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1. Introduction 

Accurate quantum dynamics calculations for atom-diatom reactions have advanced to the 
stage where the nuclear-motion Schrödinger equation can be solved essentia1ly exactly for 
a given potential energy surface [1]. For example, we recently reported accurate quantum 
mechanical rate constants for the reaction 0 + H2 -+ HO + H over a wide temperature 
range [2]. In this case the potential energy surface is very weIl known, and the dynamical 
results for the most accurate potential energy surface [3] agree with experiment [41 within 
12% (maximum deviation) over the 200-900K temperature interval, with slightly large 
errors at higher T (16% at 1300 K, 22% at 1500 K). This is quite satisfying for a totally 
ab initio calculation of a chemical reaction rate. 

Unfortunately, ace urate quantum dynamics calculations are beyond the state of the art for 
systems with 5 or more atoms. But the atom-diatom calculations can be used to test the 
accuracy of more practical theories. For example, a 1986 calculation [5] based on 
variational transition state theory (VTST) with semiclassical tunneling (ST) contributions 
agrees with the ace urate quantum dynamical results2 within 10--20% over the whole 300-
1500 K range of T. This is particularly encouraging for two reasons: (i) VTST/ST 
calculations provide an easily understood and classically visualizable pieture of dynarnical 
bottlenecks and tunneling paths [6]; (ii) VTST/ST calculations are practical for much 
larger systems [7]. 

VTST [8] provides a generalization of conventional transition state theory [6a,9] (TST). 
A conventional TST calculation is equivalent to calculating the one-way fIux through a 
phase space hypersurface that divides reactants from products and passes, perpendicular 
to the imaginary-frequency normal mode, through the highest-energy saddle point of the 
potential energy on the lowest-energy path from reactants to products [6c]. In VTST one 
still calculates a one-way fIux through a hypersurface that separates reactants from 
products, but now the location and orientation of the dividing surface are chosen, in 

D. Heidrich (ed.), The Reaction Path in Chemistry: 
Current Approaches and Perspectives, 229-255. 
© 1995 Kluwer Academic Publishers. 

229 

truhlar
Text Box
"Direct Dynamics Method for the Calculation of Reaction Rates," D. G. Truhlar, in The Reaction Path in Chemistry: Current Approaches and Perspectives, edited by D. Heidrich (Kluwer, Dordrecht, 1995), pp. 229-255. [Understanding Chem. React. 16, 229-255 (1995).]



230 DONALD G. TRUHLAR 

accordance with the fact that this flux provides a classical upper bound to the equilibrium 
reaction rate, to minimize the one-way flux [6c,1O). Where the variation is carried out for 
a thermal rate constant, i.e., when the flux is calculated for a canonical ensemble, this is 
called canonical variational transition-state theory (CVT). A practical way to accomplish 
this variation of the dividing surface is to consider a one-parameter sequence of dividing 
surfaces locally orthogonal to areaction path, with the parameter being the distance s 
along the path at which the surface intersects the path [8j,8k, 10, 11). 

To carry out a VTST calculation, one ftrst deftnes areaction coordinate s. In our work we 
deftne this as the union of the paths of steepest descents from the saddle point (which is 
the conventional transition state) towards reactants and towards products, where these 
paths are computed in an isoinertial coordinate system (12), e.g., normal coordinates of 
the saddle point [12a,12d,12e). (An isoinertial coordinate system is any system in the 

F 
kinetic energy has the form L pr /21l, where Il is a common reduced mass for all 

i=l 
degrees of freedom.) The union of these paths is called [12d,12e) the minimum-energy 
path (MEP); some workers call it the intrinsic reaction path, or less suitably, the intrinsic 
reaction coordinate [12t]. 

The calculation of the one-way classical flux through the dividing surface at s reduces 10 

Flux = k[X][Y) (1) 

where k is the rate constant, [X) and [Y) are concentrations of the bimolecular reactants 
(for a unimolecular reaction one gets the same results without [V)), and [6c,8k) 

(2) 

where kB is Boltzmann's constant, T is temperature, h is Planck's constant, and KgT(s) 

is the classical equilibrium constant for 

X+Y -- GTS(s) (3) 

where GTS(s) is a species in which one degree of freedom is suppressed by constraining 
the value of the reaction coordinate to be s. Although GTS(s) is not an ordinary species, 

it is conventional, dating back to Eyring's 1935 paper [13), to replace K~T(s) by a 

quantal equilibrium constant, in which the levels of X, Y, and GTS(s) are quantized. 
This was justifted as the leading term in a semiclassical series by Wigner [14], but it is 
neither rigorous nor unique. Recently though it has been shown [15] that short-lived 
resonances occur at maxima in vibrationally adiabatic potentials, with a spectrum 
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corresponding very closely to the quantized energy levels usually assumed for GTS(s). 
These states are broadened in accordance with their finite lifetimes, and the broadening 
may also be interpreted as a consequence of tunneling [15]. The level widths for H + H2 
[I5a] are several ksTbelow the transition state theory thresholds, which leads to large rate 
enhancements. 

