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Abbreviations

CVT = canonical variational transition state theory; uVT =
microcanonical variational transition state theory; TST = tran-
sition state theory; VTST = variational TST.

Glossary

Activated complex

Synonym for transition state.

Born-Oppenheimer approximation

The electronically adiabatic separation of electronic and nucl-
ear motion so that the sum of the electronic energy and nuclear
repulsion energy serves as a potential energy function for
internuclear motion.

Isoinertial coordinates

A coordinate system where all conjugate momenta have the
same reduced mass.

Phase space

The combined coordinate system of particle positions and
conjugate momenta.

Semiclassical theory

A theory partly based on classical mechanics and partly based.
on quantum mechanics.

1 INTRODUCTION

Transition state theory (TST) provides a conceptual frame-
work for understanding all chemical reactivity. In addition it
provides a powerful computational tool for translating molec-
ular structure and energetics into predictions of chemical reac-
tion rates. In the 1930s to 1960s, transition state theory was
often understood (and misunderstood!) in terms of quasiequi-

. librium concepts that hid its beauty. In the 1970s, the underly-

ing dynamical theory became better appreciated, and the 1980s
and 1990s allowed a series of careful validations against more
complete dynamical theories that showed that TST not only is
elegant and beautiful but also is capable of remarkable quan-
titative accuracy. Current work is focused on harnessing the
quantitative predictive power of TST by interfacing the dynam-
ical theory to modern electronic structure theory for gas-phase
energies, and we expect similar progress for condensed-phase
reactions when TST is combined with quantitative models for
free energies of solvation. :

TST is a workhorse of chemical kinetics, serving both as
a framework for conceptual understanding and also as a pow-
erful computational device for calculating rate coefficients. In
the latter role, one often encounters a variety of generalized
TSTs in which the fundamental assumption of transition state
is employed, but other elements are added to the calculation
as well. In this article, as in much practical work, we will
not always retain the word ‘generalized’ in such cases. It
is typically the responsibility of the reader to sort out the
elements in such a case, since there is no systematic and
generally accepted nomenclature that covers all possible gen-
eralizations. Nevertheless most applications of TST are easily
categorized as conventional or variational, and as classical or
semiclassical. There is no unique fully quantum mechanical
version of TST, but practical TST calculations combine the
fundamental assumption of transition state theory, which is
intrinsically classical, with as many quantum mechanical ele-
ments as possible, in order to make quantitative predictions,
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and indeed the purely classical version of the theory is not
very accurate.

The fundamental assumption of transition state theory is the

existence of a dynamical bottleneck. Consider a reaction
A +B —> products (L)

with a rate coefficient k defined by

_aa)

@ k[A][B] )

where ¢t denotes time, and [X] is the concentration of X.
Technically, TST replaces k by a one-way flux coefficient
corresponding to the rate of passage of phase points (i.e., tra-
jectories) through a hypersurface in phase space that separates
reactants from products. The hypersurface is the transition
state, and often it is just called the dividing surface. If reactants
are in local equilibrium, and all trajectories passing through
the dividing surface in the direction of products originated
at reactants and will proceed fully to products without ever
returning to the dividing surface, then TST is exact in a clas-
sical mechanical world. Otherwise it overestimates the rate.
Therefore, in variational TST! (VTST) one optimizes the loca-
tion of the dividing surface to minimize the rate. The optimized
dividing surface is called the variational transition state or the
dynamical bottleneck. In practice, one quantizes the vibrational
motions, which involves replacing classical partition functions,
which are phase space integrals, by quantal ones, which are
sums over states; because of this replacement the upper bound
no longer strictly applies. Nevertheless the variational opti-
mization of the dividing surface is still justified on physical
grounds. As a final step, one may add a transmission coeffl-
cient (x) to account for tunneling (x > 1), for trajectories that
recross the transition state (x < 1), or both.

2 GAS-PHASE REACTIONS

To appreciate TST fully, it is instructive to consider a
sequence of successively more sophisticated formulations. We
begin with the quasiequilibrium derivation of transition state
theory. Consider reaction (1) with rate constant k(T') defined
by equation (2), where T is temperature. Let AB* denote
an activated complex in equilibrium with reactants, with the
following ‘equilibrium constant’: .

_ [ABY

KT = aimy

(3)

This is the first place where one must be careful to avoid over-
simplification. In particular, AB* should not be confused with
a reaction intermediate which could conceivably be stabilized
by collisions. It is associated with an intermediate configu-
ration, part way from reactants to products, but not with an
intermediate species. The fuzziness of this distinction can and
will be clarified below, but the failure to appreciate this dis-
tinction fully is probably the single most important reason for
the lack of understanding of TST in its first 30-40 years. In
fact there were published papers as late as the 1960s ques-
tioning the formulation of the theory and suggesting possible
errors of a factor of 2 in the original derivation. Actually the
original formulations? were correct.

