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Chapter 1.

RMPROP-VERSION 2: A Computer Program for
Quantum Mechanical
Close Coupling Calculations for Inelastic Collisions

Michael J. Unekis,” David W. Schwenke,' Nancy Mullaney Harvey,"
and Donald G. Truhlar*

Department of Chemistry, Chemical Physics Program, and
Supercomputer Institute, University of Minnesota
Minneapolis, MN 55455-0431, US.A.

and
NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.

1. Introduction

The most popular approach to the quantum mechanical treatment of inelastic
collisions is the close coupling method, which converts the partial differential
Schrodinger equation with scattering boundary conditions into a set of coupled
ordinary differential equations with nonhomogeneous boundary conditions.!-3
These equations may be solved by boundary value methodsé or propagation
techniques3-5.7-14, and the techniques may also be subdivided into so-called
approximate solution approaches3-7 and invariant embedding (aiso called
approximate-potential)  approaches.8-14 The R matrix propagation
algorithm!1-14 is a stable and efficient invariant embedding algorithm for the
solution of the close coupling equations for molecular collisions, and the
present chapter provides an introduction to the computer program
RMPROP-VERSION 2 which employs this method for molecular collisions.

RMPROP is a program for the solution of the close coupling formulation of
the Schrodinger equation as applied to atomic and molecular collisions. It
obtains the solution by propagation of Wigner's derivative matrix. called the R
matrix, from small to large values of the scattering radial coordinate. It
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2 Methods and Techniques in Computational Chemistry: METECC

requires information about the asymptotic states of the collision partners and
their interaction potential function, and it yields the scattering (S) matrix or
elements of this matrix. The elements of the scattering matrix are the state-to-
state or channel-to-channel scattering amplitudes from which all physical
observables of a fixed-energy collision process may be calculated by the
researcher. In the current version of the program, calculations may be per-
formed for multiple energies, multiple potential function approximations, or
multiple stepsizes in a single run, or information may be saved and re-used to
perform calculations at one or more additional energies at a later date. Addi-
tionally, if desired, the program may be stopped and continued at a later date
to propagate the solution to a larger value of the scattering radial coordinate.

The user must supply a subprogram that gives matrix elements of the inter-
action potential in the basis of the close coupling problem as a function of the
center-of-mass separation r of the collision partners. The basis functions are
labelled by a full set of quantum numbers of the asymptotically separated colli-
sion partners, and each basis function defines a “channel”. The program is dis-
tributed with a test suite which contains several examples of such potential
subprograms and solutions of the resulting close coupling equations with
various numbers of channels. The potential functions in the test suite may
readily be modified to perform calculations with other potential energy func-
tions for a wide variety of problems. In the examples in the test suite the
close coupling basis consists of simultaneous eigenfunctions of the total
angular momentum J, the orbital angular momentum of relative translational
.motion ¢, and the noninteracting Hamiltonians of the separated collision part-
ners. In the Appendix to this chapter we present expressions for matrix ele-
ments of the potential between these basis functions for atom-rigid diatom
collisions and for vibrating, rotating diatom-diatom collisions, for cases where
the interaction potential is expressed in terms of common angular functions.

Some limitations on the program are that rearrangement collisions cannot be
treated, and at least one of the collision partners must be neutral. (Both of
these limitations are due to the type of boundary conditions that are imposed
on the solutions at large values of the propagation coordinate r.) However, the
current version of RMPROP (Version 2.0) has been modified from the first
distributed version (RMPROP Version 1.0 in MOTECC-91) so that it can now
handle systems without strong repulsions between the collision partners at zero
separation (such as electron-atom and electron-molecule systems) in which
some or all of the individual channel orbital angular momentum quantum
numbers are zero. (Adding this capability involved generalizing the type of
boundary condition that can be enforced at small values of the propagation
coordinate).
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The program solves the close coupling equations by R matrix propagation.!®-'+
which means that the scattering radial coordinate r. which equals the aistance
between the centers of mass of the collision partners, is divided into sectors,
the R matrix is propagated locally across each sector, by assuming the poten-
tial is locally constant, and the local R matrices are combined into a global R
matrix. which is propagated towards large r. This algorithm has two major
advantages: (i) it is very stable, and (ii) the stepsize, i.e., the sector width, may
be increased in regions where the interaction potential is relatively constant. so
that very few steps are required in the large-r region. The major computational
steps are as follows. In each sector the close coupling equations in terms of the
interaction potential between the collision partners are transformed to a local.
sector-dependent basis by diagonalizing the interaction potential matrix at the
center of the sector. The transformed equations are solved under the assump-
tion that the potential function does not vary across the sector. These solutions
10 the transformed equations and the derivatives of these solutions with respect
to the center-of-mass separation (or information equivalent to the solutions and
their derivatives) are matched to the next sector at the boundary so that a
sector R matrix propagating the solution through a sector and across one of its
boundaries is defined. When the sector R matrices are combined, a global R
matrix, which propagates the solutions from the strong-interaction region at
small r to the asymptotic region at large r, is obtained. The solutions in the
asymptotic region are matched to scattering boundary conditions from which
an S matrix is calculated. The user should repeat the calculation to converge it
with respect to increasing the size of the close coupling basis, decreasing the
sector widths, and increasing the range of r over which the propagation is
carried out, as well as with respect to any numerical parameters associated
with the interaction potential function.

Much of the operation of the program and practical instructions for its use are
given in an ASCII documentation file which is distributed with the code. This
file is called the “on-line manual”. The on-line manual also describes a test
suite which may be used to check whether the program is performing correctly
in a new environment or on a new machine. Input files for the test suite are
distributed as part of the code. The purpose of the present article is to summa-
rize the theoretical and algorithmic background of the code.
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2. Close Coupling Theory

This section provides an overview of the dynamical theory underlying the
computational procedures. As described in the introduction, RMPROP may be
used to calculate scattering matrix elements or state-to-state transition probabil-
ities for atom-molecule, molecule-molecule, ion-atom, ion-molecule, electron-
atom, or electron-molecule collisions. The current version of the code has no
limitations on the orbital angular momentum; it may be zero or nonzero in any
channel for any of these types of collisions. The treatment of the problem
involves the reduction of the time-independent Schrédinger equation for the
system to a set of coupled ordinary differential equations, the close coupling or
coupled channels equations, and the subsequent solution of these equations.

2.1. Coupled channels equations

In the treatment which follows, we consider the electronically elastic collision
of two vibrating, rotating molecules A and B, since this is a general example
in which both collision partners have internal structure. The close coupling
equations for other collision problems also lead to Eqgs. (10) and (12) below
and may also be treated by RMPROP. The program is in Hartree atomic units,
although the equations in this chapter are valid in any (consistent) set of unit.

All physical information concemed with a collision of molecule A and mole-
cule B may be derived from the scattering wave function W, (r, x, E) which is
a solution of the Schridinger equation

HY, (rxE) = EY¥, (rx,E) (1)

where the vector r connects the center of mass of A and the center of mass of
B, x represents all internal coordinates of the collision partners, E is the total
energy, n, denotes the collection of quantum numbers needed to uniquely iden-
tify an initial channel, and H is the system Hamiltonian:

H= ;2":— V2 + Hy(x) + V(x, 1) )]

where 1 is the reduced mass of relative translational motion, V? is the
Laplacian with respect to r, H,, is the “internal Hamiltonian”, defined as the
sum of the Hamiltonians of the isolated A and B molecules, and V(x, r) is the
interaction potential function which vanishes in the large-r limit. It is conven-
ient to separate V2 into its radial and angular parts and to partition H,, into an
“easily” diagonalized part H, (which may be just H,) and the remainder
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AH... We then combine the angular portion of —’——'fz—VE with He to form the
primitive Hamiltonian, A", so that Eq. (2) becomes™

H=_'_'-2";:- {_r'z_ —;’r— r —837)}+H°(x,r)+1)(x.r) (3)
where
,f -
H® = " + H,y(x) 4)
Vx, r) = V(x, r) + AH,(x) (5)
and where % is the quantum mechanical operator for the centrifugal poten-

tial of the re%zve translational motion of A with respect to B.