For the D + H2 reaction, the VTST/ST calculations mentioned above [5] indicate that 
tunneling increases the rate constant by factors of 3, 7, and 60 at 400, 300, and 200 K, 
respectively. This confirms that tunneling is an important ingredient in accurate reaction 
rate calculations. Table 1 shows similar rate enhancements for several other gas-phase 
hydrogen-atom transfer reactions we have studied in recent years, namely, the H + H2 
reaction [16], the 1,5 sigmatropic shift in cis-pentadiene [7b], the CF3 + CI4 reaction, 
[17] and the OH + CH4 reaction [18]. I anticipate similarly large below-threshold 
tunneling contributions for many H, H+, and H- transfer reactions in both the gas phase 
and solution. 

We have found that several ingredients are required for an accurate semiclassical 
calculation of tunneling contributions to chemical reaction rates [7b, lOa, 16, 17,19], and 
we have developed multidimensional semiclassical tunneling methods to calculate such 

Table 1. Rate constant including tunneling divided by rate constant 
without tunneling for four reactions at various temperatures. 

T(K) 

H+H2 
250 
300 
500 

k(VTST/Sn + k(VTSn 

60 
20 
3 

1,5 sigmatropic shift in cis-pentadiene 
500 6 

CF3 +CI4 
300 200 
400 20 
500 7 

OH+CI4 
250 20 
300 7 

400 2 1 
2 
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tunneling contributions [7b,lOa,16,17]. A critical element in making such calculations 
practical is that for motion in the vicinity in the minimum-energy path we base the 
tunneling calculation 

on the ground-state vibrationally adiabatic [12b,12d,12e,20] potential energy curve, called 

~ (s). The calculation of v?(s) assurnes that vibrational motions transverse the reaction 

path adjust adiabatically to reaction-path motion and hence retain their quantum number 
(not their energy) [l2b,12d,12e]. This is justified by the reaction-coordinate motion 
being in a threshold region. Analysis of accurate quantal calculations confirms, 
furthermore, that at the lowest energies at which reaction occurs, the flux emanating from 
severallow-energy reactant states all tends to pass through the transition state [l5b,21] 

region in the ground vibrational state. The kinetic energy operator to associate with v?(s) 

is not, however just _(1'12 / 21l)d2 / ds2• Because the MEP is curved, there is an internal 
centrifugal effect. Unlike the classical centrifugal force, which points to the convex side 
of a curved path (bobsied effect [12b]), in quantal tunneling regions the centrifugal force 
is toward the concave side of the path, and it causes corner cutting [l2b,19a,22]. 

For small curvature of the reaction path, we have found, generalizing Marcus and 
Coltrin's treatment [23] of collinear H + H2, that these negative internal centrifugal effects 
may be treated accurately [19c,1ge,19f] even for multi dimensional systems in terms of a 
single dominant tunneling path [l9a]. We developed a quantitative multidimensional 
treatment based on an implicit effective path that cuts the corner to no greater extent in any 
transverse mode than the distance from the MEP to that mode's concave-side ground-state 
turning point [24]. Thus we calculate an action integral along an implicit path at or inside 
of the concave-side vibrational turning point in the direction of the intern al centrifugal 
force (this force picks out, for each s, a particular linear combination of vibrational mode 
direction along which corner cutting occurs) [7b,24]. The path is implicit because the 
quantity direcdy approximated is the effective reduced mass, not the tunneling path. The 
method is called the small-curvature tunneling (SCT) approximation for short or 
centrifugal dominant small-curvature semiclassical adiabatic (CD-SCSA or CD-SCSAG) 
approximation for completeness (the G in the latter acronym stands for ground-state, and 
is included when the CD-SCSA algorithm is used to calculate ground-state transmission 
coefficients). 

When reaction-path curvature is large, the situation is more complicated [l9b,19d,24,25]. 
In this case, there may be significant contributions for a range of tunneling paths, the 
tunneling in the exoergic direction of reaction may proceed directly into vibrationally 
excited states of the products, and the tunneling paths may proceed through regions 
farther from the MEP than the transverse vibrational turning point, the radius of curvature 
of the reaction path, or both. In the general case, points along the dominant tunneling 
paths cannot be described in terms of an expansion of the potential about the MEP. The 
wider region covered by significant tunneling paths in the large-curvature case is called the 
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reaction swath. In our calculations we switch smoothly from reaction-path coordinates to 
local 3N-dimensional Cartesians in this region. For large-curvature cases we calculate 
action integrals in the exoergic direction, including tunneling into quasidiabatic states of 
the product, along series of straight-line paths satisfying a resonance 
condition[19d,24,26]. The semiclassical algorithm for tunneling calculations in large­
curvature cases is called the large-curvature tunneling (LCT) approximation for short or 
the large-curvature version-3 (LC3 or LCG3) approximation to be more precise (the G in 
the latter acronym stands for ground-state, and is included when the LC3 algorithm is 
used to calculate ground-state transmission coefficients). 

Often it is not possible to tell apriori whether the SCT or LCT approximation is most 
appropriate. Typically a poor choice of tunneling path will underestimate the tunneling, a 
result which can be understood by identifying the optimum semiclassical tunneling path 
with the path of least imaginary action [26]. Thus we employ an approximation called the 
microcanonical optimized multidimensional tunneling approximation (JlOMT) [17]. In 
this method, for each total energy we calculate the tunneling probability by both the SCT 
and LCT approximations, and we accept whichever gives the larger tunneling probability 
as the better result. 

