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Think Globally, Act Locally: An Introduction to
Domain-based Parallelism and Problem
Decomposition Methods

David E. Keyes *  Yousef Saad '  Donald G. Truhlar ¢

“Think globally; act locally.” This bumper sticker maxim has a
lot to say to practitioners of contemporary high performance computing.
It is increasingly incumbent on computational scientists to respect the
data access hierarchies that accompany the large memories required by
applications programs. These hierarchies are imposed, ultimately, by
the finite size of data storage media and the finite speed of light, but
their presence is asserted more immediately by the hardware and software
overheads of system protocols for the delivery of data. From the frame
of reference of any given processing element, an approximate cost function
can be constructed for the minimum time required to access a memory
element that is any given logical or physical distance away. Such cost
functions typically consist of plateaus separated by sharp discontinuities
that correspond to software latencies where some boundary of the hierarchy,
such as a cache size or a local memory size, is crossed. The ratio of times
required to access remote and local data varies from 10 to 10% in typical
architectures, the latter being characteristic of network cluster computing.
An underlying motivation for the development of problem decomposition
algorithms is that these discontinuities should explicitly be respected by
user applications. If users cannot afford to treat memory as “flat” in large
problems, then neither can they afford to treat all nonzero data dependencies
on an equal footing. Consequently, algorithms must adapt to architecture,
guided by knowledge of the relative strengths of different couplings from the
underlying physics. Ironically, such forced adaptation sometimes results not
in compromise, but in the discovery of intrinsically better methods for flat
memory environments, as well.

Steady-statc natural and human-enginecred systems are often zero-sum
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viii Introduction

networks in which the overall distribution of a quantity to be determined is
conserved. The conservation principle holds over any size control volume,
from the smallest scales requiring resolution up to the global domain.
Somewhere between these extremes are the scales at which the latencies of
the memory hierarchy are asserted. This suggests a multilevel discretization
of the conservation laws, with coarse-grained interactions between “basins”
of fast memory (thinking globally, but on a small problem) and with
fine-grained interactions within them (acting locally, on the scales of the
resolution required). Algorithms exploiting multilevel discretization have
evolved naturally and somewhat independently in a variety of applications,
both continuous (e.g., conservation of energy in a conducting body) and
discrete (e.g., conservation of current in a network of electronic components).
It is an objective of this volume to promote cross-fertilization of such
applications by identifying analogous features between them.

It may be assumed without loss of generality that the challenges of
writing algorithms for large-scale problems on hierarchical memory systems
pccur for physical systems that are irreducible in the matrix theoretic or
group theoretic sense of the term. Each degree of freedom depends upon
all of the others; no degrees of freedom may be removed and solved for
exactly in isolation. For irreducibly coupled physical systems with arbitrary
interactions between the components, there is not necessarily any benefit to
a decomposition of the unknowns of the problem into sets that are proximate
(in space) or strongly coupled (by dynamics) and a mapping into the global
memory in a way that preserves their proximity or strong coupling. However,
the interactions in the systems studied herein decay with an appropriate
“distance” (in physical or basis function index space) sufficiently rapidly
that remote interactions may be lumped or even ignored in certain phases
of the solution process.

There is a history of applying both direct and iterative methods to such
problems. Direct methods involve the construction by explicit condensation
of lower-dimensional systems for degrees of freedom that act as separators.
In the literature of differential equations. this is the Poincare-Steklov
operator; in linear algebra, it is the Schur complement; in physics, it is the
optical potential. The simplest iterative methods involve cycling between
the subdomains whose unknown boundary data are updated by neighbors
and may generically be called Schwarz methods. Many modern approaches
combine direct and iterative aspects in the form of preconditioned Krylov
méthods.

The trade-offs involved in deciding what couplings may be lumped or
ignored, with what consequences in terms of convergence rate or accuracy,
and with what benefits in terms of mapping the computation to the memory
hierarchy, constitute one of the main themes of this volume. A key concept
in this regard is the selection of a reduced basis in which to represent the
solution of a large-dimensional problem. This is an explicit choice in some
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cases (as in a wave expansion), automated but still explicitly identifiable
in some others (as in a Krylov method), and implicit in yet others (as in
a multilevel or multipole method). In several chapters of this volume, the
authors have brought out the benefits that accrue from selecting a good
basis. These benefits range from getting any handle on the problem at
all, to making a quantifiable asymptotic complexity reduction relative to
a full-dimensional method, to identifying “reusable” bases for recurring
computational tasks. A “good” basis is usually physically motivated (or
problem-fitted), hierarchical, or orthogonal, and such good bases permit
the solution process to be separated into distinct parts. A physically
motivated or problem-fitted basis separates components of the result into
dominant parts that may be suggested by some physical approximation
and subdominant parts to patch in for more accuracy. A hierarchical basis
separates components of the solution by their scales of variation. Expansion
in an orthogonal basis provides another way to separate the components
of the solution. Of course, these three attributes of a good basis are not
mutually exclusive.

