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Donald G. Truhlar

1. Introduction

This chapter discusses some approximate methods for the calculation of
electron scattering cross sections of molecules.

There has been much progress in the development of computational
methods for electron scattering over the last five or so years. Entirely new
methods have been developed, old methods have been improved, and both
have been applied more - systematically than previously. Some of the
approaches which have been made to the calculation of electron scattering
cross sections will be discussed in this chapter, and special emphasis will be
placed on those aspects of the approximations which naturally link up with the
approximation methods used for bound-state calculations which are discussed
in the rest of this treatise. Representative but not exhaustive references will be
given. We will treat the electronic part of the wave function, but the rotational
and vibrational motions involved in electron-molecule scattering will not be
discussed in detail. While many aspects of the approximate theories used for
the electronic part of the bound-state problems are useful for electron scatter-
ing, some more specialized techniques and approximations are also useful.

In theoretical chemistry, more attention is directed to electron—molecule
scattering than to electron-atom scattering. Thus we will emphasize methods
which have been shown to be useful for electron-molecule scattering or which
show promise of future usefulness for electron-molecule scattering calcula-
tions. It would be particularly appropriate if the methods discussed here were
all illustrated by applications to electron-molecule scattering. However, some
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of the techniques which show the most promise for future electron-molecule
scattering calculations have so far only been applied to electron-atom scatter-
ing or have been applied in a much more definitive fashion to electron-atom
scattering. Thus in many cases the best illustrations must be taken from
electron-atom scattering. Of course electron-molecule scattering involves
treating both the electronic part and the internuclear part and the latter has no
analog in electron-atom scattering.

In a few cases involving electron scattering by hydrogen and helium atoms
essentially exact cross sections have been computed. But most electron scatter-
ing calculations contain approximations of uncertain validity. Nevertheless, it
is often possible to judge the general reliability of various approximation
schemes for various accuracy requirements, targets, types of information about
scattering processes, and energy ranges. A method which is successful for one
application will often not be satisfactory for another and vice versa. Thus an
understanding of the uses of electron scattering cross sections and of the
characteristics of the different energy ranges is a necessary prerequisite for
understanding the usefulness of the various approximation schemes.

A few of the more important applications of electron scattering cross
sections are electron-impact spectroscopy, radiation chemistry, acronomy and
other studies involving atmospheres of the earth and other planets,
astrophysics, the study of the sun’s corona, electron-drift experiments and
gaseous electronics, the study of laboratory discharges and plasmas, fusion, and
lasers. Laboratory measurements on electron impact processes have been
thoroughly reviewed by Massey et al." and Christophorou.”

Several textbooks and monographs with an appreciable emphasis on the
theory of electron scattering are available™'" and should be consulted for an
introduction to the field.

Both for classifying the physical processes occurring and for sorting the
appropriate computational procedures it is useful to distinguish five ranges of
impact energy (very low, low, intermediate, high, and very high).

The low-energy region is characterized by T; < U, where T; is the initial
translational energy of the scattering electron and U; is the ionization energy of
the interacting target electrons. In this energy range the scattering electron and
the target electrons are best treated on an equivalent basis since they have
roughly equivalent energies. Thus the procedure for calculating the total wave
function may resemble a bound-state calculation for the composite system of
target plus scattering electron more than at higher energies, where the scatter-
ing electron may be usefully treated on a nonequivalent basis due to its higher
energy. When T; =1 eV the de Broglie wavelength is 12.3 A. This is very large
(larger than the dimensions of the target for most targets of interest in this
chapter) and indicates the need of a quantum mechanical treatment and that
classical mechanical concepts should be used with utmost caution if at all. In the
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low-energy region, elastic and inelastic scattering occur and, provided too
many channels are not open, variational minimum principles may be used to
perform accurate calculations. (Since these principles require explicit inclusion
of all open channels in the trial scattering wave function, they are not of
practical value at higher energies.) At this low energy it is the usual practice to
expand the total scattering wave function in terms of eigenfunctions of the total
angular momentum. Although this is more complicated for electron-molecule
scattering than electron-atom scattering, it still provides enough simplifica-
tions that it is often worth attempting even if further approximations are
required. Less than ten angular momenta need to be treated by full calculations
using low-energy methods. If angular momenta above the lowest few values are
needed at all (e.g., to adequately include large-impact-parameter collisions
to converge the differential cross section at small scattering angles), they can
usually be treated by perturbation theory or other high-energy approxima-
tions. For the lower angular momenta the close coupling method and the
matrix close coupling (also called algebraic close coupling) method are often
used; in the language of bound-state calculations, these are continuum config-
uration interaction methods. Resonances (temporary negative ions for
electron—neutral scattering or temporary electron attachment for electron—ion
scattering) are often important at low energies, particularly shape resonances
at initial or final translational energies up to a few eV and Feshbach resonances
near thresholds.* Since a resonance may be visualized as an electron temporar-
ily bound to some state of the target, bound-state calculational procedures can
sometimes be used almost without modification for the description of reso-
nances.

At very low energies, e.g., thermal energies, additional simplifications
occur. For very low energies all scattering is elastic. The de Broglie wavelength
at T, =0.026 eV is 76 A. When the de Broglie wavelength is much greater than
the dimensions of the target, all elastic scattering occurs only in the component
at the wave function corresponding to zero orbital angular momentum of the
scattering electron, i.e., in the s wave, and the s wave is sensitive only to the
spherically symmetric part of the interaction potential. This yields an isotropic
differential cross section. In the limit of zero translational energy, the scattering
information is all contained in the scattering lengtht and at very low energies

*«Shape resonances” are resonances which can be described reasonably correctly by a model
involving scattering of the electron by an effective potential due to its interaction with the targetin
some unperturbed or perturbed state. “Feshbach resonances” require a target-excitation
mechanism for thier description. They involve temporary binding of the scattering electron to
some excited state of the target when the electron is incident on the target in some lower energy
state.

+The “scattering length” is the limit as the incident momentum tends to zero of the s-wave phase
shift divided by the momentum in atomic units. Generalizations of the scattering length definition
to higher partial waves are not needed in this chapter.
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the effective range formalism”* may be used to express the deviation from the
zero-energy limit. (This formalism, which is not discussed in this chapter, is also
useful at higher energies for high orbital angular momentum of the scattering
electron.) An upper bound on the scattering length may be obtained by an
extension of the upper bound theorem used for bound-state energies.””

The intermediate-energy region is roughly characterized by U, <T; <
15U;. The precise location of the intermediate energy range thus depends on
the target and the process considered, but it may often be considered as about
10-150 eV. The de Broglie wavelength of an electron varies from 3.9 A at
10 eV to 1.0 A at 150 eV. In this energy region elastic and inelastic scattering
and ionization may occur and many channels are open. Thus the variational
minimum principles which are useful in the low-energy region are not useful
here. There are some resonances, but most scattering is nonresonant. The
optical electric dipole selection rules that hold in the high-energy limit are not
in effect here and this is the region useful for electron-impact spectro-
scopy."*'” The plane-wave perturbation theories, which become accurate at
higher energies where the interaction potential is small compared to the initial
kinetic energy, are not yet accurate because the incident electron is not well
described by a plane wave unless its initial energy is higher and because target
charge polarization effects are hard to treat by perturbation theory at inter-

mediate energy. The intermediate-energy region is the most difficult region to -

treat and is the subject of much current interest. Most of this work involves
modifying the low-energy or high-energy methods so that they will be more
appropriate for this energy region.

In the high-energy region corresponding to U; < T; < few keV, the de
Broglie wavelength of an electron varies from about 1.0t0 0.3 A. Thus classical
pictures are more appropriate than at lower energies. The usual theory is
perturbation theory with a plane wave (or a Coulomb wave) for the zeroth-
order free wave and no interaction potential (or a pure Coulombic interaction)
in the zeroth-order Hamiltonian. The perturbation series is the well-known
Borm series (explained in introductory texts) and its modifications. The first
term in the series is the first Born approximation. It consists of an integral over
the unperturbed initial and final target wave functions, the initial and final
plane waves, and the interaction potential. Thus intermediate target states
{which are necessary to represent target charge polarization) and distortion of
the scattering electron’s wave function by the interaction are neglected in the
zeroth-order wave function. Contrary to popular assumption, there is no proof
that the high-energy limit of the differential cross section is correctly given by
the first Born approximation and there is some evidence that it is not."® In
many respects the angular momentum / of the scattering electron plays a role
similar to the energy. Just as the high-I components of the low-energy
scattering wave function can often be treated using high-energy methods, the
low-I components (e.g., the s wave) of the high-energy scattering wave
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function should be treated for many purposes using low-energy methods. This
is necessary because these low-/ components are not prevented by the cen-
trifugal potential from penetrating into regions where the interaction potential
is not negligible with respect to even high initial kinetic energies. But the
high-energy scattering is often treated without making a partial wave decom-
position of the wave function into its components with various / or total angular
momenta so the requirement for a more accurate treatment at low [ is often
ignored.

