"Linear'Algebraic Formulation of Reactive Scattering with General Basis Functions,” G. J. Tawa, 46 TAWA, MIELKE, TRUHLAR, and SCHWENKE
S. L. Mielke, D. G. Truhlar, and D. W. Schwenke, in Advances in Molecular Vibrations and " Comm . : ’

Collision Dynamics, Vol. 2B, edited by J. M. Bowman (JAI Press, Greenwich, Connecticut, 5.3. Asymptotic Vibrational Functions . . ................. 90
1994), pp. 45-116. [Adv. Mol. Vib. Collision Dyn. 2B, 45-116 (1994)] 5.4. DistortionPotentials . ... ............. .. ..., .. 91
5.5. Solving the Distorted-Wave Problems . . . ... ........... 93
5.6. Generation of the Finite DifferenceGrid . . . . .. .......... 96
_ 5.7. Calculation of the Finite Difference Coefficients . .. ........ 97
LI N EAR ALG EB RAIC FORMU LAT' ON O F 58 Selection of the Finite Difference Parameters . . . . ... ... ... 99
5.9. Obtaining %K and the Regular Radial Functions . . . . ... . ... 100
REACTIVE SCATTERING WlTH GENERAL 5.10.Quadratures . . . . .. ou i e e 101
SALContraction . . . ... ... 105
BASIS FUNCTIONS S02.SYMMENY . .. 108
S5.13.LinearAlgebra . . . .. .. ... ... . o o 109
6. Memory Considerations . . . ... ....... ..ot 109
TooSummary . . ... e e 113
- : Acknowledgments . . . ... ... ... . e e 113
Gregoryj. Tawa, Steven L. Mielke, References . . .. . ... ... ... . ... . . ... 113
Donald G. Truhlar, and David W. Schwenke
ABSTRACT
ADSIIACt . . . . oo e e e 46
1o Introduction. . . . .. . oot e e e e 46 This chapter provides a self-contained description of the formulation and compu-
2. VarationalPrinciples . . ... ... .. ... ... oL 48 tational implementation of the outgoing wave variational principle for inelastic
2.1. Partitioning the Hamiltonian . . . ... ................ 48 and reactive scattering. In particular, we present extensions that allow the treat-
2.2. Generalized Newton Variational Principle for %, . . . . ... . .. 56 ment of multiple electronic surfaces and the use of basis functions that are not
2.3. Outgoing Wave Variational Principle for Spy . . . . . . . . . .. .. 56 eigenfunctions of the noninteracting (asymptotic) Hamiltonian. The choice of a
2.4, Relationship of the GNVPtothe OWVP . . . . ... ... ... .. 57 diabatic electronic representation is used to simplify the treatment of multiple
2.5. Obtaining the Expansmn Coefficients and Scattering Matrix . . . . . 59 electronic states. The chapter presents the details of the matrix elements
3. Calculation of the 5%, B, and C Matrix Elements and Construction required when half-integrated Green’s functions, asymptotic eigenfunctions,
of the Full Scattering Matrix in Terms of Partitioned Matrices . . . . . . . . 60 and general square-integrable basis functions are simultaneously included in a
3.1, BasisFunctions . .. ... .. .. ... .. .o 60 multiple-arrangement, multiple-electronic-state basis.
3.2. Transformation of the Non-.% Basis Functions . . . . . .. ... .. 63
33. RealMatrixElements . . . ... .................... 69
4, ReactiveScattering . . . . . . . o v v i it e e 74
4.1. Basis Functions and the General Form of the Matnx Elements . .. .74 1. INTRODUCTION
42. RealReactiveMatrixElements . . . .. ................ 80
5. Computational Considerations . . . . . . ... ................ 87
5.. BasisFunctions . . .............. .. .. ... . ..., 37 The calculation of converged quantum dynamics for atom—diatom reac-
5.2. Spaceand Body Frames . . .. ... 88 tions on realistic potential energy surfaces was solved for colinear
collisions around 1970 [1,2] and for coplanar [3] and three-dimensional
‘ [4~6] collisions around 1975. The first accurate three-dimensional cal-
Advances in Molecular Vibrations and Collision Dynamics, . culations involved the H + H; reaction at low energies and were con-
Volume 2B, pages 45-116 i verged for total angular momentum zero. About ten years later accurate
Copyright © 1994 by JAX Press Inc. calculations were available for heavier atoms and higher energies [7,8],
All rights of reproduction in any form reserved. 3 <
ISBN: 1-55938-706-8 nonzero total angular momentum [9], and nonsymmetric reactions (both

as initial and final diatomic heteronuclear) [10,11]. Now there are several



Linear Algebraic Formulation of Reactive Scattering 47
groups applying accurate quantum dynamics to a variety of atom-diatom
reactions [12]. o ‘

