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1. INTRODUCTION

Calculation of the accurate quantum dynamics of few-body systems in
chemical physics is a challenging class of problems for scientific computation.1.2
The present paper outlines the use of quantumn mechanical scattering theory to
describe collisions of diatomic molecules with atoms and with other diatomic
molecules. Such systems, containing three or four atoms moving in three
dimensions, involve nine or twelve Cartesian coordinates, which reduce to six
or nine coordinates after removing the overall motion of the center of mass.
The potential function, however, depends on only three or six coordinates, and
this allows some dimensions to be treated with less effort. A molecular
collision of atom A with diatom BC or of diatom AB with diatom CD is
described by the time-independent Schrodinger equation with steady-state
scattering boundary conditions.3 In this paper we consider both nonreactive
collisions, in which energy is transferred between collision partners that retain
their chemical identity and also reactive collisions, in which both energy and
particles are transferred.

The relevant Schrodinger equation is the six-dimensional or nine-
dimensional (6-D or 9-D) elliptic partial differential equation (PDE),

2
—%(v% +V§)+Vo(x)+Vint(R,I)—E]q’(R,x)=OI, (1)
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In this equation, % is Dirac’s A, i.e.,, Planck’s & divided by 2x;  is the collisiona)
reduced mass; R is a vector from A to the center of mass of BC or from the
center of mass of AB to that of CD; x denotes the other three or six coordinates
{assumed to be scaled to the same reduced mass y as that for R); Vj is the
potential energy of noninteracting collision partners,

Vo(x)= I%xm V(R,x) @
—)o0
where V is the full potential energy; Vint is the interaction potential, given by
Vint(R,x) = V(R,x)= Vo (x); 3)

E is the total energy; and ¥ is the scattering wave function.
The steady-state boundary conditions are nonhomogeneous, and their

spedification involves two steps. First we define the eigenstates ¢, and

eigenvalues &, of the noninteracting collision partners, and then we write the
boundary conditions in terms of these. For nonreactive collisions, the
eigenstates required are solutions of

a2 2
_2_”'_Vx.4.vo(x).e7 Y(x):() 4

with homogeneous boundary conditions. Then for R > a, where a is the
distance at which Vini(R,x) becomes negligible, the boundary conditions are

Xk, R .\ kR
TRx)~e 70" oy )+ Z, fay, (R)Z00() ®
Y .
where
k;:-i—‘;—(E—&r) , (6)

fryg is an unknown scattering amplitude, corresponding to initial state v, and

final state v, and R is the direction of R.

For reactive collisions, e.g., A + BC = AB + C or AC + B, we must enforce
boundary conditions for all three arrangements. Let a = 1 denote the region of
space where A is far from BC, a = 2 denote the region where B is far from AC,
and a = 3 the region where C is far from AB. Let R2 denote a mass-scaled vector
from B to the center of mass of AC and x2 a mass-scaled vector from C to A;
similarly let R3 denote a mass-scaled vector from C to the center of mass of AB
and x3 a mass-scaled vector from A to B. Then, in addition to eq. (5) we must
enforce

A e (R Cikgkc a
W(R’x)k.,l- }73 T (Ra) R 05(xq), @=2,3, v)

where f:Yo is an unknown reactive scattering amplitude, and ¢$ and kf: are
defined analogously to egs. (4) and (6), but in the second and third arrangements.
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Typically the wave function of egs. (1) and (5) is written as a sum of
components, each of which has a given total angular momentum | and each of
which can be obtained separately. The problem with ] = 0 is the simplest.

In this paper we consider several challenging applications involving the
solution of these equations. The first is the treatment of energy transfer in four-
pody collisions, in particular inelastic diatom-diatom collisions, for which we
have solved egs. (1)<(6) by converting them into coupled ordinary differential
equations in R, using an approach that is called the close coupling method.134
These coupled equations are then solved by a propagation method. We also
mention the application of such propagation methods to three-body collisions.
The final challenging problems we discuss are reactive atom-diatom collisions
and nonreactive atom-diatom collisions involving multiple electronic states.
For these problems we solve equations (1)-(6) or (1)«(7) by converting them to
coupled algebraic equations using a variational principle.>

The computers used for the present studies are primarily the Cray-2 large-
memory vector supercomputer (and its Cray M92 and C90 successors ) and the
massively parallel, distributed-memory Connection Machine CM-5 from
Thinking Machines Corporation. Some calculations were carried out on a
heterogeneous combination of the Cray-2 and CM-5 linked by a High
Performance Parallel Interface (HiPPI).