Whenever one includes tunneling one should also include nonclassical reflection [27]. 
Just as tunneling represents the quantum mechanical phenomenon by which a system with 
less energy than the maximum of the effective potential is nevertheless transmitted past it, 
nonclassical reflection is the quantum mechanical (diffraction) effect by which a system 
with more energy than the maximum of the effective potential is nevertheless reflected. 
Because these effects partially cancel, one should not include one without the other. 
Because the Boltzmann factor is bigger in the tunneling region, the result is that tunneling 
usually dominates nonclassical reflection, and it is common to mention only tunneling 
when speaking of the net effect. The net factor by which these two effects increase (or 
decrease) the reaction rate is called the transmission coefficient. 

2. Dynamical methods 

The dynamics methods we employ are reviewed above, and full details are presented 
elsewhere. In particular, the polyatomic variational transition state theory calculations are 
described briefly in the original journal article [28] and in full detail in a book chapter 
[10]. The SCT, LCT, and JlOMT tunneling methods are also explained elsewhere 
[7b,17,24,25]. VTST and these multidimensional tunneling methods are also 
summarized in the chapter by Isaacson in the present volume. 

The discussion so far has concentrated on the calculation of bimolecular rate constants for 
gas-phase reactions under thermal conditions. Many extensions, e.g., unimolecular 
reactions [10], microcanonical ensembles [8j,81,10,29], and state-selected reactions 
[19c,30] are described elsewhere but are not reviewed here. 
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At this point we review the infonnation needed for the dynamics calculations described 
above. The essential input to the dynamics calculations can all be calculated from the 
masses of the atoms and a potential energy surface (also called a potential energy function 
or the Bom-Oppenheimer potential.)* 

First we must find (in the language of electronic structure codes-optimize) the saddle 
point and calculate its energy (which is called V* when measured with respect to the 
motionless state of reactants) and hessian. From the geometry we calculate moments of 
inertia, and from the hessian we calculate vibrational frequencies. Similarly we calculate 
the geometry, energy, moments of inertia, and vibrational frequencies for reactants. 

Then we calculate the MEP in the direction toward the reactant or reactants (negative s) 
and in the direction toward product or products (positive s). This may be done by 
following the negative gradient [8k,81,1O,20e] (Euler method), following the negative 
gradient with added stabilization steps [12d,32], or by various [32c,32d,32e,33] more 
sophisticated (though not necessarily more efficient) algorithms. Typically this requires a 
small step size, called the gradient step size ös. At aseries of points along the MEP, 

spaced by the generalized normal mode stepsize & (~ ös), we calculate the Hessian and 
carry out a generalized nonnal mode analysis to find the transverse vibrational directions 
and frequencies. These transverse vibrational modes are localized to the (3N-7)­
dimensional space (3N-6 for a linear molecule) that is orthogonal to the MEP [lI], as 
weIl as to overall translation and rotation, which is accomplished conveniently by 
restricting attention to the coordinate hyperplane perpendicular to the tangent to the 
reaction path [8j] or by diagonalizing a projected force constant matrix in isoinertial 
coordinates [34]. 

We estimate the electronic partition functions of reactants and products from the 
degeneracies and excitation energies of low-lying electronic states. Typically only the 
ground electronic state needs to be included for closed-shell species and only fine 
structure excited states (e.g., 2pl/2 for halogens, 2nl/2 for OH) need be included for 
open-shell species. 

In general reactant properties are denoted by a superscript R, for the supersystem of X 
and Y, or by separate superscripts X and Y, conventional transition state properties are 
denoted *, and generalized transition state properties are denoted by the superscript GT 
andlor by affixing the arguments s. 

From the energies, moments of inertia, symmetry numbers, vibrational frequencies CJ)~ 
and CJ)j(s), and reduced moments of inertia (the latter if one or more vibrations is 

*The gradient field of the potential energy surface is the force field. 
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treated as a hindered internal rotor), we calculate the vibrationally adiabatic ground-state 
potential curve as [81,1O,2Od,28] 

(4) 

where F is the number of internal degrees of freedom (3N-fJ for a general species and 
3N-5 for a liner species) The generalized standard-state free energy of activation profile 
is computed as [20e,35] 

(5) 

VMEP(S) is the Born-Oppenheimer potential energy along the MEP. The standard-state 
free energy of reactants CR,O<n is computed by weIl known formulas, and CGT,O(T,s) is 
computed similarly, but excluding contributions from the reaction coordinate s. 

In calculating CGT,O(T,s) and CR,O, vibrations that correspond to hindered internal 
rotations are singled out for special attention, and a correction for their anharmonicity is 
added using a one-dimensional model [17,24,36]. Multiple saddle points due to hindered 
internal rotation or symmetry are handled in calculating CGT,O(T OS) by standard use of 
symmetry numbers. 

The canonical variational transition-state theory (CVT) rate constant is given by 

(6) 

where for bimolecular reactions K*',O is the reciprocal of the concentration in the standard 
state. (For unimolecular reactions it is unity).) 