A signature of the choice of basis visible in some of the chapters is an
expression of a key resolvent operator, or an approximation thereto, by a
sum containing triple products of operators consisting of the inverse of a
different-dimensional operator in the middle, with “rectangular” operators
on either side that map between spaces of different dimensions. For instance,
a Schur complement contains such triple products in which the middle
term may be of higher dimension than the terms of the sum itself. A
Schwarz preconditioner contains such triple products in which the middle
term is of lower dimension. The “rectangular” operators can even be infinite
dimensional in the long direction. In the chapters describing quantum
chemistry applications, these triple products are sometimes expressed in
bra and ket notation, while in the chapters originating from a problem in
the continuum, linear algebraic expressions may be found.

Several other themes arise that transcend disciplinary barriers and are
common within subsets of the chapters. These include:

1. opportunities to bring a physical understanding of the continuous
problem into the discretization or the decomposition, particularly in
the selection of partitions in problems in which the decay metric is
anisotropic; :

.--2. multiple discretizations of the same problem (e.g., on different scales,
or to different orders of accuracy);

3. trade-offs in linear and nonlinear convergence rates that are mediated
by a time-like parameter that stabilizes the nonlinear iteration while
accelerating the linear iteration (by steepening the algebraic decay
rate of the interactions at the same implicit time level), at the price
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of requiring many such time steps;

4. opportunities for reuse of computational results from one iteration on
related problems in subsequent iterations;

5. opportunities for and experience with parallel implementations.

In the rest of this introductory chapter we discuss several examples of
of problem decomposition methods more specifically, each of which is the
subject of one of the following chapters.

Xiao-Chuan Cai presents the classical Schwarz domain decomposmon
approach for the solution of elliptic and parabolic problems with operators
that are dominated by the self-adjoint second-order terms, but need not
be either self-adjoint or even definite. With a fixed geometric overlap
between neighboring subdomains, and with a single coarse-grid problem
involving approximately one degree of freedom per subdomain as part of
the preconditioner at each Krylov iteration, an iteration count bound that
is asymptotically independent of both the resolution of the problem and
the number of subdomains can be achieved. The coarse-grid solution being
critical, recent work examines how to obtain the coarse-grid operator in the
context of irregular grids and decompositions.

Alfio Quarteroni describes domain decomposition methods for hyper-
bolic problems, in which characteristics play an essential role in selecting
partitions and imposing interfacial boundary conditions. Scalar convection
problems and systems of conservation laws are addressed, with applications
from acoustics and elasticity. The author considers three examples of wave
equations describing convective, acoustic, and elastic waves. He illustrates
how these problems can be reformulated in the framework of a decompo-
sition of the spatial domain and devises algorithms based on subdomain
iterations. Finally, he addresses the interaction of time-differencing and
space decomposition.

Petter Bjgrstad and Terje Karstad'’s contribution on two-phase immisci-
ble, incompressible flow in oil reservoir simulation spans the subject matter
of both of the first two chapters with an operator splitting that separately
exploits the hyperbolic and elliptic features of the governing system of PDEs.
The hyperbolic part of the problem is solved by a modified method of charac-
teristics. Of particular interest is the resulting conflict between the optimal
parallel mappings of the two split subproblems. In spite of the compromise,
this chapter makes a strong case for the practicality of high-granularity
paralle] solutions to problems of real-world complexity. In particular, the
resulting computational problems involve up to 16,384 subdomains (with
one-element-wide overlap at their boundaries) and a coarse space. The so-
lution is achieved via data parallel implementation with one subdomain per