Although there are many new results in the literature, and many more
problems could be treated by existing methods, there is still plenty of

" room for improving efficiency, for example, by improving the basis
functions. One class of atom~—diatom reactions for which converged
three-dimensional quantum dynamics calculations are still unavailable
is the class of reactions involving two or more electronic states, or—
equivalently—two or more coupled potential energy surfaces. Reactions
involving two electronic states are the prototype for “photochemical”
reactions in organic chemistry, and their accurate treatment, which will
require efficient basis sets, may be expected to yield qualitatively new
insights into chemical reactivity.

In the present paper we present a formalism for treating reactions with
very general basis functions including electronicaily excited states. Our
formalism is based on the generalized Newton [13—18], scattered wave
[19-21], and outgoing wave [20,22] variational principles that we have
used previously for reactive collisions on a single potential energy
surface (for recent applications see Refs. {23—29]), and it incorporates
three new features:

1. The basis functions include electronic degrees of freedom [30] as
required to treat reactions involving electronic excitation and two
or more coupled potential energy surfaces.

2. The primitive electronic basis is assumed to be diabatic [31}, and
we do not assume that it diagonalizes the electronic Hamiltonian
even asymptotically.

3. Contracted basis functions for vibrational—rotational-orbital de-
grees of freedom are included in a very general way, similar to
previous prescriptions for locally adiabatic functions [32] in vari-
ous quantum scattering algorithms.

We also allow for contracted translational basis functions as treated
previously [18,33,34].

Since the description of the algorithms used and numerical techniques
involved in our current single-surface quantal reactive dynamics codes
is spread out over several different references [8,18,22,27,35,36], each
of which presents new aspects developed since the previous paper
without repeating most of the previous material, it is becoming some-
what inconvenient for a new researcher to understand how all the parts
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fit together, except by reading the papers in chronological order. One
goal of the present paper, therefore, is to summarize the equations and
methods that have evolved in a more logically organized way. Since our
single-surface methods are a special case of the multiple-surface formal-
ism, the present paper provides an opportunity to do this, and we will
indeed capitalize on this opportunity. Thus the present paper summarizes
the current status of our code, including all the most useful options but
omitting some older variants of the numerical methods that appear less
useful in the present context.

Section 2 reviews the variational principles and presents the notation
for the variational trial function. Section 3 presents a special case of the
new formalism for single-arrangement scattering. Section 4 provides the
equations for the case of multiple-arrangement scattering. Section 5
summarizes our current numerical algorithms for all the steps of the
calculation. Section 6 offers an analysis of the memory resources needed
to implement the algorithms discussed in Section 5. Section 7 gives
conclusions.

2. VARIATIONAL PRINCIPLES

2.1. Partitioning the Hamiltonian

The technique we are developing for converged quantum dynamics
calculations in the present paper is the outgoing wave variational prin-
ciple [20,22] (OWVP), which is a generalization of the Newton varia-
tional principle [13—18] and which is identical to the scattered wave
variational principle [19-21] except that S-matrix boundary conditions
are used instead of T-matrix boundary conditions. This linear algebraic
variational method involves several steps:

1. The full Hamiltonian H is split into a distortion Hamiltonian, which
contains the distortion potential V?, and a coupling potential Ve,
We employ a combination of rotationally coupled multichannel
distortion potentials for low rotational states and single-state or
single-channel distortion potentials for high rotational states.

2. The regular solution, y", of the distorted-wave equation is deter-
mined by the finite difference boundary value method (FDBVM).
The distorted-wave scattering matrix and the auxiliary functions
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involving the distorted-wave Green’s functions are also computed
by this method.