The final predicted rate constant, including tunneling, is given by 

(7) 

In the smaIl-curvature tunneling approximation, K(n requires, in addition to some of the 
information detailed above, the curvature components Cm(s) of the curvature of the 
reaction path, where each curvature component measures the projection of the curvature 
vector on a particular generalized normal mode direction m. Calculation of KLCT(n or 

KIlOMT<D requires, in addition, values of the Born-Oppenheimer potential V in the 
reaction swath, typically at points where it cannot be computed from the available 
harmonie expansion around the MEP. 
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3. Interfacing the dynamics calculations to the potential energy surface 

We have employed four general strategies for obtaining potential energy surface 
information for reaction-path dynamics calculations, and these are discussed in this 
section in chronological order of their development 

3.1. ANAL YTIC P01ENTIAL ENERGY SURFACES 

The most obvious way to specify a potential energy surface is as an analytic function of 
the coordinates. Typically such a function is obtained by semiempirical valence bond 
theory andlor a valence force field with bond breaking terms or by a fit to ab initio 
electronic structure calculations of the Born-Oppenheimer potential energy surface as a 
function of internuclear distances. This kind of analytic potential has been widely 
employed for systems with three atoms and less widely so for systems with 4-12 atoms 
[37]. Some recent examples include surfaces for the reactions H + Cl4 [38], CI-(H20h 
+ CHCI [7a,39], F + H2 [40], and H + HBr [41]. 

The difficulty with this approach is that it is very time consuming and typically 
unsystematic. For polyatomics, the functional forms may suffer from missing or 
inadequate stretch-stretch or stretch-bend couplings. Even for triatomics, the barrier 
shape may depend strongly on the chosen functional form. One requires manyelectronic 
structure calculations and considerable care to create an accurate (or even useful) surface 
with all the important internal-coordinate couplings and without artifacts or spurious 
features. 

The methods presented next attempt to circumvent the laborious and painstaking fitting 
process in one way or another. These methods may all be called direct dynamics in that 
the dynamics calculations are based directly on the electronic structure data without the 
intermediary of a fit. The first of the methods (section 3.2) is called straight direct 
dynamics because it is an implementation of this approach in its purest and most 
straightforward form. 

3.2. STRAIGHT DIRECT DYNAMICS 

In a second approach, called direct dynamics, we carry out the dynamics calculation 
precisely the same way as when using an analytic potential energy function, but whenever 
a potential energy, gradient, or hessian is needed, it is calculated by a fuH electronic 
structure calculation, employing ab initio methods [42], ab initio plus scaled-correlation 
methods [43], density functional or tight-binding theories [44], or semiempirical neglect­
of-differential overlap methods [45]. The direct dynamics approach was originally 
employed for classical mechanical dynamics calculations [46] in wh ich context it has 
received considerable further development [47]. Direct dynamics methods have also been 
employed for trajectory surface hopping calculations [48]. The present chapter is 
concerned with semiclassical direct dynamics based on reaction paths or reaction swaths; 
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several examples of this kind of calculations have been reported, both in our group 
[7b,17,32d,49] and by others [50], and reviews [51] of some of this work are available 
as weIl. 

One difficulty with straight direct dynamics is that the large number of electronic structure 
calculations required tends to mitigate against employing high levels of theory. Thus, for 
example, some direct dynamics calculations have employed minimum basis sets [32d] and 
semiempirical molecular orbital theory [7b]. 

One way to keep the cost of the calculations low but improve the accuracy is to use 
semiempirical molecular orbital calculations in which some of the parameters are fit to data 
for the specific reaction of interest or for a limited range of reactions. We call this 
approach SRP for specific re action parameters or specific range parameters. In several 
applications we have combined the SRP approach with semiempirical molecular orbital 
theory employing the neglect of diatomic differential overlap (NDDO) approximation. 
This is called the NDDO-SRP approach [49]. 

The NDDO parameters may be adjusted using experimental exoergicities, activation 
energies, rate constants, and/or reagent geometries and frequencies or by using higher­
level ab initio data at selected stationary points or other geometries. Altematively one can 
use some combination of experimental and ab initio data, with the combination depending 
on availability of data and feasibility of high-level calculations. The parameters may be 
adjusted by trial and error [17,49a,49b,49c,49d] or by an optimization routine, for 
example by a genetic algorithm [4ge]. 

The reaction CF3 + HCD3 --+ CF3H + CD3 provides a prototype example of the use of the 
NDDO-SRP approach [17]. 

One difficulty with this approach is that, although it is not very difficult to adjust a few 
NDDO parameters to improve the predicted barrier height and exoergicity, one must be 
careful not to introduce spurious wells or spuriously deep wells in the potential energy 
surface or to make the predicted reactant and product geometries or vibration al frequencies 
unphysical. Furthermore, if one tries to adjust the NDDO parameters to also improve the 
saddle point andlor reagent frequencies, the task becomes considerably more difficult. As 
one practical solution to this problem, we have found [4ge,52] that genetic algorithms 
[53] are a useful technique for this difficult parameter adjustment. (Genetic algorithms are 
the most weIl known members of the larger set of evolutionary strategies [54] for 
nonlinear optimization.) 

3.3. INTERPOLATED VARIA TIONAL TRANSITION STA TE THEORY (IVTST) 

We have developed another approach to direct dynamics that we call interpolated 
variational transition state theory (lVTST) [55]. In this approach we carry out electronic 
structure calculations, including energies, gradients, and hessians, at the reactants, 
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products, saddle point, and zero, one, or two additional points near the saddle point. 
These additional points are obtained by taking a step along the MEP in the direction of 
reactants or products or hoth. All other infonnation needed for VTST calculations with 
scr transmission coefficients is obtained by interpolation from this data. 