To determine ¥, we expand it in terms of simultaneous matrix eigenvectors
of H. and ¢? defined by

[ ] antin, atn. ) = By ©)
X (x, F) = B0, + DX, D), ™

and
j a?j XX (%, X, B) = © (8)

where 8. is the Kronecker delta, and Eq. (8) is an orthonormality condition. In
these equations, F is the unit vector which has the same direction as r. and n
and m are collective quantum numbers. Each different set of such quantum
numbers is a possible initial or final quantum state for the collision and is
called a channel. In terms of the above close coupling basis, the wave func-
tion expansion is

N
¥ kB =t 3 XX P, B) 9)

n=1
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where each term in this expansion is associated with a different channel. Sub-
stituting Eq. (9) into Eq. (1), multiplying through from the left by rX*(x, 1),
and integrating over x and r yields

32 d2 hz - N
—h" -5 H ol + 1) >+ e,,,} Son T E) + ,; Vounl Yo (1 E) (10

2u 2ur
' = Ef (r, ) m=1,2,..N

where
V()= I & j X, O, DX, B) . (11)

In practice, the V(x, r) is often expanded in terms of a set of known angular
functions in order to facilitate the evaluation of Eq. (11). The integration over
the angles in Eq. (11) may, if desired, then be evaluated analytically and the
integration over the other variables by numerical quadrature. In the appendix
we present formal expressions for the matrix elements V,.(r) given an expan-
sion of the potential in Legendre functions (for atom-diatom systems) and in
Launay body-frame functions (for diatom-diatom systems). These are two
examples, and subroutines to evaluate the Vam(r) for potentials in these forms
are included in the test suite, but we emphasize that RMPROP may be applied
to any problem for which V,.(r) is available and for which at least one of the
two collision partners is neutral. Equations (10) are called the close coupling
equations (or the coupled channels equations), and they may be written in the
form

2
=<5 1. 5= D B ) (12)
,

where a bold symbol denotes a matrix (except for x, which denotes a set of
coordinates, and F, which denotes a unit vector). The elements of f are the f,,
of Eq. (9), where the rows of f refer to different channels in which the radial
translational wave function is represented, and the columns of f refer to dif-
ferent sets of initial quantum numbers. The size of N, the number of terms in
Eq. (9), is found by allowing one term for each channel of interest, and
including sufficient additional terms so that the expansion (9) will be an accu-
rate representation of the wave function. For example, for diatom-diatom colli-
sions the quantum numbers included in n or n, are v, and vz, which are the
vibrational quantum numbers of the two molecules, Jv and j,, which are the
internal rotational quantum numbers of the two molecules, Juz, which is the
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quantum number associated with the vector sum of the angular momenta asso-
ciated with j, and j», ¢ (which may be different for different n and is therefore
called ¢, above), which is the orbital angular momentum for relative motion of
the collision partners, J and M, which are the total angular momentum and its
projection onto a laboratory-fixed Z-axis, parity, {, which is (- I)*<#*¢, and 1.
which is the symmetry operator for interchange of the two indistinguishable
molecules. The quantum number N is relevant only if the colliding molecules
are identical.!5 It is also important that due to the triangle inequality which
governs coupling of the internal angular momentum vectors (here ji;) and ¢ to
obtain J, more than one channel may contribute to the cross section for transi-
tions involving a particular quantum mechanical state of the asymptotically
separated subsystems (section 3.7).

The quantum numbers J, M, 7, and { are “‘good” quantum numbers, so that the
matrix D is block diagonal in them; furthermore, D is independent of M. If we
use simultaneous eigenfunctions of their respective operators as our
eigenfunctions, we partially uncouple the close coupling equations into inde-
pendent sub-blocks, and this can reduce the computational effort for solution.
In particular, we show below (section 4.1) that some portions of this algorithm
contain operations which scale asymptorically proportionately to N3 where N
is the size of the close coupling expansion. Therefore, in the limit of large
problems when the asymptotic scaling is applicable, a reduction in N by a
factor of two by the uncoupling results in a factor of eight savings in the time
required by some portions of the program in each run. (If both decoupled
problems are solved the net savings is a factor of 4). In the applications
included in the test suite we do in fact use simultaneous eigenfunctions of the
above operators, and furthermore we only consider the blocks specified by
n={=+1 (the program does not have this restriction), while allowing J to
vary according to the problem and doing only one value of M.

The elements of D are given by

Dpor. E) = i—‘z‘ VyulP) + 5,,,,,[ ﬁ(—ll,ﬂ - k}] (13)
r

where

K= i" (E-E,) (14)

-
-

where D is real and symmetric, _and_l;,. is called the primitive wave number.
The channels are ordered so that k2 2 &2 if and only if n2m.
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2.2. Asymptotic boundary conditions

In order to treat the large-r boundary conditions on Eq. (12) we must define a
transformation which diagonalizes D at large r. (This is similar to the
diagonalization at finite r used in the R matrix propagation technique, which
we discuss further in section 3.1.) At any r we may define functions

N
Z (%, )= Y UpnXy(x, 1) (15)

n=1

such that

N
> UnIDfr, EVUp(r) = S pia[ Al EIJP. (16)
=

ki=1
It is noteworthy that in Eq. (13), the total energy E appears only on the diag-
onal of D, due to the Kronecker delta multiplying the term k2 which contains
E. Because the E appears only on the diagonal of D, the eigenvalues A2,
depend on E, but the eigenvectors (which are the columns of U) do not. (This
property is used when performing calculations at multiple energies so that
second and subsequent energies do not require as much work.) If we use the
Z, as new basis functions (which are called adiabatic basis functions,11.16,17 or
sometimes “sector adiabatic” or “quasidiabatic”) the expansion of the wave
function becomes

N
Yo B} = Y Zy(X, g, B) (17)
m=1

where the g.. are related to the f.. by the application of the unitary transfor-
mation U of Eq. (15). The terms in Eq. (17), like the ones in Eq. (9), are
called channels.

We now consider small-r and large-r boundary conditions on the coupled
equations. At small r, the program has an option (section 3.5) to choose either
homogeneous or inhomogeneous boundary conditions; the homogeneous option
requires regular boundary conditions at the origin:

&m ~ O, 1<n,ms<N (18)

r—=0
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and the inhomogeneous option allows nonvanishing g at the origin. At large r,
there is more than one equivalent form of the boundary-conditions to the close
coupling equations. The program allows the choice of sine/cosine boundary
conditions:

'
S,msin[ ke (EY r— 3 }+a,,,,,(E)cos [tk,"(E} r- (','l‘u],
gmnr_:,, lsmspl» (19)
Spunl €XP [ k(EX 7] + Gpp(E) €Xp [~ |kp(EX 1], P°+1SmSN

or of matching to Ricatti-Bessel functions:

o
&

(20)

i {ﬁmj,_[ik,(sn F1 = Gy EM [ |kl EN 7] l<ms P
"=\ 8,b exp [ ky(EN 11+ Gl exp [~ k(BN 1] P+1<m<N

where j,. and n,, are the Ricatti-Bessel functions:

i =( % )% Jp e 20

1
(i ’x 2
n = (-0 (5 ),
In Eq. (19), the coefficient b is arbitrary, k is an asymptotic wave number
defined by

|yt =lim | Ayplr, EY (22)

because k, is imaginary if AL, is negative, and where P° is defined as the
number of open channels in the basis, where an open channel is defined as one
with positive k2. Channels which are not “open” are said to be “closed”. If Hy,
is the same as H., than k, equals |k | and the boundary conditions (19) and
(20) apply to the f.. as well as to the g,...

The final result of the calculation is the P°x P unitary scattering matrix S
defined by

S=(1+iK@E] 1 -iKEI' (23a)

or the transition matrix defined by
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T=S-1 . (23b)

where 1 is the unit matrix, i2=-1, and K is the P" x P reactance matrix with
elements

K, =k'a k| 1<n,msP’ . (24)

Note that a., may be calculated using either (19) or (20), but if the calculation
is converged the results will be the same from either equation.

One may then calculate all desired physical observables from the scattering
matrix or transition matrix by standard formulas.!8.19

3. R Matrix Propagation Algorithm

The R matrix propagation algorithm was presented originally by Light and
Walkerl!! for collinear atom-diatom collisions, and it has been generalized by
various workers, including those authors. Our own generalization,!2-14.16,
172021 as used in RMPROP, is based directly on their original paper and is
reviewed below.

3.1. Sector adiabatic basis functions

In R matrix propagation the close coupling equations expressed as in Eq. (12)
are solved by subdividing the coordinate r into some number N; of sectors,
with sector midpoints 7 and sector widths 4% such that

, R R
P00, (" "+ 87

3 25)

In sector i, it is convenient to expand the wave function ¥, in terms of sector-
dependent functions defined by

N
Zx.0H=Y TOx.x.1) , ~ 1smspPY . (26)

n=1l

The N x PO rectangular matrix T is comprised of the first P columns of the
N x N matrix U®, where U® diagonalizes D at the center of sector i,
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Y UaDudr®. VU = 8, A6 (27
k.k'=1

and where the eigenvalues are ordered in ascending order.