The very-high-energy region includes energies above a few keV. The
usual energy for electron diffraction experiments is 40 keV, where the de
Broglie wavelength of an electron is 0.06 A. Some special techniques have
been developed for this energy region.*'" For example, the atoms of a
molecule may sometimes be considered to scatter independently. Some high-
resolution spectroscopy may be done in this energy region,"” although selec-
tion rules identical to the optical ones are valid to a good approximation.

The nuclei may be treated as point charges at energies as high as 3 MeV."®
When electrons with energies of 15 MeV and higher collide with an atom, a
significant contribution to the scattering is made by electrons that have
penetrated the nucleus."®'” Such energies are out of the range considered in
this chapter.

This chapter is concerned with the (le, 1e) scattering process where an
electron scatters from a gas-phase target A

e +tA-e +A

(where A need not be neutral). In this collision process, the state of A may
remain the same (elastic scattering) or it may change (inelastic scattering). The
(le, 2¢) and (le, many e) electron-impact ionization processes are closely
related but are more complicated due to the presence of three or more bodies in
the final state. The (Oe, 1¢) photoionization process

hw+A->A +e”

is easier to treat than the (le, 1e) scattering process, but because it involves a
free electron in the final state it provides an interesting link between bound
states and scattering states. Recently there has been much progress in treating
photoionization using bound-state techniques.?*?" These treatments can
profitably be compared to earlier treatments using scattering techniques®*?>
but photoionization will not be discussed much more in this chapter. Another
inte{;s)ting electron scattering problem not treated here is free—free radia-
tion™™: ’

e tA-»e +tA+hv

For electron scattering the center of mass may be assumed to coincide with
the center of mass of the nuclei and in the center-of-mass system (barycentric
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system) the wave function for electron scattering by an N-electron target

depends on relative nuclear coordinates Ry, Ry, .. ., R, (for a molecule with

v nuclei), on the coordinatesry, I, . . . , . Of the electrons with respect to the

center-of-mass of the nuclei, and on spin coordinates. The electronic part of the

wave function can be expanded in a set of basis functions which depend on

electronic coordinates and spins (and thus are determined by the Schridinger

B ‘ equation with nuclear kinetic energy terms omitted) and depend parametri-

cally on relative nuclear coordinates and spins. This is the fixed-nuclei formal-

ism and it is analogous to the electronically adiabatic separation of electronic

and nuclear motion which is usually made for treating bound states.* In this

chapter we will not explicitly indicate the parametric dependence of the

electronic wave function and the electronic basis functions on the nuclear
coordinates and nuclear spins.

The fixed-nuclei approach offers important simplifications in general but
not at large distances r of the scattering electron from the target (greater than
about 10 bohrs),?® especially for polar molecules,?” because of the long-
range nature of their interactions with electrons, and for very low energies
(T; <0.1 V). The breakdown of the fixed-nuclei approach in these cases (large
r and low T}) is similar to its breakdown in Rydberg bound states, where the
molecular framework may be pictured as rotating appreciably during an orbit

of the distant and slowly moving electron. For these cases, it is more appro- - Ty

priate to use the laboratory-frame approach in which the electron is considered
to be interacting with the molecule in a given rotational-vibrational state.
Scattering calculations have been performed using both formalisms. Proce-
dures necessary for interrelating them and for using the fixed-nuclei approach
at small r and the laboratory-frame approach at large r have also been
developed.®*>? In this chapter we use the fixed-nuclei approach for consis-
tency with the rest of the volume.

2. Explicit Inclusion of Electronic Excitations

2.1. Expansions Including Free Waves
\ L o _;.:_;: ; 2.1.1. Coupied Equations

First we consider methods based on expanding the electronic wave
function in a suitable set of functions, including products of target eigenstates
and continuum functions (free waves) for the scattering electron. These free

*For bound states this is usuaily called the Born-Oppenheimer adisbatic approximation™® and for
electron scattering it is sometimes called the adisbatic or the adiabatic-nuclei appronmauonm
The former nomendlature is sometimes used in electron scattering but it should not be confused
with the Born-Oppenheimer exchange approximation for electron scattering®” or the adiabatic
polarization assumption of electron scattering (sec Section 4).
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waves are included in order to satisfy scattering boundary conditions, and the
variational methods of scattering theory are applicable to trial functions which
satisfy scattering boundary conditions [scattering boundary conditions are
defined by Egs. (1) and (8)—(11) below}. Some methods formulated entirely in
terms of square-integrable basis functions are considered in Section 2.2.

Variational principles are not used for electron-impact ionization since
the correct boundary conditions are not completely known, due to the presence
of two free electrons in the final state.®" Further, the correct wave function for
any electron collision at energies above the target’s ionization potential must
include some terms corresponding to such two-free-electron final states.
Nevertheless, these terms are usually neglected except when electron-impact
ionization is the quantity of interest, and ionization cross sections are usually
calculated using perturbation theory with no attempt at a complete expansion
of the final state wave function.®?

The most general possible trial function for electron scattering by an
N-electron target which satisfies correct scattering boundary conditions (neg-
lecting ionization channels) may be written

P
wp(xl’ X2y eeny xN+l) = O[gl ‘X'ip(rN+l)ﬁ'(xl: X2+« 05 XN i'\N+19 a'N+l)
M
+ Z Cmme(xb X250 xN+1)] (1)
m=1

where O is a permutation operator (which may be the antisymmetrizer or a
partial antisymmetrizer) acting on the {x; Jetls x, is the set of coordinates (r;, ;)
or equivalently (7, £, 0:); r; is the spatial coordinate of electron i; r; is the
distance |r;| from the center of mass to electron i; ; is the unit vector from the
center of mass to electron i; o; is the spin coordinate of electron i; p and i
are sets of channel indices, where p designates a particular choice of
boundary conditions and i designates an arbitrary channel; P and M are
constants representing the numbers of terms retained in each sum in the trial
function; W, is a square-integrable basis function,; f; is

Di(xy, x5, ..., XN) Yl,m:(i'N+l)Xm7(a'N+l)

or a linear combination of such products involving degenerate ®;, where ®; is
an eigenfunction of the channel Hamiltonian H; defined in terms of the total
Hamiltonian H by

Hi(xy, %3, ..., x8)= lim [H(xy,xo,..., xn+1) — T(En+1)] 2

IN+1->00

where T is the kinetic energy of the scattering electron defined by

T@n+1) = P12v+1/2m 3)
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and
Hi(xy, x3, - . ., XN)Pi(x1, X2, . . .5 xn) = Ei®(x,, X205 xn) O]
Kk?
T('N-H)le(rN-H) Ym#ﬁn«u) — 'E;n'i'xb('lﬂ-l) Ylmu(iN-ﬂ) (5)
IN+1-%%0
where the total energy is
ft’k,,2

E=E+>— (6)
=E+T; )

and Y,,.gisaspheﬁmlharnmnic;x,gisaspinwavefuncﬁon;&,istbechannel
radial function, which is square-integrable if k; is imaginary and may be
assumed to satisfy the following scattering boundary condition for the N, open
channels, i=1,2,. .., No,, for which k; is real:

X;,(r)m';m Yp(r;7) ®
Yo (r; 7) = aoip (1) Asolr; 7) + gy, (1) An(r; 7) 9
Aylr; 1')’:”r"a;m sin(0; +3Bw +7) , (10)
8, = ky—4lw+Zk;"In 2ks +argD(h+1-iZk;") . (11)

Here aq;, and a;;, are coefficients for channel i depending on the particular
choicepofbmmdarymndiﬁon;risanarbitmryphaseanglc;aoisthcunitof
length,whiehistakenasthebohr;Zisﬂwnetchargeof&ctarget—thesumof
the nuclear charges of the atoms minus the number of bound electr , i.e.,

Z=Z|+Zz+' "+Z."'N (12)

and I is the gamma function.

Notice that the first sum in Eq. (1) consists of terms representing a
scattering electron, represented by X, and the fn+1-dependent and on4 -
dependentpansofl",,movinginﬂieﬁeldotoneormoretargeteigemtates(b‘.
Thedummyindexihbelstheehannelsand,forthcparﬁwhrchoiceot :
boundary conditions @, = 8, p denotes the initial channel (the initial channel
was designated i in Section 1). In general, a particular choice of boundary
oondiﬁonssingluoutomdnmeLherecaﬂedp,forspedaltreamenLThe
second sum in Eq. (l)eonsisuoftermswhidlmpruentthe(N+l)celecu'on
systemwiﬂnﬁnmurﬂysingﬁngmmemmingelemnfornonequiva-
lent treatment. Thus mathematically this sum is used to obtain a more complete
expansion of the total wave function. Physically it may be used to represent
compoundmtesofthesaueringelectmnplmtargetortoindudecoﬂchﬁm
of scattering and target electrons.
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Illustrative examples of the form (1) for scattering wave functions are

; given in detail for various atoms elsewhere.®>>* A general formulation for

electron scattering by atoms or ions with any number of incomplete subshells is

given by Smith and Morgan.(”) It should be noted that terms with square-

i integrable X, may be moved from the first sum to the second sumin (1) without

i " changing the total wave function but involving a change in P, which is therefore

not a well-defined quantity for a given trial wave function. Where such terms

are placed is a matter of convenience. We will place them in the second sum.