3. The outgoing wave, Wow, is expanded in basis functions I's and
matrix elements of the form (f'p [V€ [y and (s (E~H))| ') are
computed.

4. Using a stationary functional for the scattering matrix and solving
a linear algebraic problem involving the matrix elements of step
(3), we can calculate all the desired state-to-state transition prob-
abilities, which are functions of the scattering matrix elements.

The great advantage of this method is its efficiency in terms of basis
set requirements. The basis functions I'p are taken to be of the form:
%
Tp(Rog, Xap) = Ko Z Cydpy(Rop) 9py (Xop),
=1

@51

where Rq, is a mass-scaled relative radial translational coordinate in
arrangement Ofg, Xq, is a collection of all other coordinates, Cpy is a
contraction coefficient, Zpy is a general radial function, @y is a general
internal electronic—vibrational -rotational~orbital function, and y labels
a term in this very general basis function. Equation (2.1) introduces a
convention that we will follow throughout this paper, that is, complex
quantities have tildes, unless they have a (+) or (-) superscript, which
automatically denotes complex as well, and except for the various
scattering matrices, which are also complex by definition. In applica-
tions carried out so far, @p, has been chosen to be an asymptotic
electronic—vibrational—rotational—orbital function §,,. Since this is built
from electronic functions times a linear combination of primitive har-
monic oscillator vibrational functions times rotational—orbital angular
functions, it may be called a contracted internal function. When the T
basis is chosen in a special way, discussed below, the OWVP can be
shown [20] to be equivalent to the generalized Newton variational
principle (GNVP) [17,18,35,36].

In the present paper we make two important changes in the basis
functions as compared to previous GNVP and OW VP calculations—one
change in the primitive vibrational basis and one change in the way the
contracted internal function I'y is defined. The new variational formula-
tion, like the previous one, is based on the simultaneous use of three
Hamiltonian partitionings [37]

H=m2+vs  a=123, (22)
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where o denotes the chemical arrangement (o= 1 for A + BC, a. =2 for
B + AC, and o = 3 for C + AB), H2 is a distortion Hamiltonian that
includes no interarrangement coupling but an appreciable part of (or all
of) the intra-arrangement coupling in arrangement 0., and V¥ is a cou-
pling potential which includes the rest of the intra-arrangement coupling
and all of the interarrangement coupling. The ability to treat multiar-
rangement reactive scattering is a critical element of the whole formu-
lation, but many of the differences of the new formulation in terms of
general basis functions from our earlier formulations involving
[10,18,35,36] an asymptotic eigenstate basis are clear for single-arrange-
ment scattering so we present the detailed equations first for that case.
In particular we set & = 1 and suppress the o index in the notation until
Section 4 (thus, e.g., the radial translational coordinate R, becomes R
and the collection of all other coordinates x becomes X, and so on). We
note that although the scattered wave variational principle [19-21]
(SWVP) for the transition (7) matrix and the outgoing wave variational
principle [20,22] for the scattering (S) matrix differ in their boundary
conditions, they yield equivalent results. Our code uses the OWVP, and
so we will present the equations in that form.

The boundary conditions used to define the scattering matrix we wish
to calculate are expressed in a space-fixed coordinate frame (sometimes
called a laboratory-fixed frame). Nevertheless, we can use basis func-
tions defined either in the space frame or in a body-fixed coordinate
frame (sometimes called a molecule-fixed frame). This choice deter-
mines whether we apply the variational principle in the space or body
frame; if the latter, the scattering matrix is transformed to the space frame
after the variational calculation. Ineither case cross sections are calcu-
lated using a space-frame scattering matrix [9¢,35]. Even when space-
frame basis functions are used, the angular part of the exchange integrals
(i.e.,those involving functions expressed in two different sets of arrange-
ment coordinates) is carried out in the body frame. The best choice of
frame for the basis set depends on the specific problem to be solved. Our
algorithms can take advantage of either choice, and the frame-dependent
aspects of the formalism itself are slight. The initial presentation in this
paper will, for the purpose of clarity, consider only the space frame for
the basis functions. The differences in the calculation when body-frame
basis functions are used are given in Sections 5.2, 5.4, 5.5, and 5.10.