The wave function P, is expressed in terms of the new functions Z¥ by

(l)
¥, x, 1, E) =+ Z Z,(x. DY, ), (28)
m=1i

where the g@ solve the equation (see also section 3.2 below)

)
-
2

=

9, E) =LY%, Eg™r. Ey (29)
where

L,(.'z,(r. E)= Tﬁ?,Dky(r. E)Tﬁ'),, ., 1sn,m<p? (30)

M=

k. k=1

so that the channels of Eq. (28) are uncoupled at the center of sector i. The
new radial functions g* are related to the functions f by

(”(rz) 2 0 e (rE) 1Sm,nsP? 31)

k=1

3.2. Sector propagation matrix

We consider first the homogenco small-r boundary conditions, Eq. (18). In
principle we should have 7" — —— equal to zero. However when both collision
partners are atoms, molecules, or ions or for electron scattering when none of
the ¢, in eq. (13) is zero, one finds that

v+t ) SoE.  all noandre<<o . 32)

Zprz

where G is some (small) distance at which the collision partners begin to repel
strongly or have a high centrifugal potential. This implies that for decreasing r,
all fyu{r), and therefore all ga.(r), decrease rapidly and are negligible for r less
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than some finite nonzero value of r. When this is true we choose such a
nonzero value of r to be 7 and therefore avoid the work involved in propa-
gating the solution to the equations over a region in which it is already known
to be essentially zero. Equally important if the homogeneous boundary condi-
tion at small r is satisfied, it allows us to simplify the propagation, as dis-
cussed below Eq. (61).

When restriction (32) is not applicable, as in electron-atom scattering where
the orbital angular momentum ¢, of the electron is zero, we start the inte-
gration at (or essentially at) the origin and we use inhomogeneous boundary
conditions. (The inhomogeneous propagation mode may also be useful for
certain ways of running the code in multiprocessor mode. Although we do not
pursue this parallelization strategy in the present article, the inclusion of the
inhomogeneous option makes version 2.0 of RMPROP “parallel ready”.) It
should be noted that the inhomogeneous option of the program will also give
correct results for systems for which the homogeneous option is suitable for
use, but it will carry out unnecessary work in such cases.

We begin the propagation with N channels, that is, with P = N. At large r,
because of Eq. (19), f,, for m> p- decays rapidly to zero. We can reduce the
computational expense of solution by allowing P9 to decrease in this region
according to some given criterion.2! In order to simplify the algorithm, we also
decrease the number of channels by no more than one per sector, that is P+
must equal PY or PO — |, We also impose the constraint P 2 P for all (i). We
define the 2P x 2P® sector propagator P9 by

G (E) = PEGEE), (33)

where the 2P® x 2P matrix G is given by

()
G(I) = g (r' E) 34
(E) (gl(i)(r' E) ( )

O]
where g"%r.E) denotes -di, and the subscripts L and R denote a quantity

evaluated at the left and ng’ht hand sides of a sector, respectively:

P=p_t | (35)
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. . ()]
P=p K 5 | (36)

We partition the P9(E) of Eq. (33) so that

pi pld
Depy = %2 7

and so that the matrices PYE) are all square.

We use the first-order Magnus method!!1.22-24 for PHE). The g are the 2PV
linearly independent solution vectors to equation (29). Since each column g

of G is linearly independent, we can write a propagation equation similar to
(33) for each of the g®, using the partitioned P%E) of equation (37):

)" e 0] ot
Following the work of Pechukas and Light,22 we use exponential operators to
translate the g*(r) and g"¥(r) across a sector of width A? centered at r = rv», i.e.

hm

@)
PE) = exp [ B ('1(-0 -5 9 +£2— )] (39)

for which, to third order in the stepsize, B is given by

0 1 (3 ARy TR 0
= — . - (r2.E) )
(L"’(rf". E) o) 12 ( 0 -LY0E) ) a0

+ Order{(h")’]

where
hO =l - ) @1

and where

B |
L0, )= L | 42)

Y=g
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with the L© defined by Eq. (30). In the first Magnus approximation, the
second and higher terms in (40) are neglected. This is tantamount to setting the
derivative in (42) equal to zero so that the matrix L® is approximated by the
diagonal matrix [A®E)]’ throughout sector (i). Therefore the first Magnus
propagator would be the exact propagator when the interaction matrix is inde-
pendent of r in sector (i), and for this reason it converges to the exact result as
the sector width is decreased. Substituting Eq. (30) into Eqgs. (39) and (40) and
using Eq. (37), one obtains for the P®(E) using the first Magnus approxi-

mation:

Sumcosh [ -4 2%E) ]. AZiE)>0

PPE)]m= [POE)]um = o . (43)
[PHE)] [Peo)] 8,um COS [—h(‘)] MEY ] kf,',’,z(E) <0
sy J e e ] e
P B | M(E) "' sin [ - 1% A% ey ] A5y <0
AT &P, AE) >0
[PYE)]m = mz( :) ; - (45)
- A'rm(E)'(P(Z )nm s KM(E)<O

3.3. Stepsize determination

Examination of Eq. (40) reveals that the error of the first Magnus propagator is
propory'ﬂaal to the size of the (neglected) second term in the series, which is
(h0)? , 80 it is desirable to choose the stepsize to minimize the error. In
order t§'do this one should choose A% so that the effect of the second- and
higher-order terms is negligible. However, it is required to know A% before one
may calculate L¥ for the sector with r=r®, so that strictly speaking, second-
order terms in a sector cannot be calculated before completing that sector. It is
therefore necessary to estimate an error in order to decide on a stepsize. The
estimated error in sector (i + 1) is given by .

) N dDw 2
@+ | fi]
error «< h [—N jgl ( p ) :l . (46)

Since one has not yet evaluated D+ when computing the stepsize at sector
(i+1), one must estimate the numerical derivative using DY and D¢-Y, This

NSRRI A SR 5 gy
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wranslates into the following algorithm. First, a trial width is determined
according to

L
(o000 Y]
RUriah — min € &\ a5 47a)
Pax

where € and h. are input parameters to the program, and where Aq., may vary
in different regions of the propagation according to other input to FORTRAN
unit 5. Then the stepsize in sector (i-1) is given as

G+0_ i
At -max{h(m.:,, @76)

where hw., is another input parameter to the program and may be allowed to
differ in the same regions of the propagation as Au.

Another approach may be used, and that is to use a constant stepsize
throughout the propagation. This technique, however, negates one of the most
useful features of the R matrix propagation algorithm, which is the ability to
take large stepsizes in regions where the interaction potential is not sensitive to
the center-of-mass separation of the collision parmers, and which allows one to
greatly reduce the number of steps taken in the asymptotic region of a calcu-
lation. In addition, care must be exercised that final results are converged with
mpecttotheﬁxedstepsize.sotlmdxetotaltimenecessarytoobtaincon—
verged results with a fixed stepsize as compared to using variable stepsizes is
much greater than just the ratio of the variable and fixed stepsizes themselves.

The program also allows using fixed stepsizes and using one value of € in one
interval and another value of € in a different interval. (See the on-line
manual.) For many problems, a fixed stepsize at small r followed by one or
two regions with €-controlled stepsizes at larger r is the most smoothly conver-
gent and efficient procedure. -
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3.4. Propagation across sector boundaries

The continuity of the functions g® of Eq. (29) across sector boundaries may
be expressed by

g8 "\ =T - 1, )gPE) (48)
gh B =TG- 1, pg?E) (49)

where the overlap matrix T(i - 1, i) is defined by

N )
Tmli=1,0=3 To TR 1sn,msp? (50)
k=1

Therefore, when Pi-" does not equal P9 only the upper left P x P® portion of
g~ " is used to calculate gf*. We now define the sector R matrix r* by

g "®)_['® B\ (¢ e
0 0 ® ) , (51)
gk (E) r3'E) B ) \ -gdE
() ()
r(i)(Ev)= . rls(E) r2 (E) , (52)
e Q&

where the rf matrices are P x P9, The rf? are expressed in terms of the PWE)
and the T(i - 1, i) as follows:

rP(E) = TG - 1, DPP(E) [POE)]'[T6 - 1, 7! (53)
rPE) =TG- 1,9 [PIE] (54)
&) = [PYE] TG -1, 0] (55)
(6 = [PB] P T

It should be noted that PY is diagonal so that its inversion is not time-
consuming.
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The giobal R matrix RE) which spans from the lefi-hand side of .the first
sector to the right-hand side of sector (1) is defined by

o) (R o) (e on
w®) \RE R6) \-¢dm |

where the R{" matrices are all square.