The scattering cross sections may be expressed® 49 in terms of the

asymptotic form of the wave function ¢* (by using Green’s theorem it is

possible to write the asymptotic form of the wave function in terms of an

integral over the wave function). To calculate cross sections it is convenient to

define three N,, X N, matrices which are independent of = and the particular

choice of scattering boundary conditions on the wave function. The reactance
matrix R is defined by

R = V"?[(sin r)ato+(cos T)at,{(cos T)ao—(sin 7)o, V2 (13)
where V is the diagonal velocity matrix, i.e.,
V= (hk:/ m)5ij (14)
and
| @p)i=asp B=0,1 (15)

Although e, and a, depend on the particular choice of boundary condition, R
as defined above is independent of this choice.
Then the scattering matrix S is related to the reactance matrix and the
diagonal unit matrix I by
S=@1-iR)'(I+iR) (16)

and the transition matrix T is defined by
T=8-1 an

Note that some authors use slightly different definitions of T.

We can illustrate the use of these matrices by a simple example: the
scattering of an electron with initial momentum %k, off a target with spherically
symmetric eigenstates n =1, 2, . ... For the partial wave with relative orbital
angular momentum #/, the scattering amplitude for scattering angle  and a
p ->n transition is

1
i
H
l
I
i

i
"~ 25 (knky)

where P, is a Legendre polynomial. The total scattering amplitude is a sum over
I which converges because the scattering amplitude becomes small for high [

(21+1)T,,Pi(cos 6) (18)

*The work of Smith et al.®* contains an error which was later corrected.®%>”
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256 Donald G. Truhlar

(the classical argument for this is that the impact parameter is //k, and
scattering is small or zero if this exceeds the range of the potential). For more
general collision processes the scattering amplitude may still be expressed in
terms of T matrix elements but it involves a multiple-index sum over T matrix
elements corresponding to degenerate processes. Further, complicated angular
momentum coupling coefficients, which are not needed in this chapter, occur
instead of the simple factor (2/-+ 1). In general the integral cross section Qy for
the electron—impact excitation of the i > j transition (or for elastic scattering
when i = ) is related to the differential cross section I,;((2) and the scattering
amplitude f;(0) corresponding to scattering solid angle {) by

a=[L@ao (199)
L(@) = (k/ k)l @ (19b)

Performing the absolute square in Eq. (19b), we can express the integral and
differential cross sections in terms of weighted sums of products of transition
matrix elements. The weights include the angular momentum coupling coeffi-
cients. The complete formulas are given elsewhere®*>*~? but they are not
given here because we shall not need to define all the angular momentum
coupling coefficients which these expressions contain. It is important to use
consistent phase conventions for Y, and the angular momentum coupling
coefficients in calculating these quantitics.“*** We shall generally deal with
the reactance matrix, from which T and f,({2) may be calculated, rather than
with'l‘andf,(ﬂ),bemusekisrealwhilethelathcrtwoquanﬁtiuarecomplex.

When the exact reactance matrix cannot be obtained, one must resort to
variational methods, to perturbation theory, or to other approximation
schemes. In variational methods a variationally correct expression® for the
reactance matrix can be written in terms of the reactance matrix obtained from
the asymptotic form of a trial function plus an integral over the ttial function.
For example, we introduce a matrix L with elements

Ly=(¢'|H-El¥) (20)
and consider variations of the functions ¢' and ¢’ with constant 7 and constant

oo =1 Inother words, ' and ¢’ are represented by Eq. (1) with the second sum
and X,, variable (except for 7 and ag). The Kohn variational principle“>*7ist

8(oe;—2aoh 'V L) =0 (21)
for small variations of the trial function about the exact wave function. Since

*A variationally correct expression for a scattering parameter in terms of trial scattering wave
functions yields an approximate value for the scattering parameter which depends quadratically
(not lincarly) on the errors in the trial functions.
mm&kﬂnmmmmwbenftheMemnﬁdﬂeda
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oy, 7, and the velocity matrix are known constants in a given application of Eq.
(21), Eq. (13) can be used and often is used to rewrite Eq. (21) in terms of R
instead of ;. Our treatment in terms of e, at fixed e will simplify our
subsequent discussion. Thus, given trial functions with asymptotic forms
specified by ap,=1I and a, =a‘1’, an expression for the N,, X N,, coefficient
matrix o, which is stationary for small variations (with constant » and oo =I) of
the trial function about the exact wave function is

o =al~2a,i VL (22)

Use of this variationally correct expression and Eq. (13) provides a prescription
for calculating cross sections from any appropriate scattering wave func-
tions.

The Kohn variational principle is even more valuable in providing a means
for optimizing trial wave functions of given functional form with variable
coefficients. The standard variational derivation shows that if the condition
(21) is satisfied for all possible small variations of the set of functions {¢”};'=5
consistent with constant 7 and ao=1I, then these functions must be exact
solutions of the Schrddinger equation. In practice we impose certain restric-
tions on the set of functions, such as finite P and M in Eq. (1) and particular
choices of the {W,,,}f,,‘ -1. Nevertheless, using the usual variational procedure,
the “optimum” set of functions {¥/”}>=3 consistent with these restrictions may
be determined by requiring (21) to be satisfied for all small variations consistent
with these restrictions. As usual, the resulting equations for the unknown
functions and coefficients in the trial function are the same as would be
obtained by requiring that the projection of (H—E)y” have no overlap with
the function space spanned by the known or predetermined functions in the
trial function. In this respect the derivation and resulting equations are very
similar to the derivation of multiconfiguration Hartree-Fock equations for
bound-state problems. For example, one may require the variational func-
tional af to be stationary with respect to point-by-point variation of the
functions X,. If O = 1, this yields a set of coupled differential equations for the
X, which are called the close coupling equations without exchange.* If Oisan
operator which makes the total wave function antisymmetric to permutation of
any two electrons, point-by-point variation of the X, yields a set of coupled
integrodifferential equations for the X;, which are called the close coupling
equations.t The actual form of these equations is displayed in the next
subsection [see Eq. (50)]. When M >0 and the coefficients c,,, are also varied,

*This refers to exchange of the scattering electron with the bound electrons. Of course it is still
possible to include exchange effects in the @; functions in this formalism.

tAn approach halfway between the close coupling methods with and without exchange is the
post-symmetrization method.“® In this case the trial function is optimized with O =1 but then a
variational correction is calculated with O as an antisymmetrizer. This approach is similar in spirit
to the Musher-Silbey“” method for bound-state calculations.
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‘ these equations are coupled to algebraic equations for the ¢,,, and the whole set

of coupled equations are generally called the correlation method equations if

' : the W,, are thought to represent electron correlation®***? but they are stilt

o called the close coupling equations if the W,, are merely added to allow the X;,

: i to be constrained orthogonal to the bound orbitals.*** The close coupling

! method and the correlation method are scattering analogs of the multiconfig-

, uration Hartree-Fock equations®” with numerical radial functions for bound-

r - S ‘5"1 state problems. In fact they have sometimes been called the continuum
’ Hartree—Fock method.

Numerical radial functions are often used for bound states of atoms and
for electron-atom scattering but are less useful for molecular problems because
the expansion about the molecular center of mass strongly couples terms with
widely different orbital angular momenta. This problem can be alleviated for
diatomic molecules by using an expansion in prolate spheroidal coordinates
and such an approach has been used both for bound states®> and for electron

i scattering™® for diatomic molecules. This approach is more complicated,
o however, and is not useful for general polyatomic molecules. The alternative
: usually adopted for bound-state calculations on molecules is an expansion in
nuclear-centered exponential-type or Gaussian-type functions,”” in Gaussian
: lobe functions, or in floating Gaussian-type orbitals.®® This leads to an
1 o algebraic problem, i.e., a matrix equation for the coefficients. The resulting

: methods are the matrix Hartree-Fock method“™ and the matrix multiconfig-
uration Hartree-Fock method.®®t The matrix elements may be evaluated ab
initio® or approximated by techniques such as neglect-of-differential-overlap
(NDO)®? of the Xa®” method. These approximation techniques may be
parametrized against ab initio calculations or against experiments. The scatter-
ing analogs of these matrix methods are the matrix variational methods of
scattering theory.“6#” These are also called algebraic variational
methods.
} In matrix variational methods the X, are expanded in terms of square-
integrable functions with variable coefficients ¢, and non-square-integrable
functions with constant coeflicients a, i.€.,

TTLENTA L

Xyoma)= Yolrma)+ 3 coonilrman) @3

] - 5 where Y,, is defined by Egs. (9)-(11) and the variational functional of is
1 : required to be stationary with respect to variations of the cp, @155, and Cmp at
fixed 7 and aqy,- This yields a matrix equation which must be satisfied by the
vectors of varied coefficients. Examples of the types of equations which must

*This is also called the Hartree-Fock—Roothaan method.
+This is also called the multiconfiguration self-consistent-field method.
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actually be solved are given later in this section [see, e.g., Eq. (38) and the
discussion following Eq. (41)]. Before working out these details, it will be
valuable to consider a few general features of such matrix variational methods.
The matrix elements in the matrix equation are integrals involving (H — E) and
pairs of terms in the expansion of the wave function. They may be reduced to
one-electron and two-electron integrals using standard methods.“® But, in
addition to the usual integrals involving square-integrable functions which
occur in bound-state problems, there are integrals involving up to two non-
square-integrable one-electron functions.