The IVTST method was tested [55] for the OH + H2 and CH3 + H2 reactions and six 
isotopomeric analogs by using previously available [38,56] analytic potential energy 
functions for these systems. To carry out the tests we pretended that we know the 
potential energy surface data only at the three stationary points (reactions, products, and 
saddle point) and zero, one, or two additional points on the MEP near the saddle point. 
The rest of the surface infonnation was interpolated. The tests were very encouraging at 
the level of variational transition state theory without tunneling or including zero-curvature 
tunneling. Small-curvature tunneling calculations were also carried out and were less 
accurate in some cases due primarily to the difficulty of interpolating the effective reduced 
mass quantitatively in regions where its shape is qualitatively correct. 

The IVTST method is presently developed only for small-curvature tunneling. Since 
large-curvature tunneling often proceeds through regions far from the MEP, it is not clear 
if this could be interpolated reliably using only the data used for the presently developed 
interpolation schemes. Further work to extend the IVTST method to large-curvature 
systems would be desirable. 

Even for small-curvature tunneling, a difficulty with the IVTST method as applied so far 
is that the nonstationary points on the MEP are very near the saddle point. This is 
primarily a matter of economics since it is less expensive to follow the MEP only a short 
distance. This could be circumvented in the future by various strategies. For example, 
one could take a few or several gradient-only points with ~s < t\s before calculating the 
additional nonstationary-point hessians, or one could generalize the method to use points 
offthe MEP. 

The IVTST method has been applied successfully to the reactions Cl + Cf4 [55], OH + 
Cl4 [18], OH + CD4 [57], and OH + C2H6 [7d]. Because these applications were very 
successful, and because IVTST can be incorporated into electronic structure codes in a 
very systematic and general way, IVTST may often be the method of choice for future 
applications. Hence further development of the method would probably be very useful. 
Nevertheless we are currently even more enthusiastic ahout dual-level schemes, which are 
discussed next. 

3.4. DUAL-LEVEL DYNAMICS 

Our third generation direct dynamics scheme is called VTST with interpolated 
corrections (VTST-IC) or dual-level direct dynamics (DLDD) or triple-slash (/1/) 
dynamics. This approach involves three steps [49c]: 



DIRECT DYNAMICS METHOD 239 

(1) First, using straight direct dynamics with a low level (LL) of electronic structure 
theory, we perform fuH VTST calculations with optimized multidimensional tunneling, 
including frequencies along the reaction path and large-curvature tunneling through the 
reaction swath. 

(2) Then, using a high level (HL) of electronic structure theory, we carry out energy and 
frequency calculations at 3 or 4 stationary points. 

(3) In the final step we use the HL calculations to interpolate corrections to the energies, 
frequencies, and moments of inertia of the LL ones. 

If HL denotes the high level (e.g., QCISD(T)/aug-cc-pVTZ or QCIS(T)/aug-cc­
pVTZIIMP2/aug-cc-pVTZ) and LL denotes the low level (e.g., NDDO-SRP or 
MP2/6-31G*), then the final result of these three steps is denoted HLIIILL, which is a 
direct generalization of the /I notation of electronic structure theory. In particular //ll.. 
means that stationary point geometries are calculated at level LL, whereas I/ILL mans that 
the reaction path is calculated at level LL. 

In step (1) we calculate geometries, reaction-path curvature, and energies along the MEP, 
we obtain the generalized normal modes orthogonal to the MEP, including s-dependent 
frequencies and mode directions, and for large-curvature tunneling we calculate energies 
in the corner-cutting swath. In our VTST-IC algorithm [49c] we correct aH the energies 
and frequencies but only two aspects of the geometries, namely the moments of inertia for 
the rotation al partition functions and the reduced moments of inertia for the hindered 
internal rotation(s), if present. The geometries, however, are an intrinsic source of the 
reaction-path curvature and the mode directions (which affect the tunneling calculations) 
and these are not corrected. Thus it is very important that the low-Ievel calculation give 
reasonable geometries along the reaction path, including of course the saddle point 
geometry. 

As a first step in the validation of the new approach, we have performed two critical tests. 
In one we tested 1/1 direct dynamics against straight direct dynamics for the reaction CF3 + 
HCD3 ~ CF3 H + CD3 [49c]. This reaction was chosen because it is dominated by 
large-curvature tunneling [17], and so it tests the most difficult part of the correction 
algorithm. In this case we used our 6-parameter NDDO-SRP implicit potential energy 
function [17], based on changing six parameters of the general AMI [45b,45c] 
parameterization of NDDO theory, as the high level of theory, and we created a purposely 
very inaccurate surface to serve as the low level in order to provide a severe test. The test 
was carried out by comparing a straight direct dynamics calculation at the high level to 
another calculation in which we assumed that we know the high level results through the 
hessian expansion at four stationary points (reactants, weH between reactants and saddle 
point, saddle point itself, and weIl between saddle point and products) and used these 
results to "correet" the low-level calculation. For the low level, we varied only one 
parameter in the MNDO [45aj general parameterization ofNDDO theory in order to make 
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the exoergicity right (0.7 kcal exoergic). This yields a barrier height that is 6.6 kcal too 
high (21.2 kcal vs. the "high-level" 14.6). It is very easy to get a better low-Ievel surface, 
but that was not our goal here. Rather this is designed to be a difficult test for dual-level 
direct dynamics. Table 2 shows some of the results [49c]. At 350 K, a straight direct 
dynamics calculation predicts a rate constant larger than conventional TST at 350 K by a 
factor of about 20. The table shows that we can get a factor of about 15 by using the 
high-level results through a hessian expansion about only four stationary points. The 
actual ratios computed using more significant figures than shown in Table 2 yield factors 
of 20 and 13, respectively, a discrepancy of 35%. This discrepancy is reduced to 15% at 
400 K and to an average value of 28% at 600-1500 K. For CF3 + CD3H ~ CF3D + 
CD2H, the average error from 350 K to 1500 K is only 25%. Recalling that the low-Ievel 
calculation used was designed to provide a difficult test, the results are satisfactory. 