The equations for R, R%, and R are

RYE) =R "@ -R{BESG- 1,1, ORI E (58a)
RE) =R~ ESG - 1, i, ErE) (58)
RE) = r)EXSG - 1, i, ERY ™ (E) (58¢)
where
S(i-1,i,B)=[RE"E+ " (58)

The matrix R only depends on R{-" and the r», and not on the
R¢-9, R§-Y, or R§-:

R{E) = £(B) - 9B [RS V6 + 0B 'rPiE) (58e)

The values of the four submatrices of R¥(E) in sector (1) are given by

R"® =P er e (59a)
RV =R'B) =P’ (59b)
RY® =B (59¢)

The program however has an option to calculate the R treating the rf’ implic-
itly instead of explicitly. This option is chosen by setting the value of the input
variable NPROP equal to 2. When this option is chosen, the program does not
explicitly store the sector r matrices r{’, r®, r{, or r§ at each step and perform
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the operations of Eq. (58e) on them to obtain the R{. Instead, the prograrp
uses temporary arrays, which contain intermediate values used in the determi-
nation of the r¥ to solve Eq. (58e) at each sector. The use of the temporary
arrays means that one less matrix inversion, and several fewer matrix-vector
multiplications are performed at each step, and that for “later date second
energy runs” (Section 3.8) the [T(i - 1, 1)]-' need not be written to disk, since
it is never computed, which will decrease storage requirements. However, in
version 2.0 of RMPROP this option may only be used in conjunction with the
homogeneous option (Section 3.5), where only the RY submatrix of the full
matrix R%(E) s is propagated at each step.

3.5. Homogeneous and inhomogeneous options

The homogeneous and inhomogeneous options in the program refer to the
selection of the small-r boundary conditions. To use inhomogeneous boundary
conditions the logical variable, called LR4MT, is set false (see the on-line
manual). When this variable is true the program propagates just the submatrix
RP, and when it is false, the program propagates all four submatrices,
Rf’, R?, R, and RY of the global R™(E) matrix. The choice of this option is
determined by the physical conditions of the scattering problem, as described
below.

Consider the situation where all channels are strongly closed at the starting

point of the propagation, that is, AW > > ZP;E for all n. In this case, Eqs.
(43) and (45) show that both [P{XE)].. anthPS"(E)]m. become exponentially
large:

(PN = exp [ ADEN 4], (60)
AHE) oo
P B = = INEN exp [ IADEN 4] . (61)
K,,:,(E)aeo

Combining Eqs. (60) and (61) with Eq. (59b) shows that RY" and RY are
approximately zero under these conditions. If R¥ and R{’ are negligible, then
Egs. (58) show that R9 and RY remain small throughout the entire propa-
gation. It will be seen from Eq. (87b) below that when R{® and RY are negli-
gible, all scattering information (d. | Sm, n<P") can be determined solely
from R{" and thus only this submatrix needs to be included in the propagation.
Solution of the equations under this assumption is called the homogeneous
option. The inhomogeneous option, as its name implies, involves solution of
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the equations subject to inhomogeneous small-r boundary conditions and sub-
sequent propagation of the full R®E) matrix.

The homogeneous option is applicable to atom-atom, atom- molecule,
molecule-molecule, ion-atom, and ion-molecule scattering, i.e., for systems in
which the interaction potential is steeply repulsive at the origin, since Egs.
(60)-(61) may be easily satisfied if the propagation is begun sufficiently far
enough inside the repulsive potential. The inhomogeneous option must be used
for electron scattering problems in which one or more of the channels had a
zero value of ¢, because for such systems the potential tends to negative

2UE
K

infinity for small r, and so the requirement that [AY}* > > is not fulfilled.
The inhomogeneous option is formally applicable to heavy-particle systems as
well, and will give the same scattering matrix as the homogeneous option, but
use of this option for these systems is computationally inefficient. The use of
the inhomogeneous option requires that the full R(E) matrix be propagated
rather than the RY, which increases the memory required by the program. Fur-
thermore, matrix manipulations involving the RP, R?, and RY are required,
which slows execution of the program.

The program contains several other options and approximations (see the dis-
cussions after equations (59a)-(59¢c) and in Section 3.6) which decrease the
memory and CPU requirements even further, but which may only be used with
the homogeneous option.

3.6. Reduction of the number of closed channels propagated in the
large-r region

As explained in the derivation of the close coupling equations, the expansion
of the wave function often includes a number of terms which are energetically
inaccessible to the system, over some or all of the r range. These are needed
for convergence at small r, but when closed at large separations, they do little
more than slow down the computation. In this section we comsider the condi-
tions under which the number of channels propagated can be reduced from P
to P°, where P° is the number of open channels in the asymptotically large-r
region, without introducing errors in the reactance matrix K or scattering
matrix S. In practice we only drop one channel per sector, and we only attempt
to drop channels in the large-r region. We consider the case where only R((E)
is propagated, and we allow dropping channels only with the constraint that
PO(E) > P~(E). Before proceeding, it will be convenient to introduce the fol-
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lowing convention for partitioning a P x P matrix into quadrants according to
whether open and/or closed channels are linked there:

Y= (Y gcc) (62)

where the superscript 0o identifies the P°Xx P° submatrix containing Y,, for
1<m<P" and 1 Sn<P ie., the matrix elements linking open channels to
open channels, the superscript oc identifies the P°x (P — P°) submatrix con-
taining Y,, for | Sm<P°and P°<n<P, i.e., the matrix elements linking open
channels to closed channels, the superscript co identifies the (P — P") x P> sub-
matrix containing the Y,, for P°<m<P and 1 Sn< P, and the superscript cc
identifies the (P — P°) X (P — P°) submatrix containing Y,, for P<m <P and
P°<n<P, ie., the matrix elements linking closed channels to closed channels.
To justify dropping the P —P° closed channels from propagation in sector
(1 = 1), we must show that to accurately obtain R¢*(E) from Ry§- e(E) does not
require any information involving the P — P~ closed channels. (We only require
the oo submatrix of R{(E) because the submatrices involving closed channels
are not required in the asymptotic analysis to obtain the reactance matrix,
when the reactance matrix is derived from R{(E) and not from the full RYE)).
Using equation (58) and the notation for partitioned matrices, R{*(E) can be
written as

RY7E) = r{(E) - ¢ )™(E)[S™ (i - 1, i, EW°(E) + §%(i - 1., Exd®)]

_ . 63
- r(}")()('(E)[S('O(i - l. i. E)r(zl)oo(E) + S“(l - ]' i, E)r(zlko(E)] '( )

In our calculations both T(i -1, i) and T-'(i - 1, ) tend to a unit matrix in the
large-r limit, (provided that H = H.,), so equation (53) reduces to

lim =B [PB] " (64)

L

Le., it tends to a diagonal matrix. Additionally, it can be shown!3 that R{(E)
tends to a block-diagonal matrix in the large-r limit. Therefore, for large r,

lim  SG-1,0% = [R~"E) + g (65)
Iy —»eo

(!)im S(i-1,)*=0", (66)
Iy’ =doo
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('l)im S(l - |. l')w = 0(" N . (67)
o —~pon
lim 8(i-1,0%= [RE @+ ®] " . (68)
rg =¥

Substituting these into (63) yields

lim  R{7E) =B - B - 1, Ex{™ ()
r’ —pee (69)
- MBS (i - 1, i, ES(E)

Since, at asymptotically large r, T(i — 1, /) approaches a unit matrix, Eqgs. (54)
and (55) show that

tim &) =rE) . (70)
rf =0
Therefore, if
(l)im rE) =07 , ()
e

then Eq. (69) shows that the calculation of R$~(E) is independent of informa-
tion about the P — P closed channels. As a result, if all of the elements of
r{(E) which involve a particular closed channel are sufficiently small, that
channel can be dropped from propagation and the R§*"(E), and therefore the
reactance matrix will still be accurately calculated.

The way the program implements the consequences of the above argument is
as follows. If r is less than some input value read in by the program, or if P
has already been reduced to Pe, P¥+V is set to P Otherwise the program
checks to see whether |(r®).| SEPSRED and |(r#)m| < EPSRED,
where EPSRED is a variable set by the user (a typical value would be 1.0 x
10-3). If both inequalities are satisfied, then P¥*" is set to P¥ - ; otherwise,
PU+i = pi,

It should however be stressed that the current version of the program will seek
todropchatmlsﬁomd\epropagaﬁonasdescﬁbedaboveonlyinﬂ:ecasedm
just RP(E) is propagated, i.e., only for the homogeneous option. In the case :
that the full matrix R%(E) is propagated, the inhomogencous option, then the
number of channels propagated will remain the same in all sectors. However, |
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any channels which are strongly closed asymptotically should be neglected
when performing the asymptotic analysis in order to extract the reactance
matrix. As will be discussed in more detail below, the program will check for
strongly closed channels before performing the asymptotic analysis and neglect
them, regardless of whether the full R¥(E) matrix or just the R{(E) submatrix
is propagated, and regardless of the number of channels P? propagated within
any given sector i.