Matrix variational methods have been successfully applied to ab initio
electron—-atom scattering calculations in the last few years using not only the
Kohn variational method described above but also more refined algebraic
techniques (see below) which have important advantages in actual calculations.
Extensions to electron—molecule scattering are just beginning. Semiempirical
methods of evaluating most of the integrals occurring in these methods have
not yet been developed or extensively tested but it is possible that such
semiempirical methods will eventually prove to be just as successful (or
unsuccessful) for scattering problems as for bound-state problems. Some
approximation methods for calculating the static potentials and exchange
potentials occurring in these integrals have been developed and tested, how-
ever, and are discussed in Section 2.1.2. '

In using the variational principle (21) it sometimes happens that the
variational correction (22) is very large even for a trial function which appears
to be fairly accurate at nearby energies or with one less or one more term. In
such cases the results are often inaccurate. This problem is not due to an
inaccurate representation of the physics in the trial function but is most easily
understood in terms of accidental near-singularities of some of the matrices
involved in the calculation. This is a defect of the Kohn variational method first
discussed in detail by Schwartz.“® Schwartz was nevertheless able to obtain
accurate results by varying a nonlinear parameter in his trial function so that
the accidental near-singularities were removed. This is an undesirable compu-
tational inconvenience. Saraph et al.®® suggested the problem could be
alleviated by choosing the phase angle = based on the results of a calculation
with P =1 and M = 0. Nesbet®” made a more complete analysis of this defect
of the variational method and suggested it could be alleviated by choosing 7 as
either zero or /2 based on certain ratios of matrix elements. This is called the
anomaly-free method. This analysis has been reviewed elsewhere“®*” (along
with other methods designed to eliminate anomalies and other aspects of
algebraic variational methods). The anomaly-free method is not completely
free of anomalies.“”*” Subsequent attempts to improve the method led to the
optimized anomaly-free and optimized minimum-norm methods.®® Experi-
ence has shown that none of these methods is completely satisfactory.®*°®
Nevertheless the problem is well enough understood that spurious results due
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to the singularities of the matrices involved should never be mistaken for
accurate ones.*

Malik and Rudge have suggested another procedure for eliminating
anomalies by varying nonlinear parameters in the trial function.”® This is not
very efficient for computations. It has also been suggested that in each case
several of these methods plus the closely related minimum—norm method*®*”
be applied and the results not be accepted as more accurate than the bounds
which can be placed around the results of three or more variational
methods.“”*” This is not too difficult for cases where most of the computer
time is spent on the evaluation of elements of (H—E) and relatively little is
spent on the algebraic problem. For large molecules and intermediate energies,
however, where a large number of basis functions are required and approxima-
tion methods may be used for the integrals, the algebraic problem may become
very time-consuming. Then the size of the algebraic problem may be profitably
reduced using contracted basis functions.”” However, additional computa-
tional simplifications are still desirable. Recently, we have shown®® that the
variational least squares (VLS) method”® is very successful at avoiding
anomalies, it provides results which are continuous functions of energy and any
nonlinear parameters in the trial functions, and does not require comparing the
results of alternative computational schemes. We recommend this method or
the least squares variational method discussed below it for routine production
runs and it is described here as an example of the basis function approach to
scattering. It should be noted that the same basic one-electron and two-
electron integrals occur in all the variationally corrected methods since they
involve the calculation of L in the last step.

The VLS method may be motivated by noting that the anomalies in the
Kohn method are due to a certain matrix of (H — E) becoming singular. The
minimum-norm method and the VLS methods deal with matrices of (H—E )
in an attempt to avoid such singularities. In fact the VLS method is analogous to
the Kohn method but with (H—E)? replacing (H— E). However, to avoid
having to calculate the complicated integrals involving H 2, the minimum-norm
and VLS methods effectively use an approximate resolution of the identity,
equivalent to applying the closure property to an incomplete basis set.

It is most convenient to set all #; =0 on the right-hand side of Eq. (23) and
include these square-integrable terms in the second sum of Eq. (1). Recalling
the meaning of P and M from the two paragraphs following Eq. (12), we see
that P in this case is equal to N,, and is the number of target eigenstates, all
open, included in the first sum in Eq. (1), and M is the number of square-
integrable terms in the trial wave function. The VLS method is derived by

*Shimamura,®” however, has shown that the probiem of anomalies is far more gencral than an
analysis in terms of singular matrices would suggest and anomalous resonances occur even in trial
functions which are not of the linear-combination type. The author is grateful to Dr. Shimamura
for valuable correspondence concerning Refs. 47 and 69.
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considering the matrix

u® u* uvv
U=l v° ut uv (24)

UWO UWI UWW

where

U =(Aufi|H-E|OAyf), «=01;8=0,1;i=12,...,P;j=12,...,P
25
UNe=UBY=(W,|H-E|OAukf), B=0,1;j=12,...,P;m=12,...,.M
(26)

UYY=(W,|H-E|OW,,), n=12,...,M;m=12,....M (27)

Therefore U is a square matrix of order 2P + M. If we define

[+ 7))
[

where (€)mp = Cmp and Z is a rectangular (2P + M) X P matrix, then if ¥ of Eq.
(1) were exact, it would satisfy

(H-E}’ =0 (29)
and therefore it would satisfy the set of equations
Idxl dx, ... dxni1Ai(Ine))fi(X1s X25 < - 5 XN, Bnar, O)H —E)
XPP (X1, X2y« 5 XN+1) =0, i=12,...,P;a=0,1 (30)
I dx;dx; . ..dxne i Wy(X1, X2, -« o s Xne1)(H = E)p(x1, X2, . . ., XN+1) =0
n=12,....M (31)
which, together for all p=1,2, . .., P, are equivalent to the matrix equation
UZ=0 (32)

In general for approximate trial functions, (32) does not hold and it is not
possible to make it hold by varying the parameters &y, and c,,, with constant 7
and

oy=1 (33)
It is possible to make this equation hold by considering point-by-point varia-
tion of the radial functions, but as discussed above, this is not always practical.

In the variational least squares method we therefore define a matrix D of
dimension (2P + M) X P as follows:

D=UZ (34)
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and attempt to minimize its norm at constant 7 and e, = k. To do this we require
the P X P matrix D'D be stationary through first order in small variations,
which yields

v'uz=0 (35)

Since ay = I, Eq. (35) represents P sets of (2P + M) inhomogeneous equations,
\ which may be written in partitioned form as

(U‘I“J)Ol (UfU)ow (UT[J)OO
(UT 11 (Ufu)lo a=— (Utmlo (36)
(UTU) w1 (IJT‘J) ww (UTU) wo -
where
= a
a= ( . ) 37)

Since the unknown vector a contains only (P+ M) linear variational coefficients
for each of the P initial states, only a subset (P + M) of these equations can be
satisfied simultaneously for each initial state. Wladawsky suggested that the
following P sets of (P+ M) equations be satisfied exactly:

Uv 11 U? 1w UTU 10
[((UT:ID)WI iljtgww]‘= [EU"U;WO] (38)
Equation (38) may be solved; it yields for a,
o, =—(Q')7'Q" (39)

where for convenience in representing the mathematical solution we have
defined

Q* =y~ r'wu*?,  g=0,1 (40

[The only justification for selecting a subset of equations as Wladawsky did is
that it yields useful results. This aspect of the derivation is discussed again in the
paragraph before Eq. (43) and in the section containing Egs. (43)(49).]

Then the asymptotic form of the optimized trial function yields the
following approximation to the reactance matrix [by using Eq. (13) with
oo =1]:

Ryis = V[(sin 7)—(cos Q") Q" N(cos 7)+(sin 7)(Q') Q' IV
(41

This is the zeroth-order variational least squares reactance matrix. Equations
(39)—~(41) are identical in form to the Kohn variational method except that in
the Kohn method U'U is replaced by U and Ry, s is replaced by the Kohn
zeroth-order reactance matrix Ry. In either method, once the trial function has
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been optimized one should substitute it into (22) to obtain an improved
estimate of the asymptotic form of the wave function since L is not zero. In fact

L=Z'UZ 42)

From the improved e; one can compute an improved reactance matrix using
(13).