A second test was carried out for the reaction OH + CI4 ~ H20 + CH3 f49c]. Results 
obtained at several levels for this reaction are shown in Table 3. The original AMI 
parameters yield a barrier height of 11.1 kcallmol and an exoergicity of 21.1. The 
cc-pVTZ basis set of Dunning [58] was adjusted to yield the correct (experimental) 
exoergicity of 13.3 kcaIlmol at the MP2-SAC [43bJ level; this calculation then predicts a 
barri er height 0 f 7.4 kcaVmol and a conventional TST rate constant at 350 K of 0.4 x 

Tab/e 2. Rate constants (10-20 cm3 molecule-1 s-l) calculated by conventional and 
variational transition state theory for CF3 + CHD3 ~ CF3H + CD3. 

Potential surface Dynamical T k(T) 
level (K) 

High level Low level Approach HL points 

AM2-SRP(6)a conventional 2 TST 350 0.2 
400 2 

AM1-SRP(6) single-level 600 CVTIIlOMT 350 4 
400 20 

MNDO-SRP(1 ) " 600 CVTIIlOMT 350 0.0003 
400 0.004 

AMl-SRP(6) MNDO-SRP(1) dual-level 4 CVTIIlOMT 350 3 
400 17 

aNumber in parentheses is number of SRP parameters. 
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Table 3. Rate constants (10-14 cm3molecule-1 s-I) calculated by various approaches 

and with various sources of potential data for the reaction OH + ClI4 -+ H20 + CD3. 

Potential surface 

High level Low level 

AMl-SRP8 

AMl-SRP 

MP2-SAC/cc-pVTZc . 

" 
" 
" AMl-SRP 
" " 

atwo parameters reoptimized 
breactant and saddle point only 

Approach 

conventional 

VTST 

conventional 

IVTST 

" 
VTST-IC 

" 

Dynamical 
level 

HLpoints 

2b TST 

210 CVT~OMT 

2b TST 

3 CVT/SCT 

5 CVT/SCT 
3 CVT/SCT 
3 CVT/~OMT 

Experiment 

cbasis adjusted for correlation balance as explained in Ref. [18] 

k 
(T= 
350K) 

1.1 

0.9 

0.4 

2.0 

1.1 
1.1 
1.1 
1.6 
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10-14 cm3molecule-1s- l • Using the reactant and saddle point properties required for this 
calculation plus a calculation at the product geometry (which was needed to adjust the 
basis set to predict the correct exoergicity) along with the IVTST method raises the 
predicted rate constant to 2.0 x 10-14 kcaVmol, and adding two more MP2-SAC points 

lowers this to 1.1 x 10-14 [18]. Recall that the IVTST method, at least as currently 
formulated, cannot treat large-curvature tunneling so these results are based on the SCT 
approximation. The estimation of the reaction-path curvature throughout the whole region 
that is important for tunneling on the basis of only three points in the vicinity of the saddle 
point is the least trustworthy part of this calculation. 

Repeating this calculation at the VTST-IC level (//1 dynamics) allows us to make a more 
reliable estimate of the reaction-path curvature and of the shapes of the various generalized 
transition state theory frequencies as weIl as to include large-curvature tunneling. Thus 
we adjusted the AMI parameters to reproduce the MP2-SAC barrier height and the 
experimental exoergicity, and we used this surface as a low-Ievel surface for the dual-level 
VTST-IC approach [49c]. Table 3 shows that, even using the results of the MP2-SAC 
calculation for only 3 points (reactant, saddle point, and product) yields a rate constant of 
1.1 x 10-14, in excellent agreement with the IVTST level. 

The first application of the VTST-IC method to a new problem was to the reaction OH + 
NH3 -+ H20 + NH2 [49d]. In this case we used two different low-Ievel theories. 
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The first low-Ievel theory is an NDDO-SRP calculation in which the functional fonn of 
the PM3 version of NDDO theory was generalized to allow a larger number of resonance 
integral parameters. In the original AMI and PM3 parameterizations, there are five 
resonance parameters for a system composed of H, C, and N, namely ßHs, ßCs, ßcp, 

ßNs, and ßNp' Resonance parameters ßXiX'i,Jor the interaction of an i-type orbital on 
atom X with an i' -type orbital on atom X are then approximated by 

ß - ßXi + ßX'i' 
XiX'i' - 2 

(18) 

In our treatment we took all nine unique pairs (only nine because there are no 0-0 or N-N 
pairs in the OH + NH3 system) of Xi and X' i' as independent. The values of ßHsHs, 

ßNsOs, ßNsOp, and ßNpOs were kept the same as in PM3 (based on eq. 8 with PM3 values 

for the ßXI), but we independently re-optimized ßHsNs, ßHsNp, ßHsOs, ßHsOp. and 

ßNpOp. 

