP4-SAC method with a standard F
factor (/4) has also recently been used for calibrating an analytical potential energy surface

for the Cl + Hp — CIH + H reaction (69).

A series of papers have been addressed to understanding the kinetics of the
reactions between hydrocarbons and the OH radical. These studies involve the reactions of
OH with methane (59, 70), ethane (60), and propane (61). In all the cases the MP2-SAC

method was employed. A modified triple-C basis set was obtained in order to get a balanced



Table 2. Barrier height and endoergicity for the NH3 + H reaction calculated at different
levels of calculation?

Method AEb AE#¢
UHF -0.2 23.7
PUHF -2.0 18.6
UMP2 10.8 23.4
PUMP2 9.7 20.0
UMP4 5.3 18.2
PUMP4 4.6 16.2
MP4-SAC 5.7 15.7
PMPood 4.4 16.1
Feenberg¢ 4.1 15.5
QCISD(T) 5.3 16.8
Exp/ 6.9

aResults taken from Ref. (65). PAE is the Born-Oppenheimer classical energy of reaction,

i. e., it excludes zero point energy. ¢AE* is the Born-Oppenheimer classical energy of
activation. “9Extrapolation of the Moller-Plesset series by the methods in Ref. (74).
¢Extrapolation of the Moller-Plesset series by the methods in Ref. (75). /Ref. (76).

treatment of the electron correlation for the C—H and O-H dissociation energies, followed
by a MP2-SAC single-point energy calculation, except in the propane reaction, for which a
geometry optimization was also carried out at the MP2-SAC level. This was part of the
input necessary for carrying out calculations of the rate constant and kinetic isotope effects.
In the methane and ethane reactions, this information was completed with 2 or 1 extra
points on the reaction path, respectively. Then a dynamical calculation was carried out by
IVTST methods. The reaction OH + propane was simulated using a dual-level direct
dynamics technique (see Section 4) that allows a more reliable calculation of the tunneling
contribution.

In conclusion we can say that the use of SAC methods with economical dynamical
methods has been a powerful tool for the accurate study of chemical reactions.
Nevertheless the SAC methods, although being a good approximation to more accurate,
much more expensive calculations, still require a large amount of computer resources for
systems with many atoms. Thus, while the treatment of the correlation energies can be
limited to a very affordable MP2 calculation, a high quality basis set is still required. The
advances in computer hardware and software are opening doors for the study of medium-
size systems, such as propane, but we are still far from being able to perform this kind of
calculations in the large organic or biological systems, as well as condensed phase systems.
In this sense, only the IMOMO (or related) methods seem to be able to propel us ahead.



3. IMOMO

CCSS. A special case of IMOMO is the use of a correlated capped small system
(CCSS). Consider, for example, a calculation of the bond energy for the C-H bond in
H-CH,CH,NHj. One can take the small system as H-CHj and the capped small system as
H-CH3. One could calculate the entire system (H-CH,CH,NH3) only at the lower level,
e.g., AMI1, HF/3-21G, HF/MIDI!, HF/6-31G*, or B3PW91/6-31G* (or—in the case of
IMOMM—the lower level would be MM). One could calculate the capped small system at
both lower and higher levels, where the higher (correlated) level might be, e.g.,
CCSD(T)/6-31G(d,p), QCISD(T)/cc-pVTZ, MP2/6-31G(d,p), or HF/cc-pVTZ. [The
methods and basis sets are explained elsewhere: Ref. (7) for MP2, HF, 3-21G, 6-31G*,
and 6-31G(dp), Ref. (77) for AM1, Ref. (78,79) for B3PW91, Ref. (80) for CCSD(T),
Ref. (54) for QCISD(T), Ref. (81) for MIDI!, and Ref. (55) for cc-pVTZ.] Then the dual-
level energy, called the integrated (I) energy, is

I _ plow high low
Eentire = Eentire * (Egmall ~ Esmall) 3)
high low _ glow
= smgall * (Eentire - Esmall)