Once the asymptotic form of the wave function is improved variationally,
the coefficients may be redetermined by solving a subset of M of the equations
(38) for the vector cin terms of the improved vector a,. This was recommended
by Matese and Oberoi,”’ ) although it has not been justified variationally.
Unless one does this, one does not have an approximate wave function whose

- asymptotic form corresponds to the variationally improved reactance matrix.

The asymptotic form of the optimized trial function corresponds to the
zeroth-order reactance matrix. For applications which use the whole wave
function, e.g., photoionization, it may be preferable to use a wave function
corrected by the procedure of Matese and Oberoi.

It has been demonstrated that the wave function in the VLS method
generally corresponds to a smaller value of L than that obtained by several
other variational methods.®® Recalling the definition of L [Eq. (42)] and the
discussion preceding Eq. (32); we see that this means that the wave function in
the VLS method satisfies the Schrodinger equation “better” than the wave
function obtained in several other variational methods. Further, the zeroth-
order reactance matrix is generally more accurate than the zeroth-order
reactance matrix of other methods to which it has been compared.® Finally,
the zeroth-order VLS method is free, for all values of 7, of the anomalies which
plague most of the other variational methods discussed above.””

It has been suggested that rather than satisfying the last two rows of Eq.
(36), as in Eq. (38), one might satisfy, for example, the first and third rows.®
Schmid and co-workers have developed a similar but even more general
method called the least-squares variational method.”*””> They point out that if
¢* of Eq. (1) were exact, it would satisfy (29) and therefore, in particular, it
would satisfy Eq. (30) with @ = 1, Eq. (31), and

I dx,dx;--- de+lwp(xl’ X1y s XN+1)

X(H—E)wp(xlixZa- .. ’xN+l)=0 p=1127""c (43)

where the w, are square-integrable or non-square-integrable functions of
longer range than the set {W,,} and each w, contains a weight factor whose
value can be freely specified. Equation (30) with « = 1 and Egs. (31) and (43)
can be written

Aa=b (44)
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where
| 0ab O ndid .
A={ut uU\Wv (45)
le UWW
l)ﬂu)
p=|U" (46)
UWU

and U*', U¥, U™, U'*, and U™ are defined analogously to Egs. (25)-(27);
Up' = (w,|H— E|OAf) 47)

so that A and b are rectangular matrices of dimensions (C+P+M)X (P +M)
and (C+ P+ M) x P, respectively. For a given trial function with constant 7 and
a, =1, the (C+ P+ M) equations (44) are incompatible. So we impose the
condition that the norm of (Aa—b) be minimum, which leads to

ATAa=A'D (48)

This is the least-squares variational method for optimizing a trial function. The

optimized trial function may then be substituted into the Kohn variational -

expression (22) to obtain a variationally improved reactance matrix.
It is clear that if

0i(X1, Xz, - - o 5 XN41) = wiAio(rn+)fi(X1, X2, - - -5 XN, Fnets ONsr)
i=12,...,P (49)

where w, are the weight factors and if the weight factors are all set equal to unity
and C = P, that the least-squares variational method of Schmid and co-workers
reduces to the VLS method of Wladawsky.

Schmid and co-workers”>® have used the least-squares variational
method for potential scattering and nuclear scattering problems. They
obtained accurate results which are insensitive to the choice of weight factors
and are free of anomalies.

When all the open-channel radial functions are allowed to vary point-by-
point, and the exact target wave functions for open channels are known, the
variational principles may become minimum principles for certain scattering
parameters.”® In the matrix variational methods, these minimum principles do
not hold, but a quasiminimum principle can be very useful.”” If the integrals
are approximated, however, the quasiminimum principle does not hold. When
the exact target wave functions are not known, a subsidiary minimum principle
may be useful.7®

Unfortunately space does not allow a fuller discussion of these points here,
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but the reader should be aware that these aspects of the calculations are a
current research area.

The best illustrations of accurate calculations using the matrix variational
] methods are the electron-atom calculations of Nesbet and co-workers, who
| used the optimized anomaly-free variational method.®® In some cases they
~ also used a semiempirical net correlation energy parameter.

When the many-electron Hamiltonian is substituted into Egs. (25)-(27),
(30), (31), (43), and (47), these integrals reduce to products of one-electron and
two-electron integrals.“® Methods have been developed for performing these
integrals using nuclear-centered exponential-type basis functions and various
non-square-integrable functions for electron-atom scattering.”® For
molecules it is easier to evaluate the integrals if Gaussian-type basis functions
are used for the square-integrable basis functions®” or if integral approxima-
tions such as mentioned before Eq. (23) are used. The most difficult integrals to
evaluate are those containing free waves and another approach to simplifying
the integrals is to extract scattering information from an expansion of the wave
function which involves only square-integrable (L2) basis functions. These
methods are considered in Section 2.2. Chung and Ajmera®” developed a
procedure for carrying out calculations by the Kohn variational method in
which free waves are used in the expansion but the most difficult integrals
(those involving two free waves) are not evaluated. This will simplify the
calculation, but in large calculations the computer time is often dominated by
the much larger numbers of easier integrals.

2.1.2 Approximations to Potential Terms

The close coupling equations for the radial functions, in the case where the
second term in (1) is omitted, may be written

[-—d2+l,~(l,~ +1)
PN

k,?]F,-,, (1) +2 L [Vy(DFp(n) + I dr' K;(r, r')Fp(r')]=0  (50)
]

where the direct radial potentials are given by

Vi) = ae 9,0 (51)

in terms of the direct potentials defined in the following way:

V;'j(rN+l) = I dxidx,...dxy d0'N+1f;k(x1, X35+ oy XNo Bt Ont1) Vine
Xfi(x1, X2, « o 5 Xy a1, ONar) (52)

Vine=H(x1, X3, . . ., Xn41) —Hi(x1, X3, . . ., XN) — T(xn+1) (53)
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and the exchange potential terms are
[ ar ke, B2 = [t dr Ryte, OB ) Yyui®) (54)
with kernels
Ieii('N+iy W)= “‘NI dx; dx;- - - dxn_y don don_y f7 (X1, X2, - . . » XpENe 1, ONs1)

X[H(xy, X2, - - - Xna1) —EWP; (X1, X2, - . ., Xn—1o Xn+1)Xmi(ON)
(55)

The physical meaning of the omission of the second term in (1) is that the
scattering electron is represented by a single orbital in every term in Eq. (1);
some workers would say that ““the scattering electron is not explicitly corre-
lated.” Then the equations for the radial function parts F,, of the scattering
electron orbitals assume the form (50). The interpretation of Eq. (50) is
familiar because it has the same form as the multiconfiguration Hartree-Fock
equation for bound-state radial functions. The difference is that the scattering
electron is unbound so at least one and maybe all of the radial functions F, are
non-square-integrable. Then the diagonal potential terms contain the nuclear
attraction, electronic screening, and exchange effects, while the nondiagonal
terms are responsible for coupling of channels, i.e., inelastic effects, by both
nonexchange and exchange mechanisms. Because the equations in the form
(50) are closely analogous to the equations for bound states and because the
approximations we will consider are closely analogous to those used for bound
states, Eq. (50) provides a good basis for discussion of the potential terms.
However, the same potentials occur, albeit in a more complicated algebraic
framework, even if the second term in (1) is included and they occur as parts of
the matrix elements in U when the radial functions are expanded in a basis set
in the matrix variational methods. Note that Eqs. (51) and (54) are functions of
r. The r-independent integrals discussed in the previous subsection [see, €.g.,
Eqgs. (24)~(27)] involve matrix elements of these potentials with the basis
functions of 7. Next we consider the approximate evaluation of these potentials
by methods similar to those used for approximate calculations on bound states.

: For most atomic calculations ®; and ®; are built up using a basis set of
B orthonormal one-electron orbitals Py, (r) Y, (7). Then it is convenient for
E simplifying the exchange potential to constrain the free orbitals F, (r) Y;,mi(F) to
be orthogonal to the members of this set.* This constraint is enforced by the use
of Lagrange multipliers uu and adds terms like Sy uaPu,(r) to Eq. (50).87
Similar orthogonality constraints are useful for electron—-molecule scattering.

*This need not be a constraint on the total wave function if appropriate square-integrable terms are
added in the second sum of Eq. (1). Inclusion of such terms adds additional terms to Eq. (50).
1An alternative to this orthogonalization procedure is discussed by Smith ez al.®® Orthogonaliza-

tion is usually not employed for electron scattering by the hydrogen atom. %379

L
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When i =j, V;(rn+1) with f; replaced by &; is called the static potential (for
electron scattering). Its negative, the static potential for positron or proton
scattering, has been called the electrostatic potential. One can envisage a whole
series of approximations to the static potential corresponding to a given
electronic state of a given atom or molecule. However, since it is a one-electron
property of the target charge distribution, one expects the Hartree-Fock
approximation to be fairly accurate®® and we need only consider a sequence of
approximations to the ab initio Hartree—-Fock static potential. Accurate static
potentials for atoms may be easily determined.®® To obtain accurate ab initio
one-electron properties for molecules, one must use an extended basis set
including polarization functions. In a few cases®*®” such accurate calculations
have been carried out for ground states and have been used as standards for
testing more approximate calculations.®>*%%°” Atsmall r, the static potential
is dominated by the attractive interactions of the scattering electron with the
screened nuclei. At large r the static potential is dominated by the interaction
of the electron with the multipole moments of the target. Thus it is necessary to
use approximations which yield accurate charge densities near the nuclei and
accurate multipole moments, respectively, to obtain these two features of the
potential correctly.