For the alternative low level, we used an ab initio direct dynamics calculation at the 
MP2/6-3IG** [42J level. 

For the high level we used the MP2/aug-cc-pVTZ level for stationary point optimizations, 
the QCISD(T)/aug-cc-pVTZ level for single point calculations of the energy at the 
resulting optimized geometries, and the MP2/aug-cc-pVDZ level for hessians at the 
corresponding stationary points. (The notation for correlation levels and basis sets is 
standard [42,578,59].) 

Table 4 compares the calculated barrier heights at various levels of theory. This table 
clearly illustrates the advantages of dual-level and interpolatory techniques in that very 
large basis sets and high levels of treating electron correlation are required to obtain an 
accurate barrier height. If one were forced to use such a computationally demanding 
electronic structure calculations for all steps of the dynamics calculation, direct dynamics 
without interpolation would be impractical, whereas if one restricted oneself to the more 
affordable lower level, the barrier and frequencies would not be nearly as accurate as in 
the dual-level calculation. 

Figure I compares the profile of the most strongly varying generalized normal mode 
frequency as calculated four different ways. The frequency shown in Figure 1 correlates 
with N-H stretching in the reactants and with O-H stretching in the products. This curve 
shows a shape very characteristic of atom-transfer reactions in general, in that it is typical 
for the frequency associated with the breaking bond to decrease rapidly when the bond 
switching occurs in the strong interaction region, where there are two half bonds, and 
then to increase as the associated vibrational mode transfonns itself into a product stretch 
[8k,81,35,60]. Interpolation of this bond-switching-mode frequency is very challenging 
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because of its rapidly varying character, but it is critical to capture this variation because it 
is a high-frequency mode, and high-frequency modes carry a considerable amount of zero 
point energy. (For example, the difference in zero point energy between a 1500 cm-1 

mode in the bond-switching region and a 3500 cm-1 mode in the reactant region is 2.9 
kcaVmol, and even the difference in zero point energy between a 1500 cm-1 mode and a 
2000 cm-1 mode at two different points in the bond-switching region is 0.7 kcaVmol.) 
Figure 1 shows that the two corrected calculations give identical frequencies at s = 0, as 
they should since they are both corrected to the same high level at this point, but the 
reactive mode profile differs elsewhere because of differences between the two low-Ievel 
calculations. The s value around which the minimum of the bond-switching-mode 
frequency tends to be centered depends strongly on the geometry of the saddle point, and 
this is a primary reason why it is important for the low-Ievel calculation to yield a 
reasonably accurate saddle point geometry. Since saddle point geometry tends to correlate 
with reaction exoergicity [37a,61], we believe it is important for the low-Ievel calculation 
to have the correct (or elose to the correct) exoergicity, and this is one reason that we have 
emphasized the exoergicity in deriving SRP parameters. Figure 1 also illustrates the 
advantage of VTST-IC over IVTST, namely that reasonable low-Ievel surfaces are 
excellent chemical interpolators because they have the chemical variation of the 
frequencies "built in." Thus dual-level approaches yield more accurate vibrational profiles 
than interpolations based on mathematically motivated forms. 

Table 5 gives calculated rate constants with the chosen higher level and the alternative 
lower levels. Table 5 shows excellent agreement between calculations carried out with the 
two very different lower levels, up through CVT/SCT dynamics. It would be very 
expensive to calculate large-curvature tunneling with an ab initio lower level, but here the 
dual-level approaches with an NDDO-SRP lower level really prove their meUle. Large­
curvature effects increase the calculated rate constant by a factor of 2.0 at 250 K, bringing 
the result into excellent agreement with experiment. The agreement with experiment for 

Table 4. Number of basis functions and calculated barrier height (kcaVmol) 

for OH + NH3 -7 H20 + NH2 at various levels of electronic structure 
theory. 

Level Number V* 

PM3 12 13.7 
PM3-SRP 12 5.9 
MP2/6-31G** 50 9.0 
MP2/ aug-cc-p VDZ 82 5.8 
MP2/ aug-cc-p VTZ 184 4.5 
QCISD(T)/ aug-cc-p VTZIIMP2 184 3.6 

aX/YIIX' means a single-point energy calculated at level X/Y at a geometry 
optimized at level X' /Y. 
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Figure 1. The generalized-normal-mode frequency for the bond-switching mode as 

a function of reaction coordinate for OH + NH3 -7 H20 + NH2. 
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the OH + NH3 reaction is especially impressive because of the large Arrhenius curvature. 
Table 6 gives Arrhenius activation energies over three temperature ranges showing the 
dramatic lowering at low temperature. 

Further improvements in these methods should allow a wide variety of interesting 
processes to be studied. 