We will use diabatic electronic basis functions, which we will denote
by Xy(x.;R,®). In this paper we assume that the electronic functions are
real, and we neglect electronic angular momentum. X, is a function of
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the electronic coordinates, X,, and it depends parametrically on the
nuclear coordinates, R and ® . Notice that the full collection of coordi-
nates consists of R, @, and x.. The collective coordinate x introduced
below Eq. (2.2) denotes the union of the wand x, coordinate sets. Since
the electronic functions are diabatic, there are no derivative couplings;
effectively:

PXy(Xe; R,0) =0, (2.3)

where p is a nuclear momentum (defined more precisely below); how-
ever, the potential matrix for nuclear motion is nondiagonal in the
diabatic quantum number % [31].

Bras and kets in the electronic space are denoted by {x! and Iy},
respectively, such that

{Xe 1%} = Xy(XesR,0) @4
and

{% 1 Xe} = Xy(xe:R,0). @2.5)
Note that the metric scalar product in the diabatic basis is

[ xR O xR ) = By, @9
and the multiple-electronic-state scattering problem in the electronic-
plus-nuclear space is equivalent to a multiple-electronic-surface scatter-
ing problem in the nuclear coordinates, where the potential is

V=3 3 [ %}V R} | @7
x X
where

A
Vi (R = || dxeX(eiR X (xR, 9, @8
and A is the sum of the electronic Hamiltonian and the nuclear
repulsion. We note that

Vo = Yoy 2.9)

As a consequence of Egs. (2.3) and (2.7), all electronic integrals reduce
to the one simple integral (2.6), and we do not have to work with the
electronic wavefunctions.

In order to express the boundary conditions, we will also need to
define an adiabatic basis. Let ¥ be an adiabatic [31] electronic quantum
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number. The adiabatic basis is related to the diabatic basis via the
transformation,

Xz= T X (kR Urg(R .03, (2.10)

X
where U is an orthogonal matrix chosen such that

g IvIx} =8z VmRo), @.11)

and V is an adiabatic potential energy surface. For single-surface scat-
tering, there is only one  and one ¥ so V=V, = V.

We now consider nonreactive atom—diatom collisions of an atom A
with a diatomic molecule BC. In this case the Hamiltonian is given by

H=T+V (2.12)

where T is the nuclear kinetic energy operator, and V is the potential
energy defined by Eq. (2.7). T is given by

1 (2.13)
T=—pp
2u
where | is the symmetrized reduced mass given by [38]
b
= mampmc (2.14)
ma+mg +mc

and my is the mass of atom X. The 6-dimensional nuclear momentum in
the center-of-mass frame is

-2 [ Vi
=-ift| ¥#|, .
p=-i [V, ) 2.15)
where

R=MS, (2.16)
r=MT's, @.17)

Y%
| _matms + mc)? (2.18)

memc(ma +mg +mc) |’

S is the vector from the diatom mass center to the lone atom, A, and s is
the vector directed from B to C.
We next proceed by partitioning the Hamiltonian as
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H=T+ V" yint, 2.19)

where Vi™ is the interaction potential, the vibrational potential is given
by

VP =lim V, (2.20)

Roves
and the interaction potential is given by
yint =y _ pvib 221
The asymptotic Hamiltonian is
HA=T+ V" @22)
The asymptotic eigenfunctions & must satisfy
HAGu(X) = Exn(x), 223

where n is a channel index, and €, is a diatomic eigenvalue. The channel
index, n, represents the set of quantum numbers X, v, j, and /, where ¥ is
an adiabatic electronic quantum number, v is the vibrational quantum
number, j is the rotational quantum number, and [ is the orbital quantum
number (i.e., the angular momentum quantum number associated with
the angular part of R). Notice that x includes the angular part of the
relative translational motion, and so in general there is more than one
channel associated with a given asymptotic eigenstate. Although we do
not need this property until Section 3 we note here that in this chapter,
the space-frame functions, s, are also assumed to be eigenstates of the
square of the orbital angular momentum operator > for relative transla-
tional motion of A with respect to BC. In particular the channel eigen-
states, n, are taken to be a product of an Arthurs—~Dalgarno
rotational—orbital function {39] (which depends on j, £, the total angular
momentum quantum number J, and the quantum number M for the
projection of the total angular momentum) and an adiabatic electronic—
vibrational function (which is labeled by %, v, and}).