3.7. Asymptotic analysis and reordering of channels

Before applying the boundary conditions of Egs. (19) or (20) to g it is some-
times convenient to reorder the channels in g, and sometimes it becomes nec-
essary to make linear combinations of the channels in g”. It is convenient to
reorder the channels if V,.(r) falls off faster than 2% This occurs because for
large r it is approximately true that

(¢, + 1)

r

Dm(r,5>=8m,.[ w:)] @2

and, depending on r and r’, it may be possible that D,.(r, E) > Dm(r, E) and
D,.(r', E) < D,.(r’, E). Since the subprogram which calculates T(i) and [A®)?
orders the eigenvalues from lowest to highest, the relative positions of chan-
nels n and m may change in g when going from r to r'.

It is necessary to make new linear combinations of the channels if there exist
degenerate channels, i.e., channels with [A2]2=[A%,]* and n # m. This is
because the matrix diagonalization routine will mix those states. Degenerate

channels can occur in the calculations at very large r where the term ——— e+

is negligible since there may be channels with the same k, but different %u%s
of 7,. (Additional accidental degeneracies would occur if one used the har-
monic oscillator and rigid-rotor approximations to calculate asymptotic ener-
gies, but the use of these is not recommended.) In order to sort out these
effects, we make the transformation to new radial functions h® defined by

go(r. E)= Zz Unhr.E), 1sm<P?, 1<nsP?  (13)
(=lk=

where U diagonalizes H.. in the X, basis, and has the channels in some fixed
order that does not mix degenerate channels. This equation can be written in
matrix notation as
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&% B)= [T'TUn%. ) .
We then define a new global R matrix satisfying
h(n RV RY h,(n
h(ﬂ R(l) R(‘) h'(i)

where

RO = (Tmrua)- ‘R‘,"[T“’]Tu" ’
RY = (T9'0°)"'RO[TO)Y°
RY = (190") '"RO[19)0°

R = (T9v) RO v .

The matrix a whose elements appear in Eq. (19) is determined by

a(E) = lim e

where

2@ = [-FE + MO EEYE)] ' [B9E) + MAEGB)]A .

o [ I - 22
FurlE) =8 € 1, [ ol 7] .
exp [ - [kulBX 7f] .

PP<mspP?

(74)

(75)

(76)

)

(78)

9

(80)

@1

(82)
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sin [Ik,,,(E)I rd - {—;F—} , l<sm<pP®,
(‘) (E) 8,,,,, [ 'km(EN (l)] , 1<m<P° , (83)
exp | lnE) Ir] PP<msp? |
sin [lk,,,(E)f rd - _l%n_] , 1<msP°
HOE) = |k, |8, n, [ k. (EY (i)] 1<ms<p°, (84
exp [ = kBN 1] P°<ms<PY

s [lkm(E)l h0_ fﬂ]  1sm<p®

. 2
G = nlEN 8 & 1 e (Y A0 l<ms<p® (85
exp [ InlEX 1] | P <msP®
1, 1<Sms<P°
Amn"' nm{b , Pgsmsp([) , (860)
M(i)(E) = R(:)(E) + R(')(E)X(I)(E)[l Rm(E)X(I)(E)] IR(‘) (86b)

and

M len(ri" EY s [ |knri?, BN riPV sin [ |kp(rf®, EY i, mo, 3
malE) = {Ik,,,( “),E)l , mclased’t.§ )

If only R{(E) is propagated, then M(E) = R{(E).

The program will drop strongly closed channels from the asymptotic analysis
according to the following prescription. We first discuss the homogeneous
case, where only R{(E) is propagated, and then the mhomogeneous case,
where the full R¥E) is propagated.

For the homogeneous case, the program considers the off-diagonal matrix ele-
ments of the RI(E). If it is true that for a given m> P°, (R{)p = (R)n. = O for
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all n <P, channel m is not required in the calculation of ad, t<sn, mgPpe
This program determines the smallest n 2 P, called P9, such that [(RO) | <
EPSDR and |(R{)..| < EPSDR for all n<P°, where EPSDR is some small
number (a typical value is 1.0 x 10-%), and then uses the upper left P9 x pw
subblock of R{(E) to caiculate a by Eq. (81).

For the inhomogeneous case, the full matrix M*(E), is used to caiculate a“. so
that the test is performed on MYE). It should be noted that the program tests
the ME) matrix itself and not the imtermediate matrices used to construct it
in Eq. (86b). As in the homogeneous case, the program considers the off diag-
onal elements of the matrix MA(E). If it is true that for n> Pe, M2 =M2 =0
for all n < P, channel m is not required in the calculation of a2, 1 <n, m<Pe,
The program determines the smallest n2Pe, called P9, such that
M, <EPSDR and MZ <EPSDR for all n < P, where EPSDR is some small
number (a typical value is 1.0 x 10-?), and then uses the upper left P¥ x P9
subblock of MY(E) to calculate a® by Eq. (81).

3.8. Single/multiple energy runs

Inspection of Eq. (13) shows that the total energy E appears only as a multiple
of the unitmatrix,sothatthemauiccs'l""amindependemofmetotalmrgy,
and the eigenvalues AZ(E) at a new energy E... are easily related to those at
the old energy E.:

[ ] =[] ¢+ A E) &

This fact may be used to save computer time for multiple-energy runs by
reusing the A and T(i - 1, i). Saving these variables makes the calculation of
the Vo.(r), T and T(i—-1,i) and depending on the value of NPROP,
T(1 - 1, i)' unnecessary for second and subsequent energies and affords sig-
nificant reductions in computer time. The possibility of these savings is one of
the many attractive characteristics of the present algorithm. The drawback,
however, is a corresponding increase in storage requircments to save the tem-
porary values in these arrays. There are two ways in which the present
program implements the second-energy calculations. In the first, which is
associated with the logical variable LTYPE2 = .FALSE. in the program, the
calculations for a given energy are taken to completion before the calculation
for the second energy begins, and to do this as efficiently as possible requires
the storage of the P® x P matrices T(i - 1, i) and [T(i ~ 1, )] for each sector
over which the solutions are propagated, and storage of information about the
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original total energy, angular momentum, and basis set. Since the total number
of sectors can number in the hundreds, this method requires a great deal of
storage when P is large; we therefore do not recommend the first method for
routine usage. Because the propagation at the first energy must be taken to
completion before the propagation at the second cnergy may be begun, the
second energy runs performed in this fashion are referred to as “later date”
second-energy runs. These runs are governed by the value of the input variable
IROWS read in from FORTRAN unit 5. As it is generally more efficient to do
LTYPE2Z = .TRUE. (simultaneous) second-energy runs, only a brief
description of the later-date second-energy-run option will be given. In order to
prepare for a later-date second-energy run one must set IROWS = |. Informa-
tion needed for a restart run will be written to FORTRAN units 8 and 14. In
order to do a later-date run using this information, one sets the variable
IROWS = -| and the variable NE (also found in FORTRAN UNIT ) =2
(later-date second énergy runs can only do one second energy). The energies
are read in from FORTRAN unit 5; if IROWS = —1 the first energy read in
will be ignored.

The second method, which is associated with the logical variable LTYPE2 =
TRUE. in the program, is to propagate all energies together, that is, the global
R matrix for sector (i) is calculated for all of the energies before the global R
matrix for sector (i + 1) is calculated for any of the energies. If there are fewer
energies than sectors (which is almost always the case) this will decrease the
storage requirements, since in this case the P%x P matrices TG-1,i) and
(TG - 1,i)]" must only be stored for the sector currently being propagated. The
second method is also the one used to enable simultaneous propagation of sol-
utions for different size basis sets, In order to do this type of multiple energy
run, all of the energy values for which computations are to be performed must
be known in advance. The input parameter NE in FORTRAN unit 5 should be
set to the negative of the number of different energies at which solutions are to
be propagated, and the input array E(NE) should contain these energy values.
For example, if it were desired to run three energies simultaneously, then NE
should be set to -3, and there should be three different energies supplied. It
should also be noted that the value of E required in the input file is the rozal
energy, which includes the translational energy of the initial state and the
internal energies, including zero point energy, of the collision partners in that
initial state. Further details on values of input parameters required by the two
types of multiple energy runs are given in the discussion of multiple energy
runs and INPUT/OUTPUT in the on-line manual.
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4. Program Structure

This section of the chapter gives an overview of the program structure and

describes program flow in a typical run. In addition, it explains some of the
options allowing “multiple runs” during a single execution.