Table 5. Calculated VTST-IC rate constants (10-13 cm3 molecule-1 s-l) at the 
QCISD(T)/aug-cc-pV1Z/lMP2[MP2/aug-cc-pVDZ]/I/LL level of electronic 
structure theory. a 

T 
Dynamicallevel (K) 

TST 

CVT/SCT 

CVf/J10Mf 

Experiment 

250 
300 

1000 
250 
300 

1000 
250 
300 

1000 
250 
300 

1000 

lL 

MP2/6-31G** 

0.18 
0.42 

25 
0.66 
1.03 

26 

1.2 
2.0 

31 

NDDO-SRP 

0.18 
0.42 

25 
0.68 
1.06 

25 
1.36 

1.69 

26 
1.2 
2.0 

31 

aHL[HessL]/I/LL denotes a higher level of HL, except for the hessians which 
are calculated at level HessL, and a lower level of LL in a dual-level direct 
dynamics calculation. 

Table 6. Arrhenius activation energies from fits to calculated rate 
constants at pairs of temperatures in the low, middle, and high­
temperature regimes, based on NDDO-SRP as the low level and 
CVT/JlOMT dynamics. 

Temperature interval (K) 

250-300 
400-600 
800-1000 

Ea (kcallmol) 

0.65 
2.1 
4.6 
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4. Vibration al coordinates 

Another area where technical advances are in progress is the treatment of the vibrations 
perpendicular to the reaction path. A central assumption of all reaction-path methods, 
including variation al transition state theory and small-curvature tunneling methods, is the 
separation of the coordinates into three sets: external coordinates describing the overall 
translation and rotation, areaction coordinate describing the motion of the system along 
some direct route from reactants to products, and the remaining coordinates, which will be 
called the bound vibrational coordinates. 

For linear displacements from a stationary point, separable coordinates are uniquely 
defined for small displacements by normal mode coordinates [62], which simultaneously 
diagonalize the kinetic energy to infinite order and the potential energy to second order 
(i.e., through quadratic terms in the potential). Thus, to the extent that one stays in a 
region where the quadratic expansion of the potential is trustworthy, these coordinates 
separate the physical motion, and they are not just an artificial mathematical im position. 
Not only is the motion separable in normal coordinates, but the coordinates themselves are 
very convenient for calculations, since they are rectilinear. 

Such comfortingly natural and convenient coordinates do not exist though if we add the 
requirement that one of the coordinates describes the global motion of the system along 
some direct route from reactants to products. In general this cannot be accomplished in a 
convenient way with rectilinear coordinates, and one must introduce at least one 
curvilinear coordinate. Tbe basic formalism for such a treatment was first advanced in the 
context of the large-amplitude vibrational motion of sm all molecules by various workers 
[63] and in the context of bimolecular reactions by Hofacker [20b], Marcus 
[12b,12c,20c,22], and others (for an extensive set of references, see Refs. 1-34 in 
[31a]). The approach used for large-amplitude vibrational motion was further developed 
for the case where the large-amplitude "coordinate" is the minimum energy path by Miller 
et al. [34] and by Natanson [64]. In these approaches, the reaction coordinate is 
curvilinear but the coordinates transverse to the reaction path are Cartesian. Hence we call 
this kind of treatment the Cartesian vibration (CV) approximation. 

For variational transition state theory, one requires the vibrational Hamiltonian only in a 
hypersurface perpendicular to the reaction coordinate. For such calculations the global 
CV treatments for chemical reactions reduce to an earlier method [8j] in which a local 
Cartesian system is erected at a point on the MEP, with one of the axes aligned with the 
tangent to the path. However, for reaction-path-based tunneling calculations, one must 
consider the globally curved nature of reaction coordinate. 

Both for VTST and for tunneling calculations, though, the CV coordinate system is often 
unsatisfactory, for two reasons. Tbe first problem is that it has the same disadvantages as 
recillinear coordinates for vibrational calculations on bound systems-in particular it does 
not provide a physically natural picture of valence forces, and so there are large 



D~DYN~CSMETHOD 247 

anharmonic cross terms [65]. This problem is discussed elsewhere in the context of 
reaction-path dynamics [66]. Although this problem is serious in both bound-state theory 
(spectroscopy) and reaction-path dynamics, an even more serious problem occurs in the 
latter because even the harmonic frequencies are not independent of the coordinate system 
used for the generalized normal mode analysis at a non-stationary point [31,64]. As a 
consequence the generalized normal mode frequencies may become unphysically 
imaginary (as if the reaction path were aridge) even when the reaction path sits at the 
bottom of a nonbifurcating valley [31a,67]. This happens frequently in the CV treatment 
because the Cartesian vibration al coordinates are nonphysical. 

A better approach to modeling the vibrations transverse to the reaction path is to use 
curvilinear vibrational coordinates based on bond stretches, valence angle bends, bbond 
torsions (defined by dihedral angle between the ABC plane and the BCD plane in a group 
of atoms with the sequential bonding pattern A-B-C-D), and sometimes "improper 
dihedrals" (the angle between a bond and a plane). These curvilinear coordinates should 
provide a better description of generalized transition state vibrations for the same reasons 
that they are preferable to rectilinear coordinates for treating vibrations of bound 
molecules, namely that they tend to follow natural contours of the potential energy 
surface. Techniques for treating the transverse vibrations in curvilinear coordinates have 
been developed [31] and should be very useful for future work. 

5. Summary 

This chapter provides an account of our recent efforts to interface dynamics calculations 
based on reaction-path potentials and tunneling, including tunneling through the large­
curvature reaction swath, with electronic structure theory. 
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