Table 3 gives examples of how well this approach works for the molecule given as an
example above. Table 4 gives surveys of the performance for several small systems of this
type (17,20). In these tables, the entire molecule is of the form H-CHXCH,Y, and the
capped small system is H-CHX, where X and Y are H, CH3, NHj3, OH, and F. In both
Table 3 and Table 4, standard geometries were used for all calculations—the goal was to
test how well electronic effects are included when one uses the same geometry for the
integrated calculation as for a more accurate calculation. Notice that in these examples the
system is capped very close (geminal) to the bond that is broken, thus providing a
challenging test. The goal is to combine a high-level calculation on the capped small system
with a low-level calculation on the entire system such that the integrated result is more
accurate than either single level. Accuracy is measured by deviation from a full high-level
calculation on the entire system (which is feasible for these test cases but which would
presumably be unaffordable for the entire system in real applications to large systems). The
table shows that the integration of levels is successful, in fact quite dramatically successful.
For example, in Table 3 we see that a dual-level calculation is much better than either a
higher-level calculation on the capped subsystem or a lower-level calculation on the entire
system.

We note specifically the especially good results obtained with the MIDI! basis set in
Tables 3 and 4. This is very encouraging because the MIDI! basis set is the first example of
a new breed—a basis set optimized specifically to serve as the lower level in dual-level
methods (81). In particular the MIDI! basis is optimized to give good geometries so it can
serve as L2 in L1//L2 calculations and to give balanced charge distributions so it can serve
as a starting point for multi-level calculations in the condensed phase, where electrostatics
is often of crucial importance.

IMOHC. The second topic we consider in IMOMO theory is the integrated
molecular orbital harmonic cap (IMOHC) strategy (21) for geometry optimization in
IMOMO and IMOMM calculations. One of the most challenging problems that one faces in
most QM/MM applications is the treatment of the link atom. (Note: The “link atom” is the
atom that becomes the capping atom in the capped small system.) In the case of a geometry
optimization the problem of the link atom is very delicate, since usually the link atom has a
different nature in the entire system and the capped small system. If the optimization is
done in such a way that this atom is constrained to have identical geometrical parameters
(e.g., bond lengths) in both systems, the optimization may be unphysical, or it may fail.



Table 3. Bond energy for H-CH,CH;NH; by IMOMO#

System Method D, (kcal/mol) error (kcal/mol)
entire system QCISD(T)/cc-pVTZ 106.4b 0.0
capped small system¢ QCISD(T)/cc-pVTZ 1113 4.9
entire system AM1 84.4 22.0
integrated QCISD(T)/cc-pVTZ: AM1 105.6 0.8
entire system HE/MIDI! 79.7 26.7
integrated QCISD(T)/cc-pVTZ:HF/MIDI! 106.6 0.2

aFrom Ref. (17) Presumed accurate. All other calculations are compared to this value using standard geometries. cH-CHj

Table 4. Mean unsigned errors (kcal/mol) in bond energies for H—- CHXCH,Y — H + CHXCHY

< lerror| >
higher level lower level
higher level lower level
capped small system entire system integrated

test set 12 (nine cases; X,Y = H, CH3, NH3, OH, F)

QCISD(T)/cc-pVTZ HF/6-31G* 2.1 239 0.4
" HF/MIDI! 2.1 26.1 0.3
" HF/3-21G 2.1 23.3 0.6
" AM1 2.1 23.4 1.3
test set 20 (ten cases; X, Y + H, NHp, OH, F, Cl)
MP2/6-31G(d,p) HF/3-21G 1.6 21.4 0.9
CCSD(T)/6-31G(d,p) HF/3-21G 1.9 21.3 0.9
" HF/6-31G* 1.9 22.1 0.3

aFrom Ref. (17). bPFrom Ref. (20)



The IMOHC strategy is to circumvent this difficulty by allowing an independent
optimization of the link atom in the entire and capped small systems. Thus, if the entire
system is formed by a number of atoms Neptire, the geometry optimization will involve
3(Nentire + 1) coordinates, instead of the usual 3Nenptire. The extra coordinates occur
because the link atom occurs both as the link atom itself (denoted L) in the entire system
and also, with different coordinates, as the capping atom (denoted M) in the capped small
system. All the other atoms in the capped small system have the same coordinates as in the
entire system.