processor, approximate subdomain solvers, and a multigrid approach on the
coarse grid.
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V. Venkatakrishnan presents parallel solution techniques for the highly
nonsymmetric Jacobian systems that arise when the convectively dominated
Navier-Stokes equations are discretized on unstructured grids and solved
by Newton’s method. For these multicomponent problems, a coarse-grid
operator leading to an optimal convergence rate is not known; nevertheless,
a coarse system derived from agglomeration proves effective. The equations
are solved by a preconditioned iterative method with a block diagonal
preconditioner corresponding to a fixed sparsity pattern and involving
a factorization within each processor subject to homogeneous Dirichlet
boundary conditions. Such boundary conditions become more and more
accurate as the outer Newton iteration progresses. Partitioning, node
ordering, and the accuracy with which subdomain problems should be solved
for most efficient solution of the overall steady-state problem are addressed.
An implicit scheme for unstructured grids is demonstrated that requires
fewer iterations for a given nonlinear residual reduction than the best single-
grid method.

Dana Knoll and co-authors extend Krylov-Schwarz domain decompo-
sition methods without a coarse-grid operator to nonlinear problems. The
edge plasma fluid equations are a highly nonlinear system of two-dimensional
convection-diffusion-reaction equations that describe the boundary layer in
a Tokamak fusion reactor. There are six or more components with compli-
cated interactions through composition-dependent transport coefficients and
source/sink terms. A matrix-free version of Newton's method exploits the
Krylov nature of the solver (in which the action of the Jacobian is probed
only through matrix-vector products).to avoid forming the actual Jacobian
of the nonlinear system, except for diagonal blocks used only in precondition-
ing and updated infrequently. Matrix-free methods depend critically upon
numerical scaling since they approximate matrix-vector products through
a truncated Taylor series. The implications for the robustness of various
Krylov solvers are explored.

William Gropp and Barry Smith present an implementation philosophy
and a publicly available implementation in portable parallel software of a
variety of preconditioned Krylov algorithms for domain decomposition, in
which the notion of subdomain is generalized to the block partitioning of a
sparse matrix. The emphasis is on performance of such solvers on a variety
of distributed memory architectures in the limit of large problem size, and
the resulting trade-offs in convergence rate and parallel efficiency.

" Andrew Lumsdaine and Mark Reichelt discuss the spatio-temporal
simulation of semiconductor devices via accelerated versions of the waveform
relaxation method, a classical method for systems of temporally varying
ordinary differential equations. In contrast to conventional parabolic
treatments, in which space parallelism only is sought at each time level, the
entire space-time cylinder is partitioned for parallel processing purposes.
Time, being causal the initial value problems under consideration here,
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invites a special windowing treatment.

Graham Horton applies two-level and multilevel discretizations beyond
the realm of PDEs to steady-state Markov chains, which arise, for instance,
in queuing theory, and in the performance analysis of networks. Of
particular interest is the derivation of a coarse-grid correction scheme
that never violates the feasibility range of bounded variables, in this
case probabilities. The resulting scheme is equivalent to a conventional
multigrid method but with nonlinear (solution-dependent) intergrid transfer
operators. Simple queuing networks with highly anisotropic coefficients, for
which the novel multilevel method is particularly effective, are seen to have
the same algebraic structure as convectively dominated transport equations.

Charbel Farhat also focuses on the coarse level of a multilevel precon-
ditioner, from a parallel efficiency point of view and in the context of mul-
ticomponent problems of structural mechanics. The practically important
problems of multiple right-hand sides in engineering analyses and how to
amortize for multiple right-hand sides in the context of iterative methods
are also addressed. Of particular interest are the extensions of domain de-
composition methods for “nearby” systems that arise in design problems,
time-dependent problems, and eigenvalue problems. Scalable results are
demonstrated for structural mechanics problems.

Francois-Xavier Roux presents the dual Schur complement method of
domain decomposition with application to nonlinear elasticity problems,
and shows the dual to be preferable from a spectral convergence theory
point of view. Along with Farhat, he addresses reuse of previous right-
hand side work in reconjugation and extends to nonlinear cases in which
the matrix also changes. Parallel implementation on distributed-memory
parallel machines is discussed.

Roland Glowinski and co-authors show how domain decomposition and
domain embedding techniques, seemingly complementary techniques for
making irregular geometry amenable to acceleration by fast solvers, may
be merged in the solution of both elliptic and time-dependent problems.
This approach is based on using an auxiliary domain with a simple shape
that contains the actual domain with a more complicated shape.