2. CALCULATIONS EMPLOYING PROPAGATION METHODS

Consider the collision of two HF molecules with total angular
momentum zero. We write

1 ¥ .
¥==3 fa(R) oa(Rx) ®)

n=1
where each value of n labels a set of quantum numbers, which is called a

“channel,” R is the magnitude of R, @, is a known basis function (formulated to

carry zero total angular momentum), and f, is unknown. By substituting (8)
into (1), we can convert the 9-D PDE into N coupled ordinary differential
equations (ODEs) of the form

Zf N
‘:R; + Cnn'(R) f"r(R) =0, n=12,..,N, 9)
‘=1

where the coefficient matrix, which is dense, contains the 8-D integrals
» - 2 ~
Con(R)=[ dR dx¢n'(R,X){-;§7{7+ vi- %[Vim(R,x) +Vo(x)- E]}cp,,(R,x) 10

where 12 is the quantum mechanical operator for the square of the angular

momentum associated with R motion. These equations must be solved subject
to regularity boundary conditions at R = 0 and scattering boundary conditions at
large R. The unknown scattering amplitudes occur in the large-R boundary
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conditions. In challenging current applications, N > 2000. In future application,
one must consider ] > 0, which leads to much larger N, e.g., N = O(105).

This formalism is also applicable to atom-diatom collisions provided we
recognize that x is 6-D for the four-body case and 3-D for the three-body case.
The expansion (8) is inconvenient for applying reactive scattering boundary
conditions, but reactive scattering can be treated by equations similar to (8) by
replacing the propagation coordinate R by the hyperspherical radius p.6-11 Thig
allows us to make a connection to the work of Kuppermann11.12 discussed in ap
earlier paper at this conference by Messina.13 One difference of that work!1.12
from the work discussed above and from our own approach$ to using
hyperspherical coordinates for reactive scattering is that Kuppermann’s basis
functions @, depend on p, whereas ours do not depend on R or p. Faster

- convergence with respect to basis size can be obtained with basis functions
optimized as a function of the propagation coordinate,14.15 but we will not
discuss that aspect further in the present paper.

We consider three sets of calculations using propagation techniques to
illustrate the progress that has been made and the challenges that remain. The
first example involves a parallel strategy that we employed on global-memory
vector computers. The second and third examples involve strategies developed
for multi-processor machines with distributed memory.

In all three strategies the two-point boundary value problem for fy(R) is
solved by converting it to an initial value problem which is equivalent to
propagating N or 2N linearly independent solutions from the small-R region to
the large-R region and then taking linear combinations of these solutions to
satisfy the boundary conditions. Taking advantage of the regularity boundary
condition at R = 0 allows one to propagate only N solutions. These solutions are
arranged as an N x N solution matrix. Equivalent information may be

propagated in the form of an N x N global % matrix as discussed below.
2.1 A Strategy for Vector Machines

Our original strategy for large-scale inelastic scattering problems was
designed for vector processors, such as the Control Data Corporation Cyber 205
and various Cray computers, especially the Cray-1, Cray X-MP, and Cray-2.

Details of the algorithm and its implementation are presented elsewhere,14-21 so
here we only summarize a few importance aspects.

The strategy for solving eq. (9) is to convert the equations to an initial
value problem, as in the invariant imbedding?2 method. In particular, we use
the 8 matrix propagation algorithm.14.15 In £ matrix propagation, the R axis is
divided into sectors, and each step consists of finding the local # matrix (a
matrix relating the reciprocal of the logarithmic derivative of the wave function |
components at the right of a sector to those at its left) and using this to update |
the global B matrix23 (which relates the logarithmic derivative components at z
the right side of a sector to their values at the left of the first sector, assuming
propagation proceeds left to right). Step sizes may be determined adaptively
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with little extra effort.16.19.20 This method is intrinsically stable,14 and it allows
large steps, especially at large R, but the computational effort per step is high,

involving the diagonalization of an N x N matrix and several other matrix
operations.17.20 Nevertheless the code typically spends 90-98% of its time on
these highly vectorizable matrix operations, and the method provides an
efficient way to solve large-scale problems on vector supercomputers. Memory
management can be flexible, and when memory is scarce, one can operate with