The geometry optimization is finished when the 3(Nentire + 1) components of the
gradient are zero. By applying the distributive law of differentiation, we can write an
equation similar to the first half of the equation 3 for the gradients:

VEe{ntire = VEéggre + (VE:I;%}]II - VE;&VXH). (4)
An examination of this equation leads us to the conclusion that it will not generally succeed
in giving a physical location for the link atom. The behavior we should expect from the
optimization algorithm is to find the geometrical conformation that gives nonzero values
that cancel out each other for each component of the three terms on the right-hand side of
equation 4, thereby giving a zero value for the gradient. However, in practice, the
optimization may lead to a geometry with the link atom infinitely separated from the rest of
the system, which gives zero components of the gradient for the individual terms for the
gradient components related to the link atom. In practice, equation 4 can also lead to
high Elo high

small is negative although E

unphysically distorted geometries for which E small

small

and ES};’HV;H are both high and positive. This is obviously an undesirable situation, since the

link atom of the capped small system (i.e., the capping atom) needs to be in a physical
location in order to carry out its capping role in the electronic structure calculations on the
small system.

The solution we devised for this problem is to include additive harmonic terms that
keep the capping atom at a physically meaningful location in the small system. Thus, the
first harmonic cap term we introduce is a correction that prevents the optimization algorithm
from locating the capping atom unphysically far from the atom, A, to which it is bonded in
the small system. This is given by

2
Tg = 3 kr(Ra-m ~ Reg)” ®)
The parameters kg and Req are calculated by means of three single-point energy calculations
for the capped small system, so that the computational cost is kept to a minimum and
accurate results are obtained (217).

Similarly, in order to avoid unphysical values for the angles in the capped small
system, a second harmonic correction can be introduced,

Ty = Lko(26)%. (6)
We define the angle AG by

AG = arccos(Ra_pp - Ra_1), (7)



so that the link atom L and capping atom M have the same orientation. The calculation of kg
is carried out by means of two or three single-point energy calculations for the capped small
system.

Finally, a third term can be defined in order to restrict the possible values of torsion
angles in the capped system,

Ty = 1ks(89)°, (8)

where ¢ indicates the deviation of an L-A-B—C dihedral angle in the entire system from the
M-A-B-C dihedral angle in the capped subsystem, where B is an atom bonded to A, and
C is an atom bonded to B. Once again, ky will be estimated by means of a few single-point
energy calculations. (Neither of the systems considered in this paper has an L-A-B-C
dihedral angle because the capped small system is so small, but we mention the torsion for
completeness.)

The total energy for the system will therefore be given by:

1 _ low high low
Eentire - Eentire + (Esmall - Esmall) +

1 2.1 2.1 2 ©)
+—2-kR(RA_M - Req) + 7](9([39) + §k¢(A¢)

The IMOHC method has been tested for the optimization of the geometry of ethane
and also for calculating its vibrational frequencies and the C—H bond energy. Some results
are shown in Tables 5 and 6. For the results in these tables, kg and Req were calculated
from three higher-level single-point calculations on methane, with one at the lower-level
minimum-energy geometry and the other two having slightly shorter and larger C-H
bonds. For this system we found that the only capping term needed is the bond-length
controlling term; the parameters kg and kg were therefore set to zero.

Since the most one can expect of any integrated method is to reproduce the results
obtained from a complete higher-level calculation, the IMOHC results are compared to
those obtained by means of the higher level used in the calculation, MP2/6-31G, as well as
to those for the small system (methane and methyl radical) at the higher level of calculation
and those for the entire system as the lower level (HF/3-21G). The optimized geometry is
much closer to the higher-level optimized geometry than to either the higher-level capped
small-system or the lower-level entire-system calculation. The results for the C-H bond
energy (Table 6) are also excellent, the error being less than 0.1 kcal/mol, undoubtedly
preferable to the 2.6 and 13.7 kcal/mol errors of the single-level calculations.