There has been much interest in the electrostatic potential as an approxi-
mation of the interaction energy of certain electrophilic reagents with organic
molecules. In this context the general shape of the electrostatic potential
energy surface has been mapped for many molecules and the errors
introduced in such surfaces by the approximation methods of quantum
chemistry have been studied. This work has been reviewed by Scrocco and
Tomasi.®"

A particularly interesting study of CNDO/2 and INDO approximation
methods for evaluating such potentials is included in two articles by Giessner-
Prettre and Pullman.®? They distinguish four levels of approximation, which
are most easily discussed in reverse order from their numbering:

(iv) The coefficients of the NDO wave function are interpreted as coeffi-
cients of orthogonalized atomic orbitals (OAQOs) obtained from the NDO
method’s minimum basis set of exponential-type functions by Loéwdin’s
method.®” From these coefficients one may obtain by a transformation the
deorthogonalized coefficients, i.e., the coefficients of the original nonor-
thogonal exponential-type functions. From these the static potential is calcu-
lated correctly. In this case differential overlap cannot be neglected during the
calculation of the static potential because it is the OAQOs rather than the AOs
which are assumed to have zero differential overlap. This calculation differs
from an ab initio calculation only in that the core electrons are frozen into the
nuclei and the density matrix of the target is obtained by a calculation using
approximate integrals. The latter is a simplification of ®; rather than of the step
by which V; is obtained from ;.

267
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(iii) In this case the coefficients of the NDO wave function are interpreted
as coefficients of the nonorthogonal atomic orbitals. Then the static wave
function is computed using the NDO method’s density matrix with the basic
assumption of neglect of differential overlap of basis functions on different
centers.

(ii) Approximation (ii) is like approximation (iii) except for two differ-
ences: (a) intraatomic differential overlap is also neglected (this is called the X1
approximation) and (b) the entire valence charge distribution on a given center
is treated as if the charge were in the valence s orbital (this is called the V,,
approximation).

(i) Approximation (i) is like approximation (ji) but the interactions of the
target electron with the external charge are approximated using the formula
used in the NDO method for repulsion integrals between s orbitals (the sign
must be switched if the external charge is positive).

They did not study the XI approximation independently of the Vi
approximation. They found that deorthogonalization [approximation iv)] .
yields the best results but that the V,, method [approximation (ii)] yields results
of useful accuracy very inexpensively. However, some caution is warranted in
using these conclusions because the ab inifio results to which they make
comparisons are computed with limited basis sets which do not include
polarization functions.

We have compared calculations of the static potential for the ground state
of N; at its equilibrium internuclear separation using three ab initio calcula-
tions to INDO [approximation (iii)] and INDO XI calculations® and to a
calculation using a sum of modified atomic densities.®” The latter calculation is
called Massey’s method; for this calculation the atomic density is divided into a
contribution from core electrons and a contribution from valence electrons and
the latter is contracted uniformly in an attempt to account for one of the effects
of bond formation. Van-Catledge® has also computed the INDO- V, result
[approximation (ii)] for comparison with these results. Finally, we have per-
formed calculations (INDO/1s and INDO XI/1s) in which the NDO calcula-
tion is modified by pulling the core electrons out of the nucleus and adding the
sum of atomic core densities to the NDO valence electronic charge distribu-
tions.®® These calculations are compared in Tables 1-3. In these tables the
[432] and [53] calculations are extended-basis ab initio calculations, where the
former includes polarization functions. The [21] calculation is a minimum-
basis-set calculation using a basis set of accurate Hartree-Fock atomic orbitals.

Some of the methods are also compared in Fig, 1.°"*

Massey’s method is fairly accurate at small 7. It is easy to incorporate
accurate atomic densities in this method, whereas the basis set of exponential-
type functions used in the NDO methods does not yield an accurate atomic

*The author is grateful to Prof. F. A. Van-Catledge for supplying these isopotential maps.
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x INDO « INDO Xi

N 2

Fig. 1. Static potential for electron-N, scat-
tering from ab initio {432] and [21)) calcula-
tions and from INDO, INDO X1, and INDO-
V,, methods. The static potential has cylindri-
cal symmetry around the 2 axis and only one
quadrant of the xz plane is shown. The N on
the z axis indicates the position (z = R,/2) of
a nucleus and the distances are in bohrs. The
dashed line is the zero contour and the other
contours have the following value in hartrees:
(a) 0.05100, (b) 0.02550, (c) 0.01275, (d)
0.00637, (e) 0.00319, (f) 0.00159, (g
—-0.00159, (h) -0.01594, (i) —0.03187, (§)
w 2 3 ) z -0.07968, (k) —0.15936. .

density, although it is accurate enough for many purposes. (The NDO methods
were not originally parametrized with the goal of obtaining accurate charge
distributions through all space. A version using different basis functions and
reparametrized with this goal would be valuable.)

The [21] and INDO static potentials show positive regions behind the
nitrogen nucleus which are closer to the nucleus and more repulsive at the
maximum than the positive region in the [432] potential. This is consistent with
density difference maps for N,, which show that minimum-basis set®**® and
INDO®® charge densities show too much buildup of electron charge in the
lone-pair region and not enough between the nuclei. Wherever the NDO

L
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calculations agree with the [432] results better than the {211 results do, itis due
to a cancellation of effects which cannot be expected in general.
Massey’s method and the V,, approximation predict that all the multipole
b moments of the target are zero and the static potential is everywhere negative.
i _ Thus while these methods have some applicability at small r, they are bad at
large r.

Overall the INDO XI/1s approximation yields a static potential in best
overall agreement with the ab initio results at small r. The contribution from the
1s orbitals is important only near the nuclei but provides significant improve-
ment there.® The INDO XI/1s calculation is economical enough that the
small-r part of the static potential can be calculated inexpensively at the many
geometries necessary for a complete scattering calculation.

At large r the static potential is dominated by the electron’s interaction
with the lowest order nonnegligible electric multipole moment of the target.
Dipole moments are predicted fairly accurately by NDO wave functions (CO,
partly because the dipole moment is small, is a well-known exception®”).

Some progress has been made in the semiempirical calculation of quad-
rupole moments.®” However, quadrupole moments arise from large cancella-
tion of electronic and nuclear contributions and are very sensitive to approxi-
mations. For scattering calculations the quadrupole moment is generally
required as a function of internuclear distance and it seems unlikely that
semiempirical methods can yield the necessary accuracy®® as a function of
internuclear distance. Information on multipole moments available from any
source is often incorporated directly into electron scattering calculations
without requiring consistency with the quadrupole moment which would be
obtained from the wave function or static potential used for the rest of the
calculation.*

Green and co-workers have developed an “independent-particle model”
for electron—atom potentials and have used this to generate potentials for
electron-N, scattering."°> However, they made an arbitrary change in the
potential in the regions of the nuclear singularities to effect a numerical
simplification in their calculations.

An even simpler approximation scheme has been used for electron
scattering by Itikawa.®®® He has represented molecules as a system of point
charges placed on the atoms in such a way as to give the correct value of the
dipole moment. Of course such a model does not give an accurate potential at
small r.

It has sometimes been the practice to further approximate the static
potential by expanding it in spherical harmonics about the molecular center of
mass,

Va(®) =§_‘. EL Viwsar () Yeae= () (56)

*See, for exampie, the work of Itikawa and Takayanagi.*”



274

Donald G. Truhlar

This expansion is rapidly convergent at large r, where it is a multipole-moment
expansion, but it is very slowly convergent near the nuclei due to the strong
singularities there.°%%¥

Semiempirical molecular orbital (SEMO) calculations can be used to
economically map the electronic excitation energies as functions of molecular
geometries.”®” While these calculations may often be inaccurate, they are still
useful for interpreting electron-impact spectra. But there are indications that
the excited-state charge distributions obtained by SEMO calculations are
sometimes less accurate than the excited-state energetics or the ground-state
charge distributions."*” Thus it may be more difficult to approximate excited-
state static potentials than ground-state ones in some cases.