The popular early derivations of TST proceed by writing
the rate constant at temperature 7" as

K(T) = v(T)K¥(T) )

where v(T') is a unimolecular frequency of conversion of AB?
to products. Equation (4) is usually understood in terms of the
quasi-mechanism:

K#
A+ B = AB! (5)

ABf — 5 C4+D (6)

An expression for v is ‘derived’ from statistical thermodynam-
ics in two steps. First, one expresses K*(T) in terms of a molar
standard-state free energy of activation AGH°, (T') as if it were
an ordinary equilibrium constant:

K(T) = K¥°(T)e 2" (T)/RT )
where R is the gas constant, and

[ABH)°

K¥(T) =
= AFEP

(®)

where [X]° denotes the concentration of X in molecules per
unit volume in the standard state. Second, one writes the
free energy in terms of partition coefficients of AB*, A, and
B. Since AB? is an intermediate configuration, not a stable
species, one of its degrees of freedom is unbound. Call this
degree of freedom the reaction coordinate, s, and assume it
is separable. Then, if A has N, atoms, B has Np atoms, and
AB* has Nap(= N + Np) atoms,

P Os(TQH(T)
AGH(T) =In geoan R ®
where, for a bimolecular reaction,
M) = @ (T)QH(TQP(T) (10)

Q,(T) is the ‘partition function’ of the reaction coordinate;
Q¥(T) is the internal partition function associated with the
electronic degrees of freedom of ABY and the (3Nap — 4)
vibrational -rotational degrees of freedom after removing the
reaction coordinate and three coordinates for overall trans-
lation; @ri(T) is the partition function per unit volume for
relative translation of A and B; Q*(T) and QB (T') are the inter-
nal partition functions of A and B, respectively, associated in
each case with their electronic degrees of freedom and their
3Na — 3 or 3Np — 3 vibrational-rotational degrees of free-
dom; and @R(T) is the total partition function per unit volume
of reactants, excluding translation of their overall (joint) cen-
ter of mass. Simple models for the potential along the reaction
coordinate lead to various expressions for v and Q; but one
always finds (in a correct derivation) that

kgT
V0=

an
where kg is Boltzmann’s constant, and 4 is Planck’s constant.
Combining all these considerations one arrives at

kT QX(T)

KD = == xr)

(12)
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Let V¥ be the potential energy difference between ABY and
A + B. Then it is customary, instead of using a consistent zero
of energy for all three partition coefficients, to compute Q*(T')
with the zero of energy at the minimum potential energy of
AB?* and QA (T)QB(T) with the zero of energy at the minimum
potential energy of A + B. This changes equation (12) to

+
ke T O*(T) e~ ViikeT

KT == orary

(13)

Finally one often multiples by a transmission coefficient «(7')
that accounts for the fact that not all systems that reach the
intermediate AB¥ configuration connect to products, leading
to k(T) < 1, or to account for tunneling, leading to «(T) > 1.
This yields

ke T QT
B Q( )e_vi/kBT

KT =M= gx(T)

(14)

The conventional theory is completed by equating AB¥ to
a saddle point on the potential surface between A 4+ B and
C+ D and by equating s to the imaginary-frequency normal
mode of the saddle point. The appropriate saddle point is the
highest-energy point on the lowest-energy path from reactants
to products.

The conventional treatment raises a number of interesting
questions: (i) what is the precise meaning of AB* being in
equilibrium with A and B, even though a reaction is occur-
ring, i.e., C and D are not in equilibrium with A and B?
(i) Does this equilibrium assumption require AB* to have a
lifetime longer than the energy relaxation time of the system?
(iii) What is the physical interpretation of assuming separa-
bility of the reaction coordinate? (iv) Can one improve on
equation (11) by a mathematically more rigorous definition
of AB¥? (v) Is the saddle point the best configuration to iden-
tify with the activated complex? Although this article cannot
make the answers to all these questions clear, we do think
it is important to emphasize that the answers to these ques-
tions are all well known, and that the key to understanding
these issues properly is a dynamical reformulation of the the-
ory in terms of the classical mechanical one-way flux of phase
points through a hypersurface in phase space. We will illustrate
this kind of formulation here so the reader may appreciate the
basic idea, but we must refer the reader to more specialized
works for a rigorous and complete treatment. An introduc-
tion suitable for beginners is provided by Pechukas.3 Most
of the more advanced treatments leading to a complete theo-
retical framework require considerable sophistication, and the
reader must piece together the background for the full argu-
ment from several papers. In one case, however, Tucker and
one of the authors attempted to provide a reasonably self-
contained derivation of the modern transition state theory for
a NATO Advanced Study Institute, and the interested reader is
referred to that article* for a more complete and self-contained
treatment than space permits here. Less mathematical intro-
ductions are also available.%® As promised, though, we now
proceed with an introduction to the dynamical interpretation
of transition state theory.

Assume that the A + B system is in the ground electronic
state and that the Born-Oppenheimer approximation is valid
so that the system motion reduces to Na + Ny atoms moving
on a single potential energy surface. The phase space of the
A + B system, excluding overall translation, has 6(Nag — 1)

degrees of freedom. We identify a reactant region % of phase
space and a product region P, and we consider a [6(Nap —
1) — 1]-dimensional hypersurface 9 that divides ® from .
(This hypersurface is usually called a ‘dividing surface’ or a
‘generalized transition state.” The conventional transition state
is a particular case of this dividing surface that passes through
the saddle point.)

Let D be a function of coordinates only, so a point in D
is specified by [3(Nag — 1) — 1] coordinates and 3(Nap — 1)
momenta. Identify the missing coordinate as the reaction coor-
dinate s (so s becomes a coordinate normal to the hypersur-
face), and identify the momentum conjugate to s as p;. Let
C denote the [6(Nap — 1) — 2]-dimensional hyperface in D in
which p; = 0. Assume that the % region of phase space is pop-
ulated according to a Boltzmann equilibrium distribution; then
Liouville’s theorem of classical statistical mechanics shows it
will evolve into a Boltzmann equilibrium distribution at © and
hence also at C. Consider the one-way flux of this equilibrium
ensemble of phase points through D in the ® — P direction.
This flux may be calculated quite generally, and using this
calculation plus equation (2) yields

ksT QUL 8) _yyioypar

KD = 5~

(15)

where QCT(T, 5) is formally identical to a partition coefficient
for a system (a ‘generalized transition state’) with 3N —4
degrees of freedom (where the 4 is a sum of 3 for overall
translation, which is removed, and 1 for s) that is constrained
to have s equal to the value that puts the system in a particular
dividing surface. The zero of energy for QCT(T,s) is the
minimum energy of systems in the dividing surface; this
minimum energy is Vp(s), where P denotes ‘on the (reaction)
path’.