In a second test, the geometry of the ethylamine molecule (the same molecule as
studied in Table 3) was optimized, using the same levels as in the ethane test just described.
Once again, the capped system was the methane molecule, with the capping atom being a
hydrogen atom and the link atom being a carbon atom. The kg and Req parameters were
taken from the previous example. In this case, it was necessary to also include the
harmonic term for the bend. The bending force constant kg was calculated by means of a
single-point MP2/6-31G//HF-3-21G calculation at the HF/3-21G optimum geometry for
methane, and an MP2/6-31G calculation on a geometry for which one of the C-H bonds in
methane deviated by 0.5 degrees from its optimal position at the lower level. (In a less

symmetric system, we could need three points.) We obtained kg = 2.033x10-2

kcal mol-! deg=2. This calculation is somewhat arbitrary, since the resulting force
constant is dependent on the direction in which the distortion took place. However, we
expect that the final results will generally show little dependence on the precise value of kg .



Table 5. C—H bond distance (in A) as predicted by single-level and IMOHC calculations?

Level H-CHj3 H-CHj H-CH>,CH3; H-CHCH3
HF/3-21G 1.0830 1.0717 1.0841 1.0734
MP2/6-31G 1.0959 1.0830 1.0988 1.0867
MP2/6-31G:HF/3-21G 1.0973 1.0854

aAll the results in this table are taken from Ref. (21).

Table 6. Energy of the C-H bond (kcal/mol) as predicted by single-level and IMOHC
calculations?

Molecule Level AEb AHJ
CHy4 MP2/6-31G 99.66 89.90
CoHs HF/3-21G 84.15 73.58
CoHs MP2/6-31G 97.02 87.25
CyHg MP2/6-31G:HF/3-21G 97.09 87.27

aAll the results in this table are taken from Ref. (21). PAE is the Born-Oppenheimer

classical energy of dissociation, i. e., it excludes zero point energy; AH8 is the standard-
state enthalpy of dissociation at 0 K, including zero point energy.

Table 7. Average unsigned error in the three Cg—H bond distances in-ethylamine (in A) as
predicted by single-level and IMOHC calculations. The reference value is the MP2/6-31G
average Ca-H bond length in ethylamine

Level H-CH3 H-CH,CH3NH;
HF/3-21G 0.0157 0.0149
MP2/6-31G 0.0028 0.00004

MP2/6-31G:HF/3-21G 0.0018

aZero by definition



Table 8. Average unsigned error in bond angles in ethylamine (in degrees) as predicted by
single-level and IMOHC calculations. The reference value is the MP2/6-31G average

Co—~Cp—H bond angle in ethylamine?

Level H-CHj3 H-CH>CH;3NH
HF/3-21G - 0.985 0.187
MP2/6-31G 0.985 0.000%

MP2/6-31G:HF/3-21G 0.078

aIf the hydrogens are labelled D-J as follows: DENCoFGCgHIJ, then the quantity
tabulated is the average of the unsigned errors in these three bond angles: HCgl, HCgJ, and

ICgJ. bZero by definition

Table 7 shows the average unsigned error in the C-H bond distance for the

B-carbon (where we label the molecule HoNCoH>CgH3), and Table 8 gives the average
error in three H-Cp—H bond angles of the small system computed at each single level and
also by the dual-level calculations. The “errors” are actually deviations from the optimized
MP2/6-31G geometry. Once again, the results are encouraging. The dual-level calculation
gives bond distances and bonds angles in the small system much closer to the high-level
entire-system calculation than are obtained from either a low-level calculation on the entire
system or a high-level calculation on the capped small system.

4. Dual-level direct dynamics

The dual-level direct dynamics approach (36-38) is an analog for reaction dynamics
of the // approximation in electronic structure calculations on bound-state properties. In the
dual-level approach a reaction path is constructed and a complete variational transition state
theory calculation including tunneling is carried out at a lower level; the results are then
improved by carrying out a reduced number of electronic structure calculations at a higher
level without recalculating the reaction path. If HL and LL denote the higher and lower
levels, then HL///LL denotes the result of using them together in a dynamics calculation;
this is a direct generalization of the popular // notation. Thus, HL///LL indicates a dual-level
dynamics calculation based on a potential energy surface calculated at the LL, improved by
a small number of HL calculations. One critical distinction between HL//LL and HL///LL,
however, is that HL//LL does not involve any geometry optimizations at the higher-level,
but HL//LL allows for the possibility that the saddle point and reagent geometries be re-
optimized at the higher-level since it is usually dangerous not to do so.