When i # j, the integral of Eq. (52) is a transition potential. If states i and j
may be connected by an electric dipole-allowed transition, then Vi(ry.,) is
proportional to the transition dipole moment divided by ri., in the large-ry.;
limit. Because of its long range, this asymptotic part of the transition potential
is very important. The difficulties of calculating transition dipole moments, or
equivalently optical oscillator strengths, using approximate wave functions are
well known for both atoms"®® and molecules."*”

When i=j, the nonlocal potential of Eq. (54) is the diagonal radial
exchange potential. There has been much work on the approximation of this
exchange potential for bound-state calculations. The use of the Slater exchange
potential and its modified version, the Xa method, has been particularly
successful.®"'°® In this case the exchange potential is approximated by the
local potential

Wx(r) = axWs(r) (57)
where ax is a parameter and Wi(r) is the Slater exchange potential,
Ws(r)=—3e’Ke/(2m) (58)
where #Ky is the Fermi momentum,
Ke=(@3w")"/rs (59)
and s is the electron gas parameter

rs=p /3 (60)

where p is the electron density. Kohn and Sham”®® and Gaspar”®® have

derived the value 2/3 for ay, although values a little larger than this are often
used. Although such p'/*-type potentials have been applied to electron scatter-
ing problems several times, the derivation from the free-electron-gas model is
not applicable to the scattering probiem. The Slater potential is averaged over
the electrons of an atom and the Kohn-Sham potential is for the exchange
interaction of an electron at the Fermi level. But the scattering electron has an
energy above the Fermi level. This was originally pointed out by Hara'® and

™



) Electron Scattering 275

Mittleman and Watson.!!) Hara suggested that correct application of the free-
electron-gas model to scattering problems leads to the following approxima-
tion to the exchange potential when i =j and ®;(xq, x5, . . ., xy) is a closed-
shell wave function with doubly occupied spatial orbitals. The exchange
potential is to be given by the free-electron-gas approximation

‘ Witaralr) = —2¢*Ke®F (n)/ 7 61)
' 1 where

F(n)=—+1 L l”"‘ 62)

n=K (r)/KF(r) (63)

and #*K*(¥)/2m is an approximation to the local kinetic energy of the
scattering electron. Further, Hara suggested the latter be approximated using

K*(0) =[2m(T; + U))/h*}+ K2(x) (64)

which has an obvious physical justification at small r. But Eq. (64) clearly has
the wrong limit at large r since it implies the local kinetic energy thereis T; + U,
instead of T;. Mittleman and Watson derived Egs. (61)—(63) with K %(r) given by
2mT; as a high-energy approximation to the exchange potential in the
Thomas-Fermi approximation. Riley and Truhlar"'? have suggested that the
deficiency of Eq. (64) be corrected by setting U; =0 and have called the
resulting approximation the asymptotically adjusted free-electron-gas
exchange potential (AAFEGE potential). As T; tends to zero, the AAFEGE
potential tends to the Kohn-Sham potential as expected since the AAFEGE
model treats a zero-energy scattering electron as if it is at the Fermi level. But at
high ener

N
o
!

Waarce(®) = —me’t’p(r)/mT, (65)

which is proportional to the first rather than the one-third power of the density.
The right-hand side of Eq. (65) was also derived as the high-energy limit by
Mittleman |and Watson and clearly illustrates the well-known fact that
exchange is less important at higher 7.
, Riley and Truhlar"''® have also derived an approximation to the exchange
1 " potential which treats the scattering electron semiclassically. For the case when

i=j and ®(x,,x5,...,xy) is a closed-shell wave function with doubly
occupied spatial orbitals, the resulting potential is

Wsce@®) =T, - Vi1 -3{[T; - Va@F +a %/ (66)

a’=(4me’h*/m)p(r) 67

This potential is called the semiclassical exchange (SCE) potential. It has the
same high-energy limit as the AAFEGE and Hara exchange potentials.
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Table 4. Phase Shifts in Radians for Electron Scattering in the Static-Exchange Approxi-
mation with and without the Nonlocal Exchange Potential and with Three Other

Exchange Approximations”
Nonlocal Hara
Target ! Noexchange exchange exchange AAFEGE. SCE
He 0 2.65 2.99 2.96 3.03 3.01
1 0.00009 0.0004 0.0002 0.002 0.002
Ar 0 9.15 93 925 9.68 9.37
1 3.15 63 6.28 6.29 6.28

“The initial translationat energy T; is equal to 0.14 eV; ! is the orbital angular momentum of the scattering
electron.

Table 5. Phase Shifts in Radians for Electron Scattering in the Static- Exchange Approxi-
mation with and without the Nonlocal Exchange Potential and with Three Other

Exchange Approximations®
Nonlocal Hara

Target ! Noexchange exchange exchange AAFEGE SCE

He 0 1.761 2.436 2.304 2442 2422
1 0.010 0.042 0.023 0.068 0.076

2 0.0003 0.001 0.001 0.002 0.003

Ar 0 8.200 8.647 8.561 8.746 8.658
1 3.882 6.001 5.909 6.042 5.938

2 0.010 0.045 0.024 0.061 0.061

“The initial translational energy T; is equal to 3.40 eV; [ is the orbital angular momentum of the scattering
electron.

Although these potentials (Hara, AAFEGE, and SCE) are local in
coordinate space, they are not, strictly speaking, local potentials since they
depend parametrically on the asymptotic translational energy of the scattering
electron. However, they are as easy to use as local potentials. These approxi-
mations have been tested against the Hartree-Fock nonlocal exchange poten-
tial for electron scattering from ground-state helium and argon."'” The
resulting phase shifts are given in Tables 4-6. '

The tables show that these approximate exchange potentials are accurate
enough to be useful for many applications. They are more accurate for Ar than
for He, as expected theoretically, since they are more appropriate for high-
density than for low-density regions. Since they are as easy to calculate and use
as direct potentials, they should be very useful for electron-molecule scatter-
ing where exchange has previously proved to be more difficult to include.

An interesting feature of the results of Table 4 is that the approximate
exchange potentials are good enough that the zero-energy limit of the phase
shift* satisfies Swann’s generalization’® of Levinson’s theorem,*'* viz., the

*The phasc shift is ordinarily defined only modulo . For the present discussion it must be puton.an
absolute basis by requiring it to be a continuous function of 7; which tends to zero as T, »co.
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phase shift for orbital angular momentum [ tends to (n,; + n,)r, where n,, is the
number of orbitals of symmetry I from which the scattering electron is excluded
by the Pauli exclusion principle. Thus for He, n,o =1 and n,; = 0, while for Ar,
n,o=3 and n,; =2. In all cases the number of bound states n,, is zero.

An alternative method of including exchange in electron scattering from
closed-shell systems has been suggested and applied by Burke, Chandra, and
Gianturco,®”''*'® based on a treatment of electron-hydrogen atom scatter-
ing in the triplet state by Lippmann and Schey."'® These workers force the
scattering electron’s wave function for appropriate symmetries to be
orthogonal to the n, orbitals from which the scattering electron is excluded by
the Pauli principle. This ensures at least n, nodes in the inner region of the wave
function so that Swann’s theorem may be satisfied. They found good agreement
for N, with an earlier calculation"*” using the nonlocal exchange potential. It is
clear, however, that the orthogonality requirement cannot give the whole effect
of exchange; e.g., it gives no exchange effect for ! = 1 for He. Also, Burke et al.
encountered convergence difficulties using the orthogonalization procedure
for CO.%%

The semiclassical exchange approximation is not restricted to closed-shell
targets. It has also been pointed out that the semiclassical exchange approxima-
tion can also be applied to terms with i # j and that its high-energy limit should

_be a particularly easy-to-use approximation for such terms."'® Yet for i = j the

high-energy limit has been shown to be remarkably accurate in the
intermediate- and high-energy regions.

In the discussion of the use of INDO approximation we distinguished
approximations in the bound-state wave functions ®; from approximations to
the integrals involving such functions which occur in scattering theory. The
general effect of inaccuracies in ®; functions on the results of scattering
calculations requires more study. The reader should carefully distinguish in this
regard the ®; functions corresponding to open channels, which are input to the

Table 6. Phase Shifts in Radians for Electron Scattering in the Static - Exchange Approxi-
mation with and without the Nonlocal Exchange Potential and with Three Other

Exchange Approximations*®
Nonlocal Hara

Target ! Noexchange exchange exchange AAFEGE SCE
He o 1.076 1.279 1.236 1.262 1.257
1 0.196 0.327 0.274 0.297 0.315

2 0.044 0.074 0.064 0.072 0.076

Ar 0 6.417 6.722 6.692 6.716 6.664
1 4.215 4.548 4.544 4.570 4.500

2 1.498 1.837 1.873 1.916 1.840

“The initial translational energy 7; is equal to 54.40 eV; [ is the orbital angular momentum of the scattering
electron.
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scattering calculations and cannot be reoptimized during it,” from the @,
corresponding to closed channels and the W,. These latter functions are
essentially arbitrary and are chosen specifically to enhance convergence of the
scattering wave function (see Section 4).

Only for electron-hydrogen atom scattering can the exact ®; functions be
used. The problem of using approximate ®; functions in multichannel calcula-
tions has recently been studied by several workers.”*”**'?" An earlier study
was carried out by Delves.**®

2.2. L* Expansions

Many methods have now been developed for extracting scattering infor-
mation from a calculation using square-integrable (L?) basis functions. These
methods are most closely related to methods used for bound-state calculations
on molecules and thus it can be expected that bound-state computer programs
and approximation methods will be adapted for such scattering calculations.