Now we partition the interaction potential into a distortion potential
and a coupling potential

Vit = y0 4 € (2.24)

The distortion potential is defined by partitioning the channels into
disjoint sets called distortion blocks. Then if A is a coupling parameter
which is unity if channels n and n” are in the same distortion block and
zero otherwise, we define the distortion potential as
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VPR)=Y T A 1 80} VIBHR) (B (2.25)
n '
where
Vil (R) = [ dxbi00VGa(x). 226)
The coupling potential is given by
yC=yin_yD, (2.27)
and the distorted-wave Hamiltonian is defined by
HD=Tay¥oayD (2.28)
in terms of which the full Hamiltonian is written as
HeHP+VC (2.29)

The Schrdinger equation for the wavefunction which satisfies out-
going wave scattering boundary conditions is

(HP + VO = pypting (2.30)

where ng denotes the initial channel. This wavefunction satisfies the
Lippmann—Schwinger [40] integral equation

P — \VMM + GPO gppthino 2.31)

where GP® s the distorted-wave Green’s operator defined by

2 -1 2.32
G"(ﬂ:nm-ﬁ—(E—HD:ie) . @32
e-0"
the coupling operator, 7, is given by
u=- 24 Ve, (2.33)
h
and Y™ is a regular distorted wave, i.e., a solution of
(HP + By =0. (2.34)
The regular distorted waves have the form
1 -
YR, x) = R D A Ot (R$(x), @235)

where “f$)  is a regular distorted-wave radial function, n is the initial
channel, and n is the final channel.
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If we left multiply Eq. (2.34) by (~2uR/h2) §3(x), substitute Eq.(2.35)
into that result, and then integrate over the coordinates x, we obtain the
set of coupled differential equations for the regular radial functions

2 e (2:36)
{;e - [([Rz D +k%}"’f2+n>.,(k)=—2An'..un'n(k)"’f$.*),,,ue),

which are subject to the boundary conditions

(’)f&tz) (R) ~0 (237)
R—0
and

A
1 {s,m,, expl—i(keR — £, 0/2)] } 250

(2.38)
B LY [Buoexpllkal (R- R
l(mJ {"OsmloAlmq €Xp [- I (kn l R- Rf)] ’ k% <0,
Here the channel wavenumber, k., is defined by

k’l ﬁ 9
OSun, is an element of the extended scattering matrix for the distorted-
wave problem, Ry is arbitrary, and

p TR (2.40)
Unn(R) = - "jl“f V,{,, (R).

The extended scattering matrix is defined over the range of all channel
indices such that the submatrix corresponding to both matrix indices
being open channels is the scattering matrix, and the rest of the matrix
is a generalization of the scattering matrix to closed channels.

The scattering matrix for the full problem is calculated from

Smu) = OSnnu +~>/;mo, (241)

where n and noare the final and initial channels, respectively,’Sy,, is the
contribution to the scattering matrix element due to the distortion poten-
tial, that is, it is a distorted-wave scattering matrix element, and .%,, is
the contribution to the scattering matrix element due to the coupling
potential which is given by
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T = (M | af ooy, (2.42)

where y" js a distorted wave with incoming boundary conditions. We
obtain the distorted-wave scattering matrix from the large-R behavior of
the distorted wave using Eq. (2.38). The contribution to the scattering
matrix due to the coupling potential, however, is obtained variationally,
as discussed next.

2.2. Generalized Newton Variational Principle for .55,

We start by defining the amplitude density [41] as
(e = gpptin (2.43)
in terms of which the Lippmann—Schwinger equation is written
(Mo = qppIn uGD(+)C(+)n., (2.44)
and the scattering matrix due to the coupling potential is written as
T = <‘u(—)n | c(+)ng>, (2.45)

where the scalar product |} represents integration over all the coordi-
nates R and x. Substituting Eq. (2.44) into Eq. (2.45), we obtain

Fng = (W 1| P 4 (M| uGPD | (), (2.46)
Then from Egs. (2.44) and (2.46) we obtain [21]
Fim = | 2| 1 QYO LGP L) +(E| Gy
—(LOn g;(+>no> + (CH" GPHGP® C(+) oy, (2.47)

which is the GNVP for the scattering matrix in terms of the amplitude
density.