The information from the higher-level is introduced into the lower-level surface by
means of interpolated corrections (IC) (36, 38). The method in its simplest form consists of
defining an error function that is calculated by means of the HL and LL values for a
property and interpolating that function all along the reaction path. For example, let

w,in‘(s) be the value of the vibrational frequency of the mode m at a distance along the

reaction path given by the reaction coordinate, s, as calculated at the higher level. (In the
formulation used so far, the only points along the reaction path calculated at the higher level
are stationary points, i.e., reactants, products, saddle point, and/or wells on the reaction



path.) Let a),I,‘,L (s) be the value of the vibrational frequency of the same mode at the same

value of s as calculated at the lower level. We define a function of s that measures how far
the lower-level frequency for that mode is from the higher-level one; for example,

) =op= )/ o) (10)

The value of this function will be available only for those values of s for which the HL
calculation has been performed; nevertheless, by using the appropriate functions (36) we

can interpolate the values of f(s) for any point on the reaction path. Thus, w,l,)lL (s), the
dual-level estimated frequency for the mode m at s, will be given by

w,%L (s)= (1),];1]“ exp[fICL (s)], (1D)
where
s = interpolant{ln[w,flIL (s) / otk (s)]} , (12)

and where ICL indicates “interpolated corrections based on the logarithm” (38). Following
this idea, the method corrects the energy, frequencies, moments of inertia, and reduced
moments of inertia for hindered rotors along the reaction path, although geometries and
eigenvectors cannot be corrected by this method. For a detailed discussion on the
interpolatory functions and the different ways of defining the corrections the user is
referred to the original IC methodology papers (36, 38).

As the higher level the best general options are to take values obtained from ab initio
calculations at a level as high as possible or from SAC calculations, although some other
options are in principle applicable, for example experimentally deduced properties of the
saddle point.

As a lower level, the range of options is even broader, since the accuracy in the
energies is not as important as in the higher-level calculation. Thus, an analytical potential
energy surface for the reaction between atomic oxygen and methane has been used as lower
level in a recent application of the dual-level methods (82), although this is not expected to
be the most widely used choice, since the construction of an analytical potential energy
surface can be an extremely time consuming (and perhaps tedious) task. For CHy + O the
analytical potential energy surface employed was the J1 surface (83) for the CHy + H
reaction slightly modified in order to reproduce the theoretical and experimental results for
the CH4 + O reaction. But the lower-level in most applications to date has been a direct
dynamics calculation. In a direct dynamics calculation, whenever an energy, gradient, or
Hessian is required in the dynamical calculation, it is computed “on the fly” by means of an
electronic structure calculation.

One possibility for the electronic structure level for the lower level in a direct
dynamics calculation is to use a density functional theory (DFT) calculation (84). This kind
of calculation is much more affordable for large systems than ab initio calculations of
comparable accuracy, and for some types of reactions it is more accurate than semiempirical
calculations. DFT is an especially appropriate choice for many systems containing metal
atoms, where semiempirical theory appears to be less reliable than for purely organic
systems without metals. Thus, we modeled the C-H bond activation involving rhodium
complexes by means of DFT. In particular, for the rearrangement of

trans-Rh(PH3)>Cl(n2-CHy) to Rh(PH3),-CI(H)(CH3) (33), we used the B3LYP DFT
level (85), with the LANL2DZ basis set (86) as the lower level. A dual-level technique



was employed for the correction of only the energy along the reaction path, by using

energies for reactants, products, and saddle point computed at the B3LYP level, with a

larger basis set.

Some studies have been carried out using as a lower level an ab initio calculation
using small basis sets and/or inaccurate treatment of the electron correlation. Thus, the first
application of the IC method with an ab initio lower level was the study of the rate constant
of the OH + NH3 hydrogen abstraction reaction (37) using MP2/6-31G(d,p) as the lower
level. Further comment on the results for this reaction will be provided below.