Square-integrable approximations to resonances have been used for both
atoms and molecules for many years."?* Many ab inifio calculations have been
carried out for resonances in electron scattering by atoms and H,. Semiempiri-
cal calculations have been performed for resonances in electron scattering from
N, 424 €O, and H,0"? and used to discuss vibrational excitation and
dissociative attachment.

Recently the use of square-integrable approximations has been extended
to also include the treatment of nonresonant scattering. Such methods hold
great promise for electron-molecule scattering calculations; so far, however,
most of the calculations which have been performed have been ab initio
electron-atom scattering calculations. A few ab initio electron-molecule calcu-
lations have been performed and references are given in Section 3.1.

Several different methods have been used for L scattering calculations. In
one approach (for example, that used in derivative matrix theory*) the wave
function is obtained in an L? basis in a finite volume enclosing the target. The
size of the volume is arbitrary, except that it should be large enough so that the
solution of the Schrddinger equation in the external region is simple. The
scattering information is obtained by matching the wave functions of the
internal and external regions on the surface of the volume. A reexpansion
technique may be used so that all the integrals except overlap integrals may
still be evaluated over all space (not just the interior region) as is done in
bound-state calculations and computer programs. In another approach*”
(Jacobi matrix theory) a particular complete L? basis set {¢,}a=o is chosen for
*This is also calied R matrix theory of, to avoid confusion with the reactance matrix, NR matrix

‘theory. It has recently been reviewed by Burke and Robb.“*” Some alternative techniques have
been described by Schneider.*2®
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which a zeroth-order Hamiltonian (for neutral targets, H — V;,,,) can be solved
exactly, Then the remaining part of H (for neutrals, V) is approximated by an
N x N matrix representation in the set {¢, N-o and the Schrodinger equation
with this approximation is solved in this basis. In another approach®? the
transition matrix or Fredholm determinant is calculated for complex energies
or coordinates, where the wave function is square-integrable and only L? basis
functions are needed, and continued (extrapolated) to the real axis to obtain
physical scattering information. Other approaches to L? scattering, the T
matrix projection methods, are discussed elsewhere.?"*" In these methods,
overlap integrals involving regular free waves are required.

3. Neglect of Electronic Excitation Except for Final State

3.1. Strong-Coupling, Static-Exchange, and Distorted-Wave
Approximations

At high energies, virtually excited states do not play an important role,
inelastic cross sections become small, and the close coupling equations may be
terminated at two states for inelastic collisions and at one state for elastic
collisions. The former is called the strong-coupling approximation and the
latter is called the static-exchange approximation.

The strong-coupling approximation is useful over a wider energy range for
cases where two states are much more strongly coupled to each other than to all
other states, e.g., for the resonance transition in alkali scattering.‘m) But the
strong-coupling approximation may be useful at intermediate energies for
other optically allowed transitions, too.*¥

The static-exchange approximation is not expected to be valid at low
energies, but it has recently been used for electron—-molecule scattering at low
energies for testing electron-molecule scattering formulations involving
single-center numerical radial functions,">” the Kohn variational method with
nonsquare-integrable basis functions and nuclear-centered Gaussian basis
functions,®® and L* methods using Gaussian basis functions.***'*>

Various versions of the distorted-wave approximation for excitation
collisions have been derived from the strong-coupling approximation,(6'136)
from the two-potential formalism,"*”"**® from the exact formula for the
transition amplitude,® and from many-body perturbation theory.?""**® They
have recently been tested for several problems.(l6‘136’137’140)

3.2. High-Energy Approximations

At energies high enough that electronic states other than the initial and
final ones may be neglected, many other simplifications of the static-exchange
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and strong-coupling approximations may often be made. These approxima-

tions generally treat the scattering electron on quite a different basis than the

bound electrons and these approximation methods may bear little resemblance
to the approximation schemes used for bound states and discussed eisewhere in
this volume. Some of them have recently been reviewed elsewhere.*'4%

From the point of view of the target (rather than the electron—target
system), however, these high-energy approximation schemes often take
the form of a transition matrix element involving the initial and final states of
the target and a one-electron operator.?” For example, the first Born
approximation'’*'14314%148) for the i—f transition involves the operator
expli(k,—k;)r;}. Thus these high-energy theories require accurate charge
densities for elastic scattering and accurate transition densities for inelastic
scattering and may be evaluated using any approximations for the target states
which give accurate values of these quantities.*4”"*®

4. Inclusion of Effect of Omitted Electronic States by Approximate
Polarization Potentials

At intermediate and low energies many electronic states must be included
in the expansion of the electron scattering wave function. Static-exchange and
strong-coupling calculations are generally inadequate and expansions in target
cigenstates converge slowly. For this reason it has become popular to use target
pseudostates®*%7*? or perturbed first-order functions"*”* for the expansion
of wave functions. For elastic scattering a calculation involving one polarized
orbital is often surprisingly accurate."5"'*? Perturbed first-order functions
have also been used in a modified distorted-wave formalism.”*”

Alternatively, the omitted states may be included implicitly by using
modified potentials. The dipole polarization of the target makes a long-range
contribution to such potentials which is very important and for this reason the
difference between the modified potential matrix and the potential matrix
occurring in the truncated close coupling equations is often called the polariza-
tion potential matrix.

Following Voikin,"** “by a generalized potential we refer to a simplified
Hamiltonian which will yield a scattering solution having the same asymptotic
behavior in a certain group of channels as that which the scattering state of the
full Hamiltonian, with the corresponding boundary conditions, has in these
channels.”t Such a generalized potential must be complex if some of the

*The perturbation is the interaction of the target with the incident electron or a multipole
component of this interaction. Such a perturbed first-order function may be called a polarized
orbital,"*" although this term has also been used to describe the free wave associated with the
perturbed first-order function.

TThese potentials are also called equivalent potentials™*>*® or generalized optical potentials. **”
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channels that are not explicitly included are open; the imaginary part accounts
for loss of flux to these channels. Exact formal theories for such generalized
potentials are well known"**"**!*® and are most easily written using the
Feshbach projection operators.

The diagonal elements of such potentials have been well studied and
approximations to them have been heavily used.* In practice, diagonal ele-
ments of the polarization potential are usually represented as real potentials of
the form (letting ry., =1) -

Vo) =~ 210 (68)

where «(#) is the static dipole polarizability of the target as a function of its
orientation in space and f(r) is function which at small r cuts off the strong,
unphysical singularity of the r~* factor. The dipole term dominates because at
large r the leading term in the perturbation of the target there is

N
Hy=r"?% Y rP(cosé;) (69)
i=1
where §; is the angle between r and r;. The static polarizability is used in (68)
because it may be shown that the adiabatic polarization approximation, in
which the target response is calculated for a fixed position of the scattering
electron and the polarization potential is the interaction of the scattering
electron with the perturbed target, is correct in the large-r limit for energies
below the first inelastic threshold.”*” But the adiabatic polarization approxi-
mation overestimates the response near the nucleus at small r where the
scattering electron’s velocity is large and exchange effects become inseparable
from polarization effects. For atomic targets, the polarized-orbital polarization
potential, in which the perturbation is taken to be equal to that given in Eq. (69)
for all r > r; and to be zero for r < r; and the perturbed wave function is also zero
for r < r,, appears to give reasonable, and sometimes even remarkably accurate,
results for electron-atom scattering."*"**” For molecules, however, this
approximation may be less valid since the nuclei are not at the origin.**" The
correct form of f(r) for molecules is not known, although a polarized-orbital-
type polarization potential has been obtained by Lane and Henry"'*? for H,.
~ For molecules, a (), V,.(f), and f(¥) should also depend on the nuclear
coordinates. But very little is known quantitatively about the dependence of
a(f) on internuclear distances and the dependence of f(f) on internuclear
distances has always been neglected.
There have been only a few attempts to include the imaginary part of the
diagonal polarization potential, but both empirical and ab initio approaches
have been taken, 44164

. . . 151,159
*A review and extensive references are given elsewhere. )

1See also the calculation by Hara."%%
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Nondiagonal elements of the polarization potential have likewise received
very little attention,****"'5>1%¥ although there are many studies of the effect
of intermediate electronic states on electron scattering processes and these
studies (some of which even use the Feshbach formalism® )) could providea -
basis for parametrizing generalized potentials.

Huo has developed a closely related conceptual potential called the
effective potential. "> While a generalized potential is determined so that the
scattering calculated for it in a truncated close coupling approximation is exact,
the effective potential of Huo is defined such that the nonexchange scattering
calculated for it in the first Bom approximation is exact.

Generalized potentials have been considered in a variety of approxima- -
tions to the scattering; for example, the Born approximation,”*” the eikonal
approximation,”®” the static-exchange approximation,”*® and coupled chan-
nels approaches.

The Feshbach projection-operator approach has recently been applied to
the analysis of semiempirical approximation schemes for molecular bound
states,® and this work might provide some ideas about how to extend such
schemes to electron scattering problems.
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