Jacob White and co-authors exploit the fast multipole and fast Fourier
transform methods in the context of a boundary element discretization
of electrostatic potential problems. Boundary element formulations lead
to"dense matrix operators of sufficient diagonal dominance and superior
conditioning that rapid convergence of Krylov methods can be obtained
without complex preconditioners; however, the matrix-vector muitiply is
dense, and hence expensive. The fast multipole method applies the action
of the underlying operator without forming it explicitly, resulting in order-
of-magnitude reductions in asymptotic complexity while guaranteeing an
arbitrary given accuracy in the result. The techniques are applicable to a
wide variety of engineering applications based on 1/r? interactions.
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The remaining chapters illustrate how problems and solutions analogous
to those in mechanics applications in the preceding chapters also arise
in quantum mechanics. In modern quantum mechanics, one works in
basis function space rather than physical space, but the space is still
structured into subsets that are strongly coupled within and weakly coupled
between. Although the various quantum mechanical problems: discussed
have significant differences, there are recurring themes such as basis set
contraction, which occurs in one way or another in all of these chapters.

The chapters of Ellen Stechel and Hans-Joachim Werner are concerned
with large-scale electronic structure problems, which involve elliptic eigen-
value problems of very large dimension. Contraction occurs at several levels
in electronic structure problems. Stechel includes an overview of recent at-
tempts to reach the ultimate scaling limit whereby the computational effort
scales linearly in the number of particles or dimensions. Some of the tech-
niques employed are very similar to the work described by White. Werner
reviews modern numerical methods for the treatment of electron correlation
effects, including the internally contracted configuration interaction method
in which sets of physically related many-body basis functions are treated as
a single degree of freedom to reduce the size of the variational space. He also
discusses the vectorization and parallelization strategies that are required to
make the resulting algorithms efficient, including techniques for iterative so-
lution of large matrix eigenproblems, solution of nonlinear equations in mul-
ticonfiguration self-consistent-field and coupled-cluster approaches, and the
use of direct inversion on an iterative subspace. Problems of vectorization,
parallelism, input/output bottlenecks, and limited memory are addressed,
and the I/O bottleneck is addressed by disk striping. This provides an ex-
ample of parallelism in communication that seems less widely discussed than
parallelism associated with multiple processors.

Zlatko Bagié and Georges Jolicard and John Killingbeck discuss the vi-
brational eigenvalue problem in quantum mechanics. Bacic introduces the
discrete variable representation (DVR), in which the analogies between func-
tion spaces and physical spaces are very clear, and he presents DVR-based
divide-and-conquer computational strategies for reducing the dimensionality
of the Hamiltonian matrix. Jolicard and Killingbeck discuss the wave oper-
ator theory as a tool to define active spaces and simplified dynamics in large
quantum spaces. They present a partitioning integration method for solv-
ing the Schroedinger equation based on projections in reduced active spaces.
For the Floquet treatment of photodissociation experiments, the choice of
the relevant subspaces and construction of the effective Hamiltonians are
carried out using the Bloch wave operator techniques. Recursive methods
for the solution of the basic equations associated with these operators, based
on Jacobi, Gauss-Seidel, and variational schemes are given.

David Schwenke and Donald Truhlar discuss large-scale problems in
quantum mechanical scattering theory. In quantum mechanical scattering
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theory the basis functions may be delocalized, and they are typically grouped
in sets associated with channels. At the highest level, associated with distor-
tion potential blocks, Schwenke and Truhlar explicitly couple those channels
which physical arguments indicate are the most strongly interacting. At the
intermediate level, they can perform a sequence of calculations increasing
in complexity, optimizing the (contracted) basis functions at each step. At
the lowest level, they discuss replacing a class of weakly coupled channels
with a phenomenological optical potential. The optical potential idea can
also be introduced using a different kind of motivation for the partitioning,
as a way to reduce the computational effort by partitioning the energy-
independent parts of the problem from the energy-dependent parts. The
resulting “folded” formulation has interesting computational analogies to
domain decomposition although it is accomplished in basis function space
rather than physical space. Finally the partitioning based on strength of
coupling can be re-exploited by solving the coupled equations iteratively
with preconditioners blocked by the same physical considerations as were
employed to block the distortion potentials.

The work summarized above underscores the importance in large prob-
lems of informing the solution process directly with the physics being mod-
eled and with the architecture for which the computation is destined, and
portrays the tension between concentrating operations locally and taking
strategic account of remote information that dominates parallel algorithm
development today and for the foreseeable future.
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