4.1. Segmentation of program and flow chart

Roughly speaking, the calculations may be separated into six components.
These are listed in Table I below. It should be noted that components 5 (sub-
routine GNSCAT) and 6 (“everything else™) take up the least time during a
typical run: subroutine GNSCAT is called at most several times during a run,
and the sundries in component 6 contain few large matrix operations. The two
most computationally costly tasks are usually component |, the calculation of
the potential function matrix elements, and component 2, the assembly and
diagonalization of the D matrix. Component | involves the computation of
approximately — N? multi-dimensional integrals, and component 2 contains
matrix operations which become proportional to N° as N grows large. Compo-
nents 3 and 4 also contain some N° matrix operations, but are still not as
expensive as 2.

Due to the computational expense of performing runs with large N, it is advis-
able to take advantage of the feature of the R matrix propagation method
which allows one to perform runs at a second energy by re-using some of the
matrices from the first energy. The justification for this is discussed in Section
3.8, where we describe how we do this in the program.

Figure 1 is a flow chart of the program. The roman numerals I-V in the flow
chart correspond to the components in the Table. The multipie-potential loop
in the flow chart encompasses the large loop from component I to the final
check for more sectors, but was excluded for clarity.

4.2. Restart options

The program contains a restart option: depending on the values of the input
variables described below, the program can write restart information to disk
after every ISAVE sectors, where ISAVE is a variable read in by the program,
and in a subsequent execution read in this restart information to continue the
propagation from the point at which the restart file was written.

The restart option serves a twofold purpose. It is useful in case of a system
crash or shutdown in the middle of a run, because if the restart file is intact,
the run can be continued from the point of the last restart file and so less
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Table I. Components of the Program.

Compo-
nent .
Number Subroutine name(s) Purpose
1 POT Calculation Vi, at r
1 RMPROP, RS Assembly and diagonalization of D(@) 1o
obtain A% and T®
1 TAUMTS Calculation of T(j - I, i) and/or
(TG-1.91
v RPROP Calculation of R ( inhomogeneous option) or R{
(homogeneous option) and P¢+
\ GNSCAT Calculation of S from RY or Ry
Vi Everything eise

computer time will have been lost. It is also handy in case of batch queue
limits for CPU time, in which case a run may be performed in blocks of
ISAVE sectors (or a multiple thereof).

In order to use the restart option, one must modify the input variables IREST
and ISAVE in FORTRAN unit 5. One should initially perform a run with
IREST = 0 and with ISAVE = 10 (for example). IREST tells the program that
this run is NOT itself a restart run, and so it should not look for the restart
files. ISAVE = 10 means that at sectors 10, 20, 30, etc., restart information
will be written to disk alternating between FORTRAN units {7 and 18. The
reason that restart information is written to two disk files is so that there will
always be one set of “good” restart information available: if a system crash
occurs while restart information is being written to one disk file then the
program may still be restarted (once the system is back up) from the other disk
file. It should also be noted that for runs with large numbers of channels that
these files may be quite large; the user should beware of excessive I/O charges
or of filling up a disk with these files.

In order to restart a run from an existing disk restart file, there are two things
to be done. First, the value of IREST in the FORTRAN unit 5 for the run to
be restarted should be set to 17 or to 8. A nonzero value of IREST on input
tells the program that it should look for restart information, and the value of
17 or 18 tells the program which FORTRAN unit the restart information
should be read from (if IREST is nonzero and yet not 17 or 18, the program
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r Calculate sector-independent qua.mitiesj

Augment
w2

Figure 1. Flow Chart of the RMPROP computer program.
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will seek for restart information of FORTRAN unit ‘17 by default). Secondly,
one should be sure that the restart run is actually a continuation of the one
which wrote the disk file. If the current job is smaller (less channels, or
smaller basis set) than the original, then the final results wil] be meaningless;
if the current job is larger, the program will terminate with an
END-OF-RECORD error message. Also, if a run is begun with inhomoge-
neous boundary conditions (i.e., the full RY(E) is propagated), then the output
to FORTRAN wunits 17 and 18  will reflect this. The
homogeneous/inhomogeneous option cannot be changed during a run.

5. Vectorization

RMPROP is a very efficient program on a vector pipeline computer. Most of
the work is in vectorizable loops. Further discussion of this point is found in
previous papers,14.25.26 In particular, extensive use is made of highly efficient
FORTRAN program libraries, including LAPACK for general architectures and
SCILIB for use on Cray systems. For further information, see section 9 of this
chapter and sections 6 and 16 of the on-line manual.

Because of this high efficiency, RMPROP can be used to solve very large
problems. For example, we have reported calculations with up to 1358 chan-
nels2? for a diatom-diatom scattering problem with long-range dipole-dipole
coupling. In unpublished work28 we have completed calculations on the same
problem with up 10 2472 channels.

6. Matrix Utilities

In version 1.0 of RMPROP we used the FORTRAN subroutine RS from the
EISPACK subroutine library to handle the diagonalization step in Eq. (88), i.e.

N
2 Uy, By = Sum[ M BV . (88)
1

k k'=
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Another change made to the matrix utilities in version 2.0 of RMPROP is to
the libraries used for matrix-matrix multipilication, and for the solution of
linear equations of the form Ax =B, where A and B are full matrices and x is
a vector. Version 1.0 of RMPROP used the FORTRAN routine MXMA
adapted from Cray Research’s scientific subroutine library (SCILIB) for
matrix-matrix multiplication, and the FORTRAN routine LUSOLYV for linear
equation solutions and inversion of a matrix. In the current version of
RMPROP we use the FORTRAN subroutins from the LAPACK subroutine
library29 to perform these tasks. We use DGEMM for matrix-matrix multipli-
cation, and we use DGETRF with DGETRS for the linear equation solution
and DGETRI for the matrix inversion.

The use of the LAPACK subroutine library increases both the portability of the
code and its execution rate. This is true for two reasons. First, source codes for
the LAPACK subroutine library are available by anonymous electronic mail
from netlib@oml.gov, which means that standard FORTRAN code is available.
Second, much of this library consists of the Basic Linear Algebra Subroutines
(BLAS), which are available in machine-optimized library modules on both
Cray-2 and IBM RS/6000 architectures, as well as many other computers. Use
of the library versions of the routines wherever possible further improves the
performance of the program (for more information, see Section 6 and 16 of the
on-line manual).

7. Errata

The following is a list of known bugs in version 1.0 of RMPROP, followed by
a list of known typographical errors in the book chapter, “RMPROP: A Com-
puter Program for Quantum Mechanical Close Coupling Calculations for Ine-
lastic Collisions”, published in Modern Techniques in Computational
Chemistry: MOTECC-91 edited by Enrico Clementi.

7.1. Known bugs in version 1.0

For LPR (4) = .TRUE., the legend written to FORTRAN unit 6 states that the
accompanying matrix contains the “ELEMENTS OF PACKED INTER-
ACTION MATRIX"”. This is inaccurate. It should print instead “ELEMENTS
OF UNPACKED INTERACTION MATRIX". Note that this bug has been
corrected in version 2.0 of RMPROP, the on-line manual now specifies
whether the interaction matrix is in unpacked form.
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At the end of a run, the FORTRAN source code contains an instruction to
close FORTRAN unit 6. This resulted in an error message on the IBM 3090.
This statement has been deleted in version 2.0 of RMPROP.

In the subroutine stpot.f, the index for the DO LOOP labeled 6 in subroutine
PREPOT was mistyped as NVIB instead of NVIBX. This routine is used in
the test runs hfhfstrl, hfhfstr2, hfhfstr3, and hfhfstrd. This error will affect the
channel reordering according to energy in cases where the two channels whose
indices are to be exchanged have different values for v, and v,, but did not
affect any of the results in the test suite. This bug has been corrected in
version 2.0 of RMPROP.

The eigenvectors written out with the eigenphases generated by LGS (15) were
computed incorrectly. This bug has been corrected in version 2.0 of RMPROP.

The legend for the execution time for the eigensystem analysis generated by
LPR (1) has been changed to reflect the new matrix utilities present in version
2.0 of RMPROP,

The call to SUBROUTINE HEADER has been removed from PROGRAM
RMPROP, so that it is only called by SUBROUTINE PREPOT for each test
run. As a result, the information printed out by SUBROUTINE HEADER will

only appear once in FORTRAN unit 15 (the same information had been
printed twice).

If the input logical variable LJRI is true, and the variables EPSMAG and
EPSPH are both nonzero, a message concerning testing convergence of scat-
tering matrix elements for convergence with respect to RMAX is printed out.
This message is irrelevant, because if LJRI is true, no propagation is per-
formed. Printing of the message has been suppressed in this case in version 2.0

7.2. Known typographical errors in chapter describing version 1.0

In Eq. (61) in the book chapter for version 1.0 of RMPROP, the last term in
the first line of the equation reads r: it should read r{. This error has been
corrected in.the present chapter, where the same information is contained in
Eq. (63).