storage of only two N x N matrices in central memory.24

Because HF has a permanent dipole moment, the interaction potential for
HF collisions with HF has a very long range, decaying only as R-3, and many
propagation steps, e.g., 300-600, are required to reach the asymptotic region.
(Even more steps would be required if it weren't for the valuable feature of %
matrix propagation that one can take very large steps at large R.) It is essential
therefore to evaluate the C matrix efficiently. First of all, each element is an 8-D
integral. Second, the matrix is dense; since C is symmetric, the number of
unique elements is N(N + 1)/2, and these must be evaluated. Third, C must be
evaluated at every step. In one approach,1” the 8-D integrals are computed by a
combination of 3-D analytic integration and 5-D numerical quadrature. The 3-D
angular integrals were carried out by expanding the interaction potential in
terms of orthogonal angular basis functions and then analytically evaluating the
integrals involving these expansion functions and the channel basis functions.
The determination of the expansion coefficients requires a 3-D numerical
quadrature which is independent of N, and the analytic angular integrals
involve vector coupling coefficients which are nontrivial to evaluate but
independent of v, and vy, where v, and j, denote the vibrational and rotational
quantum numbers of a particular monomer in channel n. The two quadratures
over the monomer vibrational coordinates are carried out by NQV-point
quadrature, which are programmed as an inner vectorized loop of length
(NQV)2. The outer loops were arranged to avoid unnecessary repetitions, and

we used an optimized quadrature scheme25 to minimize N In particular, we
precalculated and stored separate quadrature weights for each combination of
monomer vibrational and rotational quantum numbers (thus the weights
depend on four indices: vp, jn, vn-, and ju-). The extra storage required for these
weights is negligible compared to the computer time savings they afford.

The second approach!? to the quadratures also involves a preparatory
step. In this approach, we refit the interaction potential to a sum of separable
products. This allows the Cpp-(R) matrix for any R to be constructed from a
relatively small number of R-independent matrix elements. This approach
makes the cost of the quadrature step almost negligible, but it may require more
storage than the first approach, depending on N and the number of separable
products. Using the second approach we have solved eq. (9) with N as large as
2472,

Because dense matrix diagonalizations do not usually parallelize well
when distributed across processors on a distributed-memory multiprocessor, we
explored other strategies for parallelization on such machines.
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2.2 Parallelization in the Physical Domain

Each propagation step involves the same arithmetic operations on
different data. Therefore one possible approach to parallelization is to assign the
sectors, each spanned by a single propagation step, to individual processors. [p,
this strategy one performs many steps simultaneously, obtaining a local &
matrix for each sector or each set of contiguous sectors on a single processor ang
then combining these into a global % matrix, in a process corresponding to the
reverse of successive bisections. There are several penalties for using this
approach. The first disadvantage results from the nature of the boundary
conditions. The initial sector has homogeneous boundary conditions at sma]|
R, and this causes certain submatrices to start out as zero. As long as the steps
are performed in order, these zeros remain zero, and they may be propagated
analytically.16 However, if steps are performed out of order, replacing the globa
initial value problem by a sequence of boundary value problems across the
individual sectors, one must calculate the general solution rather than this
simpler particular solution, and this raises the operation count about 35%.

A second disadvantage of parallelization across the physical domain is the
inefficiency in treating problems where the number of sectors is less than the
number of processors. A third disadvantage occurs when the local % matrices
are combined; this step leads to a load balancing problem. Fourth, to run
efficiently this algorithm would require a large memory on each node, especially
if I/O is slow.

The strategy presented next does not have these disadvantages.

2.3 A Strategy Based on Parallel Matrix Multiplications

The essence of the next strategy we employed is to use a very simple
propagation algorithm consisting of a limited number of primitive matrix
operations that can be parallelized across the processors. The algorithm we
chose is the de Vogelaere algorithm,26 for which the effort consists almost
entirely of matrix multiplications and QR factorizations,2” with the latter
needed for stability.28 In practice we found it was more efficient actually to carry
out the QR application on the transpose (T) of the solution matrix. In particular
the stabilization transformation we used involved the explicit formation of Q
and its application to four matrices. We then spread each matrix operation over
all the processors. In reducing this idea to practice, the implementation we have
used to date is to create the C matrices on the Cray-2, then move them via the
* HiPPI to the CM-5, where the propagation steps are performed. The prototype
problem we considered corresponds to vibrational-rotational excitation of Hp by
He.