The previous paragraph only defined s locally as a coordi-
nate normal to the dividing surface. Now we define a reaction
path and we identify the signed progress variable along this
path as s with —oo, 0, and +oo corresponding to reactants,
saddle point (the highest energy point on the lowest-energy
path), and products, respectively. The dividing surfaces are
locally transverse to the path where they intersect it. Then
if s =0, equation (15) reduces to equation (13). However, if
the rate constant is minimized with respect to the value of s
at which the dividing surface intersects the reaction path, we
obtain the most popular version of VIST;’ in particular we
obtain canonical VTST, which is called CVT, because a system
corresponding to a particular temperature is a canonical ensem-
ble. One might also consider optimizing the orientation of the
dividing surface, but experience has shown that good accu-
racy can usually be obtained without this step provided that
the dividing surface is normal to the path of steepest descents
in normal-mode coordinates (or any other set of isoinertial
coordinates).”

When TST is applied to a unimolecular reaction, A — C,
it is often called RRKM theory.? One simply replaces #%(T')
by QA(T). For unimolecular reactions it is customary to
consider the rate constant as a function of total energy E rather
than temperature. This is called microcanonical TST since
an equilibrium ensemble with a fixed total energy is called
a microcanonical ensemble. The microcanonical generalized
TST rate is

_N(E.s)

= (16)
hpR(E)

KE)
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for A — C and

N(E,s)

HE =)

an

for A+ B — C+ D, where gR(E) is the density of states per
unit energy of A, R (E) is the density of states per unit energy
and volume of A 4+ B, and N(E, s) is the number of levels «
of the generalized transition state at s that have energies &4(s)
that are less than E. (Note that each level « is weighted by its
degeneracy, but we say ‘levels’ instead of ‘quantum states’ to
avoid the awkward phrase ‘states of the transition state’ where
the word ‘state’ would be used with two different meanings
in the same sentence.) As for canonical ensembles, the best
choice of s is the one that minimizes the rate constant. This
yields microcanonical VTST, which is called pVT.

Tunneling is typically important whenever the motion that
carries the system through the transition state involves sig-
nificant motion of protium, deuterium, or tritium atoms (and
sometimes, but atypically, when it does not). Tunneling is often
approximated by fitting Vp(s) to a parabolic barrier shape,
and calculating the tunneling probability as one-dimensional
motion along s. This is seldom adequate, but fortunately prac-
tical multidimensional tunneling approximations are available;
these are based on semiclassical estimates of the amount of
wave function decay along various reasonable implicit or
explicit tunneling paths.%°

In principle one can try to account for recrossing of even
the variationally optimized transition state, but such attempts
are probably best viewed as beyond the purview of TST itself,

3 CONDENSED-PHASE REACTIONS

Although TST was originally formulated for gas-phase
reactions, it has also been widely used to study reactions in
condensed phases.>1%1! In the gas-phase, reaction rate con-
stants are calculated as an average over an ensemble of indi-
vidual reaction events in which the reacting species are isolated
from other molecules in the gas phase. For bimolecular reac-
tions the reaction events are binary collisions of two molecules.
For unimolecular reactions the reaction event is the rearrang-
ment or dissociation of bonds in a single energized molecule,
and rate constants for the mechanism of activation of the
molecule are not explicitly treated in TST but require exten-
sions, as in practical applications of RRKM theory.® Reactions
in condensed phases are usually treated by following the same
approach: the reacting species (denoted as the solute or solutes)
are treated as being distinct from the rest of the extended sys-
tem (denoted solvent), and the rate constants are calculated
as an average over an ensemble of individual reaction events.
However, because of the close proximity of other molecules
in the condensed phase, the reaction energetics and dynam-
ics are different from what the reactants would experience in
isolation. Furthermore, the mechanism of encounter of two
molecules in a bimolecular reaction can change dramatically
from a well-defined collision in the gas phase to a diffusive
encounter followed by multiple impacts in a condensed phase.
Bimolecular reactions in condensed phases can be limited by
the rate of encounter of the solute molecules (e.g., the relative
spatial diffusion of the reactants) or by dynamical processes in
the encounter complex (e.g., the bond rearrangment or reaction

step). Similarly, the mechanism for activation in a unimolecu-
lar reaction changes from energy transfer in binary collisions in
the gas phase to energy diffusion from a heat bath in condensed
phases.

TST for liquid-phase reactions is concerned with kinetics
of the encounter complex or the energized solute and does not
account for spatial or energy diffusion. The TST rate constant
is often a good approximation to the observed liquid-phase rate
constant for bimolecular reactions when the activation barrier
for rearrangement in the encounter complex is much larger
than any activation barrier for diffusion, or for unimolecular
reactions when the coupling of the solvent to the solute is
sufficiently strong so that energy flow into the solute is not
rate limiting. For reactions in and on solids, TST can be used
in some cases to study spatial diffusion (see Section 3.2), but
as for the liquid phase, energy diffusion is not treated. TST
can of course play a critical role or even the dominant role in
more complicated treatments that take account of macroscopic
spatial diffusion or microscopic energy diffusion, but it is
beyond our scope to consider those aspects here. In this section
we consider the approaches used to incorporate the effects of
both liquid and solid phases in TST.