In the discussion of second-energy runs, the book chapter for version 1.0 of
RMPROP states that in order to do a later-date second energy run, the input
variable NE for that later-date second energy run shoul be -2. This is incorrect,
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and inconsistent with the input data for un hfhfadr2 in the test suite which
illustrates a later-date second energy run. The input value of NE should be 2.

The discussion of variable stepsize determination was over-simplified in the
book chapter for version 1.0 of RMPROP. The discussion in the current
chapter is complete.

The relation of eigenvalues of the interaction matrix at a new energy to those
at an old energy has been clarified and corrected. This was Eq. (88) of section
3.8 in the book chapter for version 1.0 of RMPROP and is Eq. (87) of the
current chapter.

The book chapter for version 1.0 of RMPROP did not mention that the scat-
tering matrix is complex.

The discussion of channel reordering in section 2.1 of the book chapter for
version 1.0 of RMPROP read “The channels are ordered so that &2 > k2 if and
only if n>m”. This has been changed to read “The channels are ordered so
that & 2 & if and only if n 2m.” in the current chapter.

In the book chapter for version 1.0 of RMPROP, Eqs. (77)-(80) governing the
transformation of the R{., were incorrect. These have been corrected in the
current chapter, and are now Eqgs. (76)~(79).

In the book chapter for version 1.0 of RMPROP, the program flow chart con-
tained a typographical error. Step HI of the program was labeled as executing
twice in succession. This is incorrect. This error has been corrected in the
present chapter.

8. Concluding Remirks

RMPROP is a very general and efficient R matrix propagation code for sol-
ution of the close coupling equations for molecular collisions. Over the years,
various earlier versions have been run successfully on a wide variety of com-
puters. For the present version (version 2.0) we have successfully run a test
suite on an IBM RS/6000 Model 550 computer under the AIX operating
system Version 3.2, and on a Cray-2 computer under UNICOS, version 6.1,
and this test suite is destributed with the code.
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Appendix 1A.

In this section we consider the expansion of a general interaction potential
involving two collision partners in a set of angular basis functions, and we
consider the subsequent evaluation of matrix elements of the form of the V,.(r)
of Eq. (11) given such an expansion. This expansion greatly simplifies the
evaluation because it makes the angular contribution to the Vin(r) an analytical
expression. Furthermore, for many systems it is convenient to evaluate these
angular terms once prior to the beginning of the propagation and to use them
without recalculation at each sector. We consider as examples both the system
of an atom and a rigid diatomic molecule, for which the potential is expanded
in Legendre polynomials, and the system of two identical vibrating, rotating
heteronuclear molecules, for which the interaction potential is expanded in
Launay33 body-frame functions. We consider the atom-diatom case first, and
then the diatom-diatom system. It should be noted that programs utilizing these
formulas are included in the test suite distributed with the program. For more
details on the program themselves, see the on-line manual distributed with the
program.

A.l. Atom-diatom scattering

For the collision of an atom (assumed structureless) with a rigid diatomic mol-
ecule, the system Hamiltonian is

HR,v)=T(r) + H,,(R) + VR, r) (A1)

where R denotes the orientation of the diatom in relation to space-fixed axes, r
is the vector from the incident atom to the center of mass of the diatom,
VIR. r) is the interaction potential, and T(r) is the kinetic energy operator for
relative motion in three dimensions:

Ky
T(r) = - o V? | (A2)

where i is the reduced mass for relative translational motion of the collision
partners, and where V? is the Laplacian with respect to r. As in Eqgs. (3) and
(4) above we separate V? into its radial and angular terms
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S ] o | P
I(r) = 2% [rz 5 (r . ]+ o (43)

where the orbita] angular momentum operator ¢7 contains all the angular
dependence of Tj (r).

The eigenvalues of the operator ¢? are the spherical harmonics Yom(F) where the
¢ is the orbital angular momentum quantum number, and the Projection of the
orbital angular momentum onto the z axjs s mh.  The eigenvalue equation
relating the £} operator and the YoulF) is

Y =l + DR, (Ad)

We define fl,»,,, =H,,, where

HyodR)Yj (R) = Y, (R) (46)
with the eigenvalues

&= jlj+ 1) (47)

where in the above expression the arrow above a variable denotes that it is a
vector quantity. The coupled eigenfunctions are
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rR. ) =§_‘,;Wmm | JIMY, Y, (49)
i 3

where (j¢mm,|j¢JM) is a Clebsch-Gordan coefficient.30

Given the basis functions of (A9) our goal is to find the elements of the poten-
tial coupling matrix

Vo) =J'd§ jd?(yf,"'(ﬁ, n) VR Or4R. ) (A10)

which are formally independent of M because the space is isotropic.

Evaluation of the matrix elements may be performed analytically under the fol-
lowing conditions. Let the interaction potential VIR, r) be expanded? in
Legendre polynomials P;(R F) where the radial expansion coefficients are
denoted by vi(r):

VR, 1) <Y v;(WP\(RF) . Al1)
A

When the interaction potential is expanded in this way, the matrix elements of
(A10) become

A
Vire) = Y na(nNg(e. /') (A12)
A=0

where the g.(j¢, j'¢-J) are known as Percival-Seaton3! coefficients, for which
analytical expressions are available. Note that even though the coupled angular
momentum eigenfunctions of (A9) are complex, the elements of the potential
coupling matrix (A10) are real, and they reduce to zero asymptotically because
the vi(r) do. The sum in (A12) terminates at Ams =min(j +/,  + ¢") because
the g\(j¢, j'¢".J) are zero for A>j+j or A>¢ +¢’. For homonuclear diatomics,
since the potential is invariant with respect to interchanging the diatomic
nuclei, only even values of A need be used in (A11). Furthermore, even though
there may exist several values of ¢, for a channel n with angular momentum j
which satisfy the vector relation (A8), the only channels which couple to one
another are those with identical parity (- 1y*‘. Therefore, for homonuclear
diatomic species, A/ is always even, and so the ¢ values in the basis set will all
be even at even J and will be odd at odd J.
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A.2. Diatom-diatom scattering
For the collision of two identical vibrating, rotating heteronuclear molecules,
we divide the Hamiltonian into a sum of heteronuclear diatomic terms and
many-body terms, so that H,, = H,, and
1 2
Hip= HYy) + HY (A13)

.2

B> 1 9 2 9 3 .

'ﬂ‘i’r=-m[?w(& aTe,.)J ez TVl i=L2 4y
i i ! i

where |, is the reduced mass of one of the molecules, R, is the bond length of
the i molecule, j is the quantum mechanical operator for the square of the
rotational angular momentum of the i* molecule, and V.o is the vibrational
potential. We have used a number of different functions for V,,, references for
these potentials are included in the on-line manual. We choose for the basis
functions X,(x, r) the following!5:

Xy(x, 1) = [2(1 + 8,8 m[dba(x, r)+n(= 1y tatin *oo(x, nl. @19
where
Dulx. F) =RiR) 'y, (R, Wy RO, AR\ Ry B (A16)

where

efﬁ.ﬁu §2’ M= Z Gymyom, ljtizilz'"lz)(ixzmlzfm: |j12¢7M)
mm,
e A17)

XY (ﬁ,)ym(ﬁz)y,,,,(?)

and where y,, is a vibrational eigenfunction of

2 o, 2
[' 2:,,, d‘;z + jg;::: +Vvu,(R)J XAR) =€, {R) . (A18)

"'w“
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In the above equations, the terms of the form
(v o o o | oo ..) are Clebsch-Gordan coefficients, the Yen

are spherical harmonics, and R; is a unit vector giving the orientation of the j#
monomer in a laboratory-fixed reference frame.

The X.(x, F) of Eq. (A15) is an expression for a wave function which is invar-
iant with respect to exchange of the two molecules, which are assumed in this
example to be indistinguishable from one another. Therefore, the subscript n is
a collective index for the set of quantum numbers v, ji, v, j, jo.
¢, J, M, and 1, where M is the eigenvalue for interchange of the two mole-
cules, and can have the value + or - 1. The right hand side of Eq. (A15) is the
sum of two wave functions where the two molecules are formally distinguished
from one another, plus a normalization factor, where the .., and §,; allow for
the case where the quantum numbers of the two monomers are identical. The
subscript o on the right hand side represents the quantum numbers
Vi, jis Vo Jo, J1z, €, J, and M, where molecule 1 is known to have vibrational and
rotatinal quantum numbers v, and ji, and molecule 2 is known to have
vibrational and rotational quantum numbers v, and j, and @ is the same as o
except that the quantum numbers of the two molecules are exchanged.