We simplified our code as much as possible to keep overhead down, and
we were able to solve the prototype problem with N = 509 on 512 processors of
the CM-5 with only 6% overhead. In addition we obtained good speeds on the
matrix multiplications and QR stabilization transformations. Figure 1
illustrates the speedups for matrix multiplication as a function of matrix size for
one processor on a Cray-2 or C90, for 16 processors on a C90, and for 32, 128, 256,
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Figure 1. Speeds (billions of floating point operations per second) as
functions of matrix size for matrix multiplications required in de Vogelaere
algorithm on various computers with various numbers of processors, indicated
by the value after /. On the Cray machines, the matrices were stored with
leading dimension 2N + 1 to avoid bank conflicts. The C90/16 speeds are for a
dedicated machine and are taken from Ref. 74, and the other Cray speeds are
based on CPU times obtained by the authors in time-share batch mode; in both
cases the LAPACK BLAS routine SGEMM is used. The CM-5 speeds are based on
elapsed times obtained by the authors using the CMSSL library routine
GEN_MATRIX_MULT.
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or 512 nodes of the CM-5. Figure 2 shows the time required on the CM-5 for a
stabilization transformation divided by the time for a propagation step, which
consists of two matrix multiplies. We found, for the Hy-He problem, that a
stabilization needs to be performed on only about 1% of the steps. Thus, when
the ratio in Fig. 2 is less than about 100, the efficient matrix multiplications
dominate the computer time. Since, as stated above, 94% of the effort in our
prototype problem goes into the propagation steps and stabilization
transformations, and since the ratio in Fig. 2 is much less than 100 for 512
processors, the excellent speeds on matrix multiplication translate into good

rformance on the whole algorithm for 512 processors. However, the number
of steps required by the de Vogelaere algorithm is large.

Disclaimer. These results are based upon a beta version of the TMC

software and, consequently, are not necessarily representative of the
performance of the full version of the software.

3. CALCULATIONS EMPLOYING ALGEBRAIC VARIATIONAL METHODS

The description of chemical reactions requires the theory of quantum
mechanical rearrangement scattering.3 For rearrangement collisions we restrict
our consideration to three-body systems. For reactive collisions we replace eq.

8) by N
3 Ng A
Y= Z 2 fna(Ra)"na(Rmxa) (11)

a=1 ng=1

where R1 = R, x1 = x, and a is the arrangement quantum number explained
below eq. (6). Note that x; consists of the BC vibrational coordinate ry, the BC
rotational coordinates #,, and the A-BC angular orbital coordinates Ry, with
similar definitions for the B-AC and C-AB arrangements. Note also that even if
fng form an orthogonal set, the basis functions in different arrangements would
be nonorthogonal. Furthermore, as explained below eq. (6), we must
simultaneously impose collisional boundary conditions in three different
coordinate systems. The approach we have found most suitable for attacking
such problems is the algebraic variational approach,5 especially the outgoing
wave variational principle29-38 (OWVP), with basis functions motivated3238 by
the integral-equation-based generalized3940 Newton41:42 variational principle.

In applying the OWVP, we first partition the interaction potential (3) as

Vint(R, %) = VP (Ry,x1) + V (Ry,x7) (122)
=VP(Ry,x2)+VE(Ry.x2) (12b)
= VP(R3,x3)+ VE(R3,x3) (12c)

where VE is called a distortion potential, and Vg is a coupling potential. A
critical element in this partition is that VB does not couple basis functions in
different arrangements, but VS does. We then write
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Y= wineoming (Rl'xl)"'% Aprﬁ(Rapvxaﬂ) (13
where ¥ip oming 1S @ solution to

hZ
[—E(vi +v§) +Vo(x)+ VP (R,x)- E]\y incoming (RrX) =0, (10

Ap is a complex coefficient, and each I'g is taken as one of three types36.37 of 6-p

basis function in a given arrangement ag: -

* gaussian, centered at RE

# 0, in radial translational coordinate RQB,
times an asymptotic vi

rational function for Tag times a 4-D

. . . Z]MJP . o
rotational-orbital function i (Iaﬁ ’R"‘B );
L. . ZJM]P . o

¢ 2-D gaussian in R“B and Tag times Z,q (raB,R% );

* coupled-channel 6-D Green’s function obtained by solving a problem
with up to ~50-100 rotationally coupled channels in a single
arrangement with a localized inhomogeneity.