3.1 Reactions in Liquids

The thermodynamic formulation of TST provides a con-
venient framework for the introduction of solvation effects
into the theory. In this formulation, the conventional TST rate
constant for the gas-phase reaction is given by:

ksT o
KH(T) = == KE(Tyexp (18)

RT

—AG§-°(T)]

where AGE’(T) is the molar free energy of activation for the
gas-phase reaction in the standard state, and K¥°(T) is the
same as in equation (8). Equation (18) includes the entropic
effects arising from the bound-state partition function for the
modes that are defined by the conventional transition state
dividing surface (i.e., those orthogonal to the reaction path
at the saddle point). For liquid-phase reactions the solvent
‘dresses’ the solute, and in this formulation it changes the free
energy of activation. The liquid-phase rate constant is then
given by:

liq (19)

kT yo —AGE (T
KD = =Kl (Mexp [———R;( )]

where AG%°(T) is the equilibrium molar solvation free energy
of activation for the liquid-phase reaction in the standard
state, and we changed the subscript on K*° to denote that
one uses a different standard state in the liquid, e.g., a one-
molar ideal solution instead of a one-atmosphere ideal gas.
(Note that we assume ideal liquid-phase standard states, and
activity coefficients for the reactants and transition state are
all set to unity in this expression.) The liquid-phase free
energy of activation now includes not only the effects of the
internal modes of the solute but also the effects of the solvent.
There is ambiguity about what constitutes conventional TST
for a liquid-phase reaction. A large (uncountable) number
of local equilibrium geometries exist for the solvent, and
likewise a large number of transition states exist for the
liquid-phase reaction. Therefore, it is impossible to define a
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conventional transition state as in the gas phase (i.e., in terms
of a single saddle point). In the literature, the thermodynamic
formulation of TST is usually employed by correcting the free
energy of activation for solvent effects at the conventional
gas-phase transition state. Consistent with this, we define the
conventional transition state dividing surface for the liquid-
phase reaction to be the same as for the gas-phase. Thus the
dividing surface is expressed only in terms of the solute modes
that are orthogonal to the reaction path at the saddle point.
Any effect that moves the optimum dividing surface from
the conventional (gas-phase) transition state is then labeled
a variational effect.

In this model of the solvent dressing the solute, the free
energy of activation can be broken down into a contribution
from the free energy of activation of the reaction in the gas-
phase (i.e., with the solute molecules in isolation), and a
contribution from the difference in free energies of solvation
of the transition state and reactants:

AGE (T) = AGE(T) + AGE(T) = AGS*(T) 0)
where AG§‘°(T ) and AG§‘°(T) are the free energies for solvat-
ing the gas-phase transition state and reactants, respectively.
Figure 1(2) illustrates the effects of solvation on the energet-
ics of a symmetric gas-phase reaction in which the variational
transition states for the gas-phase and liquid-phase reactions
are at the saddle point. The illustration is for a case where
the free energy of solvation of the reactants is more negative
than that for the transition state, leading to an increase of the
free energy of activation in going to the liquid. This type of
behavior is typical of charge transfer reactions, such as Sn2
reactions, in polar solvents where the charge localization in
reactants is greater than for the transition state. In other types
of reactions, solvation can lower activation barriers by sol-
vating the transition state more effectively than the reactants.
This is typical for reactions in which the electrostatic interac-
tions between the solute and the solvent do not dominate. For

(@)

Activation
Free Energy

Solvation
Free Energy

U

some such reactions, the major contribution to the solvation
free energy is the energy to create the cavity in the solvent
to accommodate the solute. This includes both the change in
dispersion interactions upon inserting the solute and also the
changes in solvent structure. For reactions with transition states
that are more compact than reactants, the free energy of cavi-
tation may be lower for the transition state (less positive), and
this effect would lower the free energy of activation in the
liquid compared with the gas-phase.

The free energies of solvation for the transition state and
reactants are obtained from averages over distributions of
solvent molecules that are in equilibrium with the solute
with the solute frozen at a fixed configuration. Thus the free
energy of activation for the reaction in liquid is labeled as
an equilibrium solvation (es) free energy. The assumption of
equilibration of the solvent to the solute is consistent with the
quasiequilibrium assumption of TST, i.e., that the distribution
of reacting systems at the transition state is in equilibrium
with reactants. (This, in turn, follows from local equilibrium
in reactants.) Breakdown of the quasiequilibrium assumption
occurs when the fundamental approximation of TST breaks
down, that is, when there are classical recrossings of the
dividing surface (because, technically, what we require to be
in equilibrium with reactants is the distribution of transition
state species that originated at reactants and will proceed
directly to products without recrossing the transition state”).
The proximity of solvent molecules in the v1cm1ty of the
transition state can induce recrossing.

The surrounding molecules of the solvent change (dress)
the effective force field of the solute, and since the solvation
free energy changes with changing geometries of the solute,
the geometry of the saddle point of the solvent-averaged inter-
action potential can differ from the gas-phase one. Therefore,
dynamical bottlenecks for the liquid-phase reaction can change
from the gas-phase ones, and simply obtaining the solvation
free energy at the saddle point, as indicated in equation (20)
and illustrated in Figure 1(a), may not be adequate.