In calculations carried out so far, the most widely used choice for the lower-level
direct dynamics calculation has been the semiempirical neglect-of-diatomic differential-
overlap (NDDO) (39,77,87,88) method. The main advantage of this way of calculating the
lower level is its economy; semiempirical methods are fast and affordable even for large
systems, allowing us to calculate larger regions of the potential energy surface.
Nevertheless, the lack of quantitative accuracy of these methods is a concern. Any of the
usual general parametrizations that make use of NDDO approximations, €.g., MNDO (88),
AM1 (77), and PM3 (39), are based on a set of parameters fitted in order to minimize in an
average way the discrepancies between calculated and observed properties for a broad
training set of test molecules, usually organic molecules. Thus, although these methods
behave qualitatively correctly for most reactions, predictive quantitative accuracy is almost
never achieved, especially for saddle points (as well as any other nonclassical structure,
since the parametrization of the methods did not include such structures). Nevertheless the
general parametrizations are sometimes useful with no change in parameters. For example
the kinetic isotope effect for the [1,5] sigmatropic rearrangement of cis-1,3-pentadiene (89)
was calculated by direct dynamics based on the MINDO/3 (90), AMI, and PM3
semiempirical surfaces. The results are in excellent agreement with the experimental results
(within 13%), reflecting the suitability of these semiempirical methods in the study this
reaction. Furthermore, since the IC method corrects the deficiencies of the lower level
surface, with results usually showing weak dependence on the lower level of calculation,
the standard parametrizations of the semiempirical methods are even more useful as the
lower-level of a dual-level calculation. However, one can generally do better, as discussed
next.

Since the parameters of semiempirical calculations are, in some sense, arbitrary
parameters fitted in order to minimize an average error, a solution to the lack of accuracy in
the description of a particular reaction is the reparametrization of the semiempirical
Hamiltonian in order to improve the description of a particular reaction. Thus, the NDDO
methods with specific reaction parameters (SRP) (30) can provide us with a economic but
accurate description of the potential energy surface suitable for direct dynamics
calculations.

The reparametrization of the semiempirical method might seem to be a task as time
consuming as the construction and parametrization of an analytical expression for the
potential energy surface; but this is not the case. Several aspects of the task make it more
affordable:

e The problem of finding a physically meaningful functional form for the
mathematical expression of the energy is eliminated. All reactions, independent of
the number of atoms involved and the type of reaction can be treated using the
same mathematical tools, which have a clear physical meaning.

e The original parametrization constitutes a good starting point for the
reparametrization. In fact, we have usually tried to modify the original parameters
by no more than a certain percentage (usually 10% or 20%), and one need not
change a large number of parameters.

* The parameters to be fitted have a more clear physical meaning than the
parameters usually involved in analytical expressions of the potential energy. The



selection of the parameters to be optimized and their fitting can, in principle, be
guided by chemical intuition.

¢ A set of parameters optimized for a reaction can be expected to be at least partially
transferable to other similar reactions. For this reason we sometimes call SRP
parameters “specific range parameters” when we try to make them useful for
some range of systems.

*  When the NDDO-SRP surfaces are corrected by means of dual-level techniques
(which is the usual procedure), the lower-level description of the reaction does
not need to be energetically accurate. Obviously, the final results are expected to
be more reliable when the lower level reproduces well the high-quality ab initio or
experimental data, but when the NDDO-SRP surface is reasonable, the dual-level
methods depend only weakly on the lower-level results.

e  Automatic or semiautomatic optimization procedures can be used for the fitting of
the SRP parameters. This is accomplished by defining an error function to be
minimized, where the error function may contain the average deviation of the
NDDO-SRP predictions from a few accurately known energies, stationary-point
geometries, and/or frequencies. Taking into account the nature of the problem
(multidimensional minimization of an error function dependent on a large number
of variables, without analytic derivatives and the possibility that the error surface
presents a rugged landscape), a particularly useful way of finding the optimum
parameters is by using genetic algorithms (97-93). Thus, we can define an error
function dependent on the set of parameters that we want to fit (97), and we can
use genetic algorithms to look for the global minimum of that function. The main
decisions to be made are the construction of the error function (weighting the
errors in those properties that we want to describe more accurately), the choice of
starting parameters (usually AM1 or PM3), the choice of which parameters to
vary, and the limits (e.g., £5%, £10%) over which are allow those parameters to
vary from their standard values.