The third type of basis function is called a dynamically adapted basis
function.32.38 For reactive scattering one could have all three types of basis
function in all three arrangements, leading to a large number of different kinds
of integrals.36 Some economy of coding is achieved by restricting the xo
dependencies of the forms of the type-1 basis functions and of the
inhomogeneities in the type-3 basis functions to be the same.

The computational steps for the OWVP are as follows:

¢ Compute the radial parts of Vincoming and the coupled-channel radial
Green’s functions directly on quadrature grids (for the next step) by
high-order finite differences33.35 (typically a 13-point approximation to

d2/dR2).

¢ Compute 6-D quadratures over Vin, Vincoming/ and basis functions;
three dimensions are treated analytically in a body-fixed coordinate
frame,3643 and three are treated by numerical integration.

* Solve a dense, complex, non-Hermitean linear algebraic system for the

coefficients of basis functions and for the complex scattering matrix
(which is a matrix of fixed-] scattering amplitudes). Both direct
methods involving partitioned matrices44 and also preconditioned
iterative methods#*> have been employed.

For atom-diatom reactive collisions, the state of the art involves treating
all ] at a given energy with stable convergence of the phases of the scattering
matrix elements as required to calculate differential cross sections4648 or on a
fine energy grid as required to study quantized transition state spectra490 or to
calculate thermally averaged rate constants.51 For atom-diatom collisions
involving multiple electronic states,3752-54 even low-E, low-] calculations are
currently challenging problems. Increasing E or ] or the number of electronic
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states increases the number of channels and hence the number of basis
functions required for convergence. The order N of the final dense system of
equations is equal to the number of basis functions; the largest calculation we
have completed to date has N = 17413.37

Selected recent applications we have carried out using the algebraic
variational method include the following studies:

For the D + Hy — HD + H reaction, we calculated5! thermally averaged
rate constants as a function of temperature and found excellent agreement (<
9%) with a fit55 to the available experimental values for T = 200-800 K. The
comparison is shown in Figure 3. The curve representing experimental results
is the three-parameter fit from Ref. 55 to their own and literature56-58 data. .
Over the whole region shown, theory agrees with experiment within the 20%
reliability of the fit. The theoretical values are based on a potential energy
function9 fit to ab initio electronic structure calculations from several sets59-62
of calculations. This comparison shows that converged quantum dynamics
calculations can compete with experimental methods for the accurate
determination of chemical kinetics rate coefficients when the potential energy
surface is well known. This example suggests two challenges to Teraflop
computing: (i) obtaining chemically accurate potential energy surfaces for more
complicated systems, and (ii) extending converged quantal kinetics schemes to
more complicated systems. At the present time we can calculate converged
quantum dynamical rate constants for more complicated atom-diatom systems,
but the potential energy surface is not known to chemical accuracy for any
system except H + Hj and its isotopomeric analogs.

Converged quantum dynamics calculations have also been compared
successfully to experiment for differential cross sections. Recent papers
presented such comparisons for the F + Hz — HF + H¥ and H + D - HD + D48
reactions. The former study is particularly noteworthy in that the experimental
resultsé3 showed strong evidence of participation by quantum mechanical
resonance states, but the differential cross sections for the various v” states of
HF, where v is the vibrational quantum number and primes denote final-state
values, were unreproducible by theory until converged quantum dynamics was
combined with a new potential energy function.47 The latter study was
particularly interesting in that it yielded qualitatively different differential cross
sections from quasiclassical trajectory calculationsé4 for the state-to-state
differential cross sections for reaction into various final rotational states. This
comparison provides a striking indication of the necessity to solve reactive
scattering dynamical problems at the quantum mechanical rather than the
classical mechanical level. B,

A third application area to which we have applied algebraic variational
methods is the study of quantized transition states. Transition state theory65.66
(also called activated complex theory) has provided the dominant quantitative
and qualitative framework for understanding chemical kinetics dating back to
the 1930s, and quantization of transition states has been considered essential
dating back to the seminal work of Wigner67 and Eyring®6; consideration of the
quantized nature of transition states has been espedially indispensable for the
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interpretation of kinetic isotope effects.68 However, the observation of the
wspectrum” of the transition state has proved experimentally elusive. Now this
spectrum has been observed in accurate quantum dynamics calculations on the
H + Hz and O + H> reactions 495069

Figure 4 shows the spectrum of the O + Hj reaction. The top half of this
figure shows the cumulative reactive probability N(E) for this reaction, for ] = 0,
with the potential energy function taken from the work of Johnson, Winter,
and Schatz.70.71 This quantity is defined by