(b)
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Figure 1 IHustration of equilibrium solvation effects on reaction free energles as a function of the reaction coordinate s: (a) for a symmetric
reaction with no variational effects and (b) for a nonsymmetric reaction in which the solvation causes the maximum of the free energy of
activation profile to shift. The long-dashed curves are the gas-phase free energy of activation profile, solid curves are the liquid- phase free
energy of activation profile, and the short-dashed curves are the solvation free energy of the solute, called AGs in the text and AGsqy in the

figure. Free energies depicted in the figures are discussed in the text




TRANSITION STATE THEORY 3099

Shifts in dynamical bottlenecks due to equilibrium solvation
can be accounted for using variational TST. The simplest
approximate method to do this is to compute the solvation
free energy along the gas-phase reaction coordinate to generate
an equilibrium solvation free energy of activation that is a
function of the location s of the dividing surface along the
reaction path:

AGIT(T, s) = AGTT°(T, s) + AGS (T, s) — AGS*(T)  (21)

The optimum location of the dividing surface is where
AGST°(T,s) has its maximum, and this is denoted
AGSYT°(T). The shift of the variational transition state upon
solvation is illustrated in Figure 1(b). For this case of an
exothermic reaction, the free energy of activation of the gas-
phase reaction is negative at the liquid-phase CVT transition
state. The solvation of the solute in the region of the transition
state is greatly reduced from the solvation of the reactants,
thereby leading to a substantial barrier in the liquid-phase
reaction where there was a negligible one in the gas-phase.
The simple approach described above assumes that the
reaction-path geometries of the solute are not altered appre-
ciably upon solvation. More generally, one could define a
multidimensional potential of mean force, G¢(T', x), where x
denotes the collection of solute vibrational coordinates, by

G4(T,x) = V(x) + AGY(T, x) (22)

where V(x) is the solute potential energy function, and
AGg(T, x) is the equilibrium solvation energy. The dimension-
ality of the free-energy surface is that of the solute. The entire
formalism of gas-phase VTST could then be applied, simply
replacing V(x) by G3(T, x). In general one would find that the
saddle point of Gg(T, x) does not lie on the gas-phase reac-
tion path.!> Reoptimization of the saddle point and minimum
energy path in the presence of a solvent is much more com-
putationally intensive. To perform the re-optimization requires
locating critical geometries and the minimum energy path on
the multidimensional potential of mean force, rather than cal-
culating the solvation free energy or potential of mean force
as function of a single coordinate.!

Whether or not one restricts attention to the gas-phase reac-
tion path, there are several options for calculating AG3(T, s)
or AGY(T, x). In the simplest approach, the solvation energy
is computed for model solute-solvent and solvent-solvent
interaction potentials using classical statistical perturbation
theory;!4 this assumes that the effects of solvation on the elec-
tronic structure and reaction energetics of the solute can be
modeled adequately by the solute-solvent interactions of an
unpolarized solute. At the next level of complexity, polariza-
tion of the solute by the solvent as well as the converse can be
included using self-consistent reaction field methods, retain-
ing a molecular mechanical solvent!® or treating the solvent
as a three-dimensional dielectric continuum.!® Either way the
interaction of the electronic charge distribution of the solute
with the solvent is included directly in the electronic struc-
ture calculation. Nonelectrostatic interactions may be based on
the solvent-accessible or exposed surface area of the solute.16
Equilibrium solvation energies are often calculated by per-
forming classical ensemble averages using either Monte Carlo
or molecular dynamics methods.'* When quantum mechanical
aspects of equilibrium solvation are important, free energies

of activation or potentials of mean force can be calculated
quantum mechanically using path integral methods.”

Implicit in the equilibrium solvation approach is the assum-
ption that the dividing surface can be defined adequately in
terms of just the solute coordinates. Variational transition state
theory can account for recrossing effects due to shifts in the
location of the equilibrium free energy barriers. In the equi-
librium solvation approach the solute molecules evolve in a
mean-field potential that neglects dynamical coupling of the
solvent and solute coordinates that can also induce recross-
ings. To go beyond the equilibrium solvation approximation
and account for this type of recrossings requires including sol-
vent coordinates in the definition of the transition state dividing
surface.!® Including solvent coordinates in the definition of the
dividing surface puts constraints on the averaging over solvent
coordinates and therefore implies an ensemble that is different
from the ensemble that is in equilibrium with the frozen solute;
this effect is sometimes called friction and included in «.18-20
This distinction between two types of solvation effects (fric-
tionless effusion over the barrier vs. diffusion with friction) is
referred to with different names by different researchers and is
variously labeled equilibrium/nonequilibrium, static/dynamic,
or adiabatic/nonadiabatic. We use the terms equilibrium and
nonequilibrium.

Within a classical mechanical theory, it is possible to carry
out the evaluation of the TST rate expression for definitions
of the dividing surface that include solvent coordinates.21%%
Variational optimization of the dividing surface within the full
space of the system, solute plus solvent coordinates, can mit-
igate recrossing effects arising from dynamical coupling of
the solvent and solute. Full optimization in these extended
systems becomes a formidable task, and most often nonequilib-
rium solvation effects are included by reduced-dimensionality
models of the solvent-solute coupling. In these models, the
goal is to include collective effects of the solvent that would
require including macroscopic numbers of solvent molecules to
describe in a molecular system. Examples of these collective
effects are nonequilibrium electric polarization in dielectric
media and solvent friction.