For the applications in the test suite, involving two HF molecules, the x,, are
obtained by solving Eq. (A4) by the linear variational method using a basis of
harmonic oscillator functions. The monomer eigenenergies €,, may be obtained
by this method as well but for the test cases they are derived from exper-
imental spectroscopic parameters.32 The values of scattering matrix elements
must be converged with respect to the number of harmonic oscillator functions.
Also, Eq. (A13) implies that

A19)

In order to evaluate the matrix elements of Eq. (11) it is first necessary to
express the V,,, where n now means the same as in Eq. (A15), in terms of
matrix elements between the @,

Vo) = [4(1+8, , 8 )1 +3, .8 )] '?

1v2 Va2 luz2

X [VaeAr) +0(= 1Y 242 4y () (A20)

W= Y ) (- 1 )]
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where the first term on the right hand side is a normalization factor (note that
9, and 8., for identical quantum numbers must be included for both the initial
(] v .

and final states), where

Vao(r) = f dx f drdy(x, F)Vix, r®ydx, 7) (A21)

and where the last term only includes (= 1)+ because Vo 18 diagonal. in
Ji +j2+. Since the potential energy must be independent of how the indi-
vidual monomers are labeled, V,, is also diagonal in n. Therefore we may
assign N =1" in Eq. (A20), and we find that

Voolr) +n(= 1P 2%t by gy ooy biee /g Vot
o (422)
+
H = 1yat ey )

and so

V() = B[ (1 + 8, , 8. )(1 + Sy v 8 )P

et (A23)
X [Vagelr) + n( = 1yt +ha+ina+ Vaodr)]

using the factor of 2 introduced in Eq. (A22) to cancel the 4 in the normaliza-
tion term, ‘

The determination of Voo in Eq. (A23) requires the evaluation of the eight
dimensional integral in Eq.(A21). In order 10 do this we expand the potential
V(x, r) in Launay body-frame functions30.33.34.

Vix,n= 3 v, (R, Ry, o) A (A24)
hiqp
where
AA 4 A A A A
YoramFi, 7)) = m‘ [YouPY, ) + ARG AW CN) (A25)

and where 7, is in the same direction as R, but is given in the body-fixed refer-

ence frame where the z axis is in the direction of 7. Substituting the above into
Eq. (A21) yields
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Vaolr) = 3 BYRE Co7(y  (a26)
e
where
By = J.dlsl_"d& dﬁefﬁ:zf(k\l'ﬁ% P g g7 I’;Z)ef"y;j’u{'(ﬁhk\& P, (A27)

CI#(r) = j dR, IdRzX;ljl(Rl)X:m(Rz)Vq,qzu(Rlv Ry Mty RV (R (A28)

and where B and y are composite indices. B stands for the quantum numbers
JisfnjiznJ and M and vy stands for the quantum numbers j, j, v, and v,. We
discuss Eq. (A27) first and then Eq. (A28).

Eq. (A27) which determines the Bg#,, is a six-dimensional integral which may
be evaluated analytically and which is independent of sector (independent of
r), so that the Bg#- need only be evaluated once at the beginning of a run and
then stored. We evaluate these terms in the following way. Define the simul-
taneous  eigenfunctions 6o of the operators with eigenvalues
JU+ 1), 2 + 1), il + 1), JJ + 1), M and Q where Q is the projection of J
on the body fixed z axis:

~IM A A A . R .. A
8P P ) = 3 Gimyiym, 2D, (F)
mm,

@+1 1" “®
Xszmz(;'\Z)[ e ] Di/u(0. )

where D, is a rotation matrix30, and 6 and ¢ are the inclination azimimuthal
angles of 7. The integral of an expansion element of the potential between the
body-frame basis functions is similar to (A27):

B = [ [P 81 olF o P, g1 B, 00 ) (430)

and is given explicitly by33
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“12in: L 1va: , |
Bt = 8,BumBa(2(1 + Syol” 12 + Ul(zjz + l)w(ill.’zu'" 1)(3;1; +1)
(2¢, + D7+ DR+ D&+ D)= 1Y Y e
AN [ (s sz)}:.(fhz + 1)(/ 12 4(1)2 72
q12

o0 0 0J\o 0 0 (A31)
2 q i,
‘1(;2 Z‘ ?.2”) i @ Ji [] +H - 1)4142412]
h % h
where { ::} is a 9-j symbol.30 The body-frame functions used above

may be transformed into the laboratory-frame basis functions used to expand
the system wave function by33

Oy, Ry = 322 +1>%(§ o )(—l)“efu‘L.zﬂ(rhrz. A )
Q

R ...} is a 3-symbol30, Similarly, the Bgg, which we require in Eq.
(A27) are related to the body-frame integrals of Eq. (A30) by

Bg;g#,‘.=(2/+1)(2z'+|)z(g "QZ Q) (g 1;1"2-]{'2')

(- Y™ Big,

(A33)

Combining Eqgs. (A31) and (A33) gives

Bé’}ﬁ%‘;:B,,'SMM'(- l)fxz+/qi’z+q|+qz+./[2(l +8u0)]— m[(2j| F 0+ DRy + 1)
X+ D@2+ D@10+ 122 + 122 + 1)2g, + 1)(2g, + 1)) J(; o f))

0
2 R J, (/ Ve ‘hz) (qlz qQ @
x(0 0 o)%‘q””) 00 oJ\o p -p (434)
J
/ 4 qlz} 12 qll2 le X[l +(_ l)q|+qz+qu]
l 1212 7))
where (0 - .} is a 6-j symbol.30 For the special case of J = 0, Eq. (A34)

may be simplified to
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x(2j',+1)(2j’z+1)(2z'+1)]”2(-1)"2”‘*’2*‘71*%(/1 LAY f?-)
00 gJ\o O O

£ Qo h ) ¢ T J2 (435)
x; O0m -mJ\O -p-m p+m
7 9 j Jr. @
-p-m K mJ\p+m -H -mJ) "

Since a 3-j symbol is a re-phased and re-normalized Clebsch-Gordan coeffi-
cient, and since Eq. (A35) has no 6-j or 9-j symbols, we can also express Eq.
(A35) in terms of Clebsch-Gordan coefficients as

By = 8; /8, A1 +8,0)” Y2027, + 1)(2)s + DQq, + 1)(24, + 1) +1)

B =8, 8, A~ V1R ER i a o L os L, W)
X (2024 + D +1)(24) + 1242+ D1G100,01j,q0",10)(200,0 | jsg57,0)
X D (C0Jim | Ljifom)C'0F ) — = m| L 'y = b = m)(, = H=mqlj qu, - m )

X(2h +may — | J'3qojom)

Equation (A28) is a two-dimensional integral which must be performed at
every sector for every unique pair Yy of vibrational-rotational quantum
numbers, and for every set of qigpt for which Bg#¥- is nonzero. The Cy+ of Eq.
(A28) are calculated for our test runs by a quadrature scheme3S which uses
“Gauss-ground-state” nodes. The values of the final scattering matrix elements
of interest must be converged with respect to the number of points per
vibrational coordinate used when performing this quadrature.

In order to evaluate (A28) entirely, however, it is also necessary to determine
the Vg4u, which are given by

1 !
Vo R Ra, 1) = 211?.[ l[l - cos?(¢, - %)) & cos(¢, - ¢2)]J: ‘ d(cos 0,(:37)

1
x J' d( cos 8, .., (R, FVIX, r)
-1
where 6, and ¢; are the inclination and azimuthal angles of 7, respectively. In
the test suit included with the program, the calculation of (A37) has been per-
formed differently for different HF-HF potentials. The modified
Alexander-DePristo (MAD) potential includes the v, explicitly as parameters,
as does the Schwenke-Truhlar (ST) potential. For these two surfaces, the eval-
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uation of (A37) is not necessary. For other surfaces in the test suite where the
integral is evaluated, integration over the 8, is performed using N,-point Gauss-
Legendre quadrature, and the integration over the (9 — @) is performed using
N,-point Gauss-Chebyshev quadrature, where the order N, of the quadrature
was taken t0 be Gm. + |, With gm, the maximum value of @ or q; in the V.
Therefore, the number of v, terms to be evaluated, which determines the
maximum values of ¢, and g, used. in the expansion of the potential (A24), is
one of the parameters with respect to which calculated transition probabilities
must be converged. It is important to note when performing the expansion
above that the 3-dimensional integral in Eq. (A37) involves repeated evaluation
of the V(x, r), which is very time consuming , but not the basis set and so is
independent of the number of channels in the close-coupling expansion, Eq.
(10).
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