The first applications of NDDO-SRP methods were in single-level calculations. The
first work using this approach was the study of the rate constants and primary and

secondary kinetic isotope effects for the microsolvated SN2 reaction Cl-(H,0),, + CH3Cl,
withn =0, 1, 2 (30). The parameters were fitted to reproduce the experimental value of the
electron affinity on ClI (a very important parameter for describing solvation effects) and the
classical barrier height inferred (94) from a modeling of the n = 0 case. The results agree
very well with those obtained from an analytic surface (94, 95), which had been much
harder to construct. Thus, the same set of parameters was used for a detailed description of

the CI- solvation (96). In later work single-level NDDO calculations with SRP parameters
fitted in order to describe experimental properties have been applied to modeling several
other kinetic isotope effects (97-100).

Nevertheless, a more promising way of using NDDO-SRP methods for VIST/MT
calculations is with IC methods. In particular we favor a bootstrap approach in which the
higher-level information is used not only in the IC corrections but also for calibrating the
SRP parameters (31, 36-38, 61, 82, 95b, 101-103). An important advantage that we have
pointed out previously is the relative independence of the final results on the lower level
calculation. As an example, in Table 9 we examine the HL///LL rate constants for the NoHp

+ H — NsH + Hj reaction calculated using 4 different low-level surfaces, and we compare
the results to a full HL calculation (38). At low temperatures the effects of a different lower
level are more noticeable, but they all are within a reasonable range of the full HL results.
An important advantage of the IVIST-IC approach, especially for reactions with
high curvature of the reaction path, is the possibility of including tunneling contributions
from regions of the potential energy surface that are far from the reaction-path (the broad
region of configuration space traversed by significant tunneling paths is called the reaction



Table 9. Rate constants (10-11 cm3 molecule~! s-1) for the H + NoHj reaction calculated
using single-level and dual-level methods®

T (K)

Method 300 600 1500 3000
HL///MNDO 0.065 0.39 2.7 18
HL///AM1 0.088 0.35 3.5 17
HL///MNDO-SRP 0.120 0.41 3.5 17
HL///AM1-SRP 0.050 0.32 3.8 18
HL 0.068 0.35 3.4 20

aIn this table, HL denotes MRCIS55/cc-pVTZ//CASSCF/cc-pVDZ. the results in this table
are all taken from Ref. (38).

swath). The portion of the reaction swath that is far removed from the minimum energy
path on its concave side is very important for reactions with large reaction-path curvature in
the region of the barrier, since most of the tunneling may take place in this region of the
surface. The reliable calculation of tunneling effects in reactions with large curvature
therefore requires information not only about the reaction path and the harmonic valley
surrounding it but about energies in the wider reaction swath. The high cost of the kind of
ab initio calculations we want to use makes this information unavailable in most cases, but
when using semiempirical NDDO or NDDO-SRP methods the use of large-curvature
approximations for tunneling is possible (98), and the IC methods can also correct the
energy in this region of the surface (36) on the basis of limited stationary-point data at a
higher level. As an example, we note that the reaction-path for the reaction OH + NHj
reaction (37) has an important curvature. As a consequence, tunneling methods that don't
include the tunneling probability through the farther out regions of the reaction swath give
rate constants that are too low at low temperatures, where tunneling is more important. The
use of a semiempirical lower-level surface allows an inexpensive calculation of tunneling
along the reaction path and through the reaction swath, leading to low-temperature rate
constants in agreement with experimental results (37).

5. Summary

Dual-level methods in which the lower level is quantum mechanical can be very
useful for bond energies, barrier heights, reaction-path dynamics, and electronic substituent
effects on a subsystem of a larger system. The methods may be ab initio or partly
semiempirical. Basis sets (MIDI!) and semiempirical parameters (SAC, NDDO-SRP) may
be optimized specifically for use in dual-level calculations. The following methods were
illustrated:

applicable primarily to small systems

* Scaling external correlation (SEC)
applicable to medium-sized systems
» Scaling all correlation (SAC)



applicable to all-sized systems
* NDDO-SRP as lower level
» Variational transition state theory with interpolated corrections
« IMOMO and IMOHC for electronic substituent effects on energies and
geometries with DFT, HF, or semiempirical molecular orbital theory as
lower level.
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