When dynamical effects of solvent molecules in close prox-
imity to the solute are important (such as in solvent caging),
these local solvent molecules can be explicitly included in the
definition of the solute, although inclusion of even a few sol-
vent molecules rapidly makes the calculations unwieldy owing
to the problem of multiple transition states differing in the sol-
vent coordinates. Treatment of long-range collective solvent
effects can often be modeled by effective solvent coordinates.
A popular model in the literature describes solvent frictional
effects by a collection of harmonic oscillators that are linearly
coupled to the solute. In the limit of a continuum of oscil-
lators, the classical dynamics for this model are equivalent
to the generalized Langevin equation for solute dynamics.?3
When the solute is treated as a single coordinate (the reaction
coordinate) that is coupled to the harmonic bath, application
of conventional TST (but allowing the dividing surface at the
saddle point to include dependence on the solvent coordinates)
yields the Kramers and Grote-Hynes theories. 182024

Figure 2 illustrates the model of a single effective solvent
coordinate for the simple case of a single harmonic oscillator
coupled to an Eckart potential. The equilibrium solvation path
for this model is obtained by finding the minimum in the
potential with respect to the solvent coordinate at each location
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Solvent coordinate

Solute coordinate

Figure 2 Illustration of nonequilibrium solvation for the simple reaction model of a Eckart potential barrier representing the solute coupled
linearly to a single harmonic oscillator representing the solvent. The thin curves are equipotential contours as a function of solute coordinate
and solvent coordinate. The dashed line is the equilibrium solvation path for this model. The thick lines are the conventional transition state
dividing surfaces for the gas-phase reaction (vertical line that is defined in terms of the solute coordinate only) and for the solution-phase (line

that makes a 28° angle with the abscissa)

of the solute coordinate. The equilibrium solvation path and
thereby the solution-phase conventional TST dividing surface
in the coupled system include substanstial solvent character,
whereas the gas-phase conventional TST dividing surface is
defined in terms of just the solute coordinate (the heavy vertical
line). It is easy to imagine that the solution-phase dividing
surface will be recrossed less than the gas-phase one. In fact,
for the pictured model, the classical rate constant is lowered
by about a factor of 3 by the variational process that includes
the solvent coordinates in the dividing surface.

It is easiest to see how to include the solvent effects
discussed above when the solvent and solute-solvent coupling
are treated using classical mechanics. A classical treatment
of the solvent is generally justified based on the argument
that most solvents of interest are composed of sufficiently
massive particles and characterized by low-frequency modes
that are treated adequately by classical mechanics. However,
accurate treatment of reaction rates often requires accounting
for important quantum mechanical effects such as the rapid
polarization of solvent electronic motions, zero-point energies
of solute and solvent vibrations, and tunneling, particularly for
reactions involving light atoms such as hydrogen. Including
quantum mechanical effects in extended systems is a challenge
and requires adopting highly approximate approaches.

At the crudest level, the free energy of activation for
the gas-phase reaction is computed including quantization of
bound modes and the solvation free energies are computed
thermodynamically. Quantum mechanical tunneling is some-
times included as if it is the same as for the gas phase, but this
is often inappropriate since the shape of the barrier to reaction
may be completely altered by solvation effects; furthermore,
solute-solvent coupling may be quantitatively important for
the tunneling probability. This approach also neglects the effect
of solvation on molecular vibrations in the solute. Furthermore,
the separation of the total system into a solute that is treated
quantum mechanically and the solvent that is treated classi-
cally precludes including solvent coordinates in the transition

state dividing surface. The approach of treating the solvent
classically while treating the solute quantum mechanically rep-
resents an approximation whose validity is poorly understood
for reactions in liquids.

For gas-phase reactions, tunneling contributions are often
accurately predicted by calculating the extent of tunneling
through the ground-state vibrationally adiabatic barrier when
reaction-path curvature coupling is included between the reac-
tion coordinate and vibrational motion.” The question arises
of what is the best effective potential for calculating tunnel-
ing corrections for liquid-phase reactions. A solvent-averaged
mean-field potential that is related to the potential of mean
force is an appropriate choice.2’ This neglects reaction-path
curvature coupling between the solute and solvent modes.
These effects can be included in an approximate manner by
the nonequilibrium solvation models described above.13

3.2 Reactions in and on Solids

The solid phase presents some fundamental differences
from liquid and gas phases. First, the effect the solid has on
the electronic structure of a sorbate can be profound (e.g.,
H, chemidissociation on metals). Thus new processes may
be energetically accessible in solid-state systems that are not
important in liquid or gas phases. Second, dynamical processes
in solid-state systems can be significantly different from those
in liquid or gas phases. The average environment that a solute
molecule encounters in gas and liquid phases is translationally
invariant. This is not true for the solid with well-defined lattice
sites; e.g., the average environment a solute molecule sees near
a lattice site is very different from that near an interstitial site.
Therefore, diffusion of sorbates in or on a solid can often be
treated as isolated jumps between well-defined sorption sites,
and the diffusion constant can be approximated from the rate
constants for isolated jumps.

The first applications of TST to solid-phase processes
were for diffusion of sorbates on and in surfaces using
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quantum mechanical®® and classical®” formulations for the the-

ory. Reviews of these approaches?® and of more modern TST
approalches29 to surface diffusion are available. Activated dif-
fusion is treated as a unimolecular rearrangement reaction:

A A

—>
—S—Sa——Sp—S — —S—So—Sp—S —

where A is the sorbate and S denotes a site in or on the solid.
In the simplest approximation the solid is treated as being
rigid, with the atoms fixed at their lattice positions. In this
case the solid acts as a substrate that changes the energetics,
and in the language used for liquid-phase reactions, the mean-
field (equilibrium) effect of vibrations of the solid (phonons)
on the reaction energetics of the solute and the dynamical

- influence of phonons are neglected. In this case diffusion can
be treated using TST in which the sorbate moves in the field
of the solid and the conventional TST rate constant for the
jump is given by:

K (T) =

¥ _FE%
EQmepl E} 23)

h R TP\ KaT

where, for a sorbate with N atoms, QR is the 3N-dimensional
partition function for reactants, Q% is the (3N — 1)-dimensional
partition function for the transition state (the average is carried
out in the (3N — 1)-dimensional space of the dividing surface),
and E¥ is the classical barrier height for the diffusion process.
Diffusion rates can be obtained by solving the kinetic equations
for all the possible hops that can occur. In principle, even for
simple solids with just one type of site (e.g., surface diffusion
on a 100 surface of a face-centered cubic metal) there will be
many types of hops corresponding to movement of the sorbate
to different nearby sites. TST approximates the total flux out
of a site, but it cannot say whether the adsorbate has moved
to the nearest or a farther site. The rate constant for a single
hop is approximated by the total flux, and all multiple hops
are neglected. With this approximation and for simple cases
(e.g., diffusion with just one type of site and jump rate) the
diffusion coefficient can be expressed in closed form in terms
of the hopping rates.*® for example

2

D(T) = -;f—'kdiff(r) 24)
14

where a is the hop length and y is the dimensionality of
the system (y = 2 for surface diffusion and y =3 for bulk
diffusion).

The approximation of treating the solid as rigid breaks
down when the solute molecules (or sorbates) cause relax-
ation or reconstruction of the solid or when sorbate vibrational
modes mix appreciably with the phonon modes of the solid. To
include the effects of relaxation of the solid on energetics of the
process, the single-hop diffusion can be treated as motion along
a one-dimensional reaction coordinate while allowing all other
coordinates in the system to relax adiabatically. The rate con-
Stant takes on the simple form of an attempt frequency obtained
from the one-dimensional model and a Boltzmann factor that
is a function of the energy difference between the saddle point
and reactants. This approach neglects important changes in fre-
quencies along the reaction coordinate. Vineyard?” proposed

that the attempt frequency be giving from a classical harmonic
TST prescription, that is, using an expression similar to equa-
tion (23) in which the partition functions include contributions
from phonon modes of the solid and are approximated by a
classical harmonic prescription.

To go beyond these simple approximations, the solid can
be treated as a cluster in which the atoms are allowed to
move. To avoid spurious edge effects in the finite-size cluster,
either the cluster can be embedded in a large rigid slab of
the solid (the embedded cluster model®!) or periodic boundary
conditions can be applied. The moving cluster is treated as
a polyatomic molecule in the field of the extended (rigid or
periodic) solid system. Once the reaction system is defined to
resemble a polyatomic system, VIST can be used similarly
to the way it is applied to gas-phase reactions, including the
incorporation of important quantum mechanical effects. In the
language of liquid-phase reaction rate theory, this approach
explicitly includes equilibrium and nonequilibrium effects of
the condensed phase for cluster sizes that are large enough to
converge the computed rate constant.

Approaches similar to those used for diffusion can also be
use to treat adsorption, desorption, and surface reactions. In
TST the adsorption process is treated as a bimolecular reaction
of a gas-phase molecule with a surface site, and desorption is
treated as a unimolecular dissociation:

é adsorption é

A+ é . A—-é
<+ |

? desorption ?

where A is the sorbate, and one or more S denotes the surface.
The areal rate’? of disappearance of A from the gas phase
(the number of A molecules per surface area per time) is
equal to the product of the adsorption rate constant ks, the
gas-phase concentration of A in molecules per volume, and
the concentration of surface sites in sites per area gives the
rate constant in units of volume per site per second. The
conventional TST rate constant takes the form:
—t o
B =2d_2d) { £ ]

@5)
oA @

kT

where @i(T) and 0" (T) are the partition function per unit area
for the transition state and for a surface site, and E* is the
barrier height for the adsorption process. Note that in Qt and

QS motion in the plane parallel to the surface is constrained
to be in the unit cell of a surface site and is normalized by the

surface area. Alternatively, 0° and 0" can be defined without
the normalization to the area of a surface site (for a rigid
surface 05 equals unity in this case), but the evaluation of the
transition state partition function is still accomplished within
the unit cell of a surface site.

Mechanisms of solid-phase reactions can be further com-
plicated by the need to include the relative population of the
sites. For example, rates of surface adsorption, desorption, and
diffusion are generally strong functions of the surface cover-
age (the number of adsorbates per site on the surface).>® Most
applications of TST to reactions in solid phases consider the
infinite dilution case in which the population of occupied sites
is infinitesimal. For nonzero populations of occupied sites, the
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rate constants for processes with unoccupied sites are then
assumed to be the same as in the infinite dilution case, and
rate constants for processes at occupied sites are assumed to
be zero. This approach neglects the effect that nearby sorbates
can have on reaction energetics and dynamics. TST can be
used to study the effects of nearby sorbates on the rates of
processes, but this increases the number of elementary steps
that need to be considered; once the kinetic parameters are
determined the overall rate can be evaluated using a master
equation approach.3

A special complication occurs for reactions involving bulk
metals, where the Born-Oppenheimer approximation breaks
down. Nevertheless, one can justify the use of an effective
potential function by taking account of the Pauli Exclusion
Principle.3®

4 CASE STUDIES

The reaction H + H'H” — HH’ + H” and isotopic analogs
such as D + H, — HD + D have played critical roles in the
development of the theory chemical kinetics. Recent advances
in quantum scattering theory have allowed one to test the
assumptions of TST in unprecedented ways, and again the
H + H, and D + H; reactions provide the prototype cases.