N(E) = hpR(E)K(E) (15)

where h is Planck’s constant, pR(E) is the density of states of the reactant (a
nondynamical quantity), and k(E) is the converged microcanonical-ensemble
quantum mechanical rate coefficient (for the assumed potential energy
function). A rate coefficient for a microcanonical ensemble involves an equally
weighted sum of all state-to-state reaction probabilities, including all excited
states energetically accessible at a given total energy, and that is why it has never
been measured experimentally. But, by including the contributions from all
states, which is possible in a computational study, one brings out the quantized
structure of the dynamical bottleneck to reaction. This is shown in the bottom
half of Fig. 4, which is the energy derivative of the top half. Each peak in the
lower half of the figure corresponds to a rise in the cumulative reaction
probability as the system accesses a new quantized state of the activated complex.
The peaks observed in the transition state spectrum have all been
assigned quantum numbers and individual transmission coefficients.30 In
transition state theory, the transmission coefficient of each state of the activated
complex is assumed to be unity; and by comparison of thermally averaged rate
constants to experiment one can hope at best to determine the average
transmission coefficient for all the activated-complex states and hence the
average breakdown of the transition state assumption to the extent that this
value deviates from unity. The accurate quantum mechanical calculations
provide a new level of detail in understanding the validity of the transition
state assumption in that we can now see that some quantized dynamical
bottleneck states correspond to the unit-transmission-coefficient assumption
better than others. For example, the first two peaks in Fig. 4 correspond to
activated-complex states that have transmission coefficients of 0.96 and 0.9,
respectively, but the third peak, at 0.97 eV, corresponds to a transmission
coefficient of only 0.6. The third peak in Fig. 4 is interesting in another way as
well. The first two peaks correspond to the ground state and a bend-excited state
of the activated complex, but the third state (at 0.97 eV) has the bound stretching
motion of the activated complex excited. The energy of this third peak
corresponds very closely to the threshold energy for the reaction of Hz (v =1)
with O. This indicates that vibrationally excited reactants principally access the
stretch-excited states of the activated complex. We see then that the excted
states of the activated complex are state-specific doorways between reactants and
products, confirming the validity of ideas advanced earlier in approximate
theory, in particular in state-specific variational transition state theory.”2 The
converged quantum dynamics calculations also identified dynamical bottlenecks
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to state-specific reactivity that do not affect the overall rate coefficient; these
were called supernumerary transition states of the second kind.50 This
discussion has identified a new role for accurate quantum dynamics
calculations—namely, by providing a detailed picture of chemical reactivity at
the ultimate level of resolution allowed by quantum mechanics, such
calculations can provide insight into the conceptual framework by which we
understand phenomena in quantum mechanical systems. The use of large-scale
calculations to provide conceptual insight—as well as hard numbers—will be a
major challenge for Teraflop computing.

We will close this section with an introduction to a new area which will
benefit greatly from Teraflop computing, namely the quantum mechanical
treatment of chemical reactions of electronically excited reagents—or “quantum
photochemistry.”

In 1938, Wigner said,”3 “It seems that one can divide the chemistry of
reactions into three groups,” the first group being those which exchange
translational, rotational, and vibrational energy but do not change electronic
state or chemical formula, and the second being those which involve no change
in electronic quantum numbers but which may involve a change in
constitution. Wigner continued, “The remaining third class deals with
reactions which involve a jump in the electronic structure.... It is clearly the
most general type and probably the most difficult of all.”73 The accurate
quantum mechanical treatment of the dynamics of such systems will be a
challenge for Teraflop computers. Meanwhile we have made a start. Our initial
efforts in this field have involved the development of a formalism general
enough to handle the problem,36 and a series of calculations37.52-54 on
nonreactive collisions of Na(3p) with Hj at energies above the conical
intersection of the ground and first excited electronic state surfaces. These
calculations enabled us to discover a new phenomenon, namely the
enhancement of molecular energy transfer by the intermediate participation of
metastable states associated with the conical intersection region. The metastable
states in the vicinity of the conical intersection were assigned quantum
numbers, and their lifetimes and decay probabilities into various final states
were mapped out.5354 We anticipate that additional new phenomena are likely
to be uncovered as the calculations are extended to higher energies where
chemical reaction becomes possible.

4. SUMMARY
This paper discusses our recent experience with large-scale quantum

mechanical calculations for molecular collisions, and it identifies several
challenges for Teraflop computation.
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