Equation (17) for the rate constant in a microcanonical
ensemble makes the startling prediction that the reaction rate
increases by discrete amounts as the energy of the system is
increased and the number of discrete levels of the quantized
transition state that are energetically accessible increases. If
this is true one should see steps in k(E) as a function of
total energy E. In quantum mechanics these steps are smeared
out.3® This smearing is an intrinsic feature of quantum mecha-
nics and is similar to the intrinsic delocalization of a quantum
mechanical harmonic oscillator as compared with a classical
harmonic oscillator at rest in its lowest energy state, and it
is also associated with an intrinsic width in coordinate space
for the wave packets of systems passing through the transition
state. (This width in turn accounts for tunneling, by which a
system is quantum mechanically delocalized from the reactant
side of a barrier to its product side.) The smearing in energy
(‘uncertainty’ in energy) of the quantized levels of the transi-
tion state may be estimated from the lifetime of these levels
(which is the amount of time added to a system’s transit time
from reactants to products because of the fact that it is slowed
down by converting its energy of motion along the reaction
coordinate into the quantized electronic-vibrational-rotational
energy requirement of the transition state level). Accurate
quantum dynamical calculations®’ on the H + H reaction have
now shown that the low-lying vibrational levels of the tran-
sition state have lifetimes on the order of 5-30 ps, resulting
in widths of 60-240 cm™', which are small enough compared
with the average vibrational spacings of ~800 cm™! for low-
lying levels that the levels are indeed resolvable. Experimental
work lags theory in resolving the transition state spectrum, but
efforts are under way to study the quantized transition state
effect in photodissociation reactions.

Accurate quantum mechanical calculations®® on the D + H,
reaction allow one to test the quantitative predictive ability of
variational transition state theory with multidimensional tun-
neling contributions. Such VTST calculations® agree with
accurate quantum dynamics with an average error of only

13% for all temperatures in the range 167 to 1500 K. Further-
more, because this is the reaction where the potential energy
surface?® is most quantitatively known, we can compare to
experiment as well, and the totally ab initio prediction based
on VTST with multidimensional semiclassical tunneling con-
tributions agrees with experiment with an average error of 20%
for 200-1500 K.

The gas-phase reaction F~(D,0) + CH3Cl — CI™ + CH3F
+ D, 0 provides another illuminating test case for TST. Why
is this reaction 54% faster than the corresponding reaction
involving H,O instead of D,0? TST can provide a quantita-
tive answer, and in the process it shows how using TST to
interpret experimental kinetic isotope effects can be a source
of great insight. It turns out that the effect is dominated by
the contribution to the free energy of activation from the O-D
and O-H stretches of the D,O and H;O in their hydrogen-
bonding modes.*! Hydrogen bonding lowers the frequency of
this mode from 3834 cm™! in H,O to 2261 cm™! in F(H,0)~
but to only 3124 cm™! in the transition state, where the hydro-
gen bond is weaker because of delocalization of 20% of the
charge from F~ to CH3Cl in the transition state. The need to
supply an extra 863 cm™! to this mode at the transition state
slows down the reaction. For the D>O case, the frequencies
are reduced by ~+/2 so one needs to supply only 618 cm™!
and the reaction is slowed down less by this mode. The kinetic
isotope effect provides a quantitative measure of the extent to
which the hydrogen bond is weakened at the transition state.
There is no other way to get this information, and no theory
other than TST to interpret it.

Finally, we consider a condensed phase example, namely
35C1 + CH3¥Cl —» CH3¥C1+%Cl™ in aqueous solution.
Why does this reaction have a 26 kcal mol~! activation energy
in solution, when in the gas-phase the barrier to interconver-
sion has a lower energy than reactants? The answer is that the
equilibrium free energy of solvation of the transition state is
33 kcal mol~! less negative than the free energy of solvation
of reactants.*?** Nonequilibrium effects are smaller but have
been variously estimated to lower the reaction rates a further
4-57% 4446

5 CONCLUDING REMARKS

TST has served as a useful general interpretative tool for
relating reaction rate constants to molecular structure and the
features of potential energy surfaces ever since it was placed in
its modern form by Eyring’ in 1935. Two modern extensions,
namely the variational optimization of the transition state and
the inclusion of multidimensional tunneling effects by semi-
classical approximations, allow the theory to provide highly
accurate gas-phase rate constants limited more by the uncer-
tainties in the potential energy surface than by the dynamical
assumptions underlying the extended TST calculation. Much
current research on gas-phase TST is concentrated on improv-
ing the reaction path calculation, including anharmonicity, and
making the interface with electronic structure theory more con-
venient and economical. The latter is particularly important for
allowing higher levels of electronic structure theory and hence
improving the predictive value of the theory.

Condensed-phase TST provides a model for quantitatively
estimating reaction rates in solution, but condensed-phase rate
processes require new considerations since one must introduce
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at the outset a statistical mechanical treatment of an essentially
infinite number of bath modes of the solvent for liquid-phase
reactions or of the phonons and other extended modes for
solid-state reactions or reactions at a fluid-solid interface.
Considerable current research is focused on the definition of
effective solvent coordinates and on determining to what extent
the bath modes may be considered equilibrated with the solute
or the part of the extended system where reaction actually
occurs. n

A recent overview of progress jg developing TST as a
quantitative tool for gas-phase bimolecular, gas-phase uni-
molecular, and condensed-phase reactions was presented in
the centennial issue of Journal of Physical Chemistry.*®

In addition to its use as a quantitative tool for actual
calculations, TST serves an important role in providing a
conceptual framework for qualitative discussions. Concepts
such as early and late transition states, separation of the
energy and entropy of activation, and predicting the effect
of substituents or solvent changes on organic reaction rates
by comparing their effect at the dynamical bottleneck to their
effect on reactants all owe their exceptional predictive power to
the existence and validity of an underlying quantitative theory
which provides their underpinning. Because of the exciting
new possibilities for evolving computational chemistry from an
exploratory tool to a quantitative predictive tool, we anticipate
that TST will play an even greater role in chemical kinetics in
the next 60 years than it did in its first 60.
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