Expression (2.47) is more useful than (2.45) because it can be shown
that (2.47) is correct to second order in the error of the amplitude density
[21]. Thus for good estimates of the amplitude density the error in the
scattering matrix will be small.

GP®

2.3. Outgoing Wave Variational Principle for %,

We define the outgoing wave as

W = GPUILLm, (2.48)
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which is the second term of the Lippmann—Schwinger Eq. (2.31). When
Eq. (2.48) is substituted into Eq. (2.47), we obtain
g = O U gDy £ (YO U WG + (PG U |yt
= (MG + (R U1, 249)

Now we insert GP®(GP™)! into the fourth term on the right-hand side
of Eq. (2.49) to obtain

(g(-) n) ‘1’8\),}“’) = (t(-)n | GD(+)(GD(+) )—l | \Pg\)'vno) (2.50)
and by using Eq. (2.48) we obtain
(C(_)" | ng") = (\yg‘));l [(GP™y Wg\)’co)_ (2.51)
Putting Eq. (2.51) back into Eq. (2.49) and using Egs. (2.29), (2.32), and
(2.33), we obtain
Frna = (WO U YO™) + (YO U [P + (PGN | Uy ™)
2 (2.52)
- (Y| oz = B) ¥,

which is the OWVP for the scattering matrix. As with the GNVP for the
scattering matrix, it can be shown that Eq. (2.52) is correct to second
order in the error of the outgoing wave. (The proof is entirely analogous
to that for the SWVP in Ref. [21].) Thus for good estimates of the
outgoing wave, the error in the scattering matrix will be small.

2.4. Relationship of the GNVP to the OWVP

In previous work we considered a trial amplitude density that is
expanded in £? basis functions as follows:

(" Ry =S, ApBp(RX). 2.53)
B
Here @y is a product basis function, which has the form
(2.54)

~ 1 ~
Dp(Rx) = R Lingng(R)Gp(%),

Where 2, is the translational part of the basis function, and §,,(x) is a
particular channel eigenstate. Throughout the paper B is a collective
index that specifies a basis function. For a basis function like the one in
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Eq. (2.54) it specifies the set of quantum numbers X, vg, js, /p, and the
parameter mp that labels translational radial basis functions; therefore,
B specifies an n,m pair which is conveniently denoted ng, mg. In Eq.
(2.53) B ranges from 1 to the total number of basis functions included in
the expansion. When (2.53) and its adjoint are substituted into (2.47) we
obtain

Sare = (‘VH"| | Iy 4 2 A Bnn(\lf(.)"l uGP® | &’B)
B
+3 an(&lgl GPHy I oy
B

~ 3 Apnpn(®p 1 GOV — GPOUGPS | By, 2.35)
g’
We next introduce a convenient notation [21] for the complex non-
£? function defined by
QF) - GD(")('I');; (2.56)

and its adjoint
2 = ®p°GP, .57)

These functions will be called half-integrated Green’s functions
(HIGFs). From Eqgs. (2.32) and (2.56) we obtain the following nonho-
mogeneous differential equation for the half-integrated Green’s function

2 o - (2.58)
- Ep =
With this new notation, Eq. (2.55) may be written
o= (W Uy + 3 Ay 21|26
B
3 Ao |ty
B

(2.59)

&),

-3 ApnApn2E I%'%(H ~E)
B
This bilinear form of the varijational functional may be used to obtain the
variationally correct scattering matrix as discussed below.
We can also obtain Eq. (2.59) from the OWVP. To do this we expand
the outgoing wave in an HIGF basis
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Wi =3 Ap2f? 260
p

and use (2.52). Thus the GNVP expression and the OWVP expression
for the scattering matrix are identical if one expands the amplitude
density in an £? product basis in the GNVP case, and one expands the
outgoing wave in a derived non-£? HIGF basis in the OWVP case. The
OWVP, though, may also be used with more general basis functions, of
which Eq. (2.60) is a special case.

In the present paper we will expand the outgoing wave in a set of
general basis functions

e 2.61
¥ow=" A Ty, @D

B
where the ﬁz are defined in Eq. (2.1).
2.5. Obtaining the Expansion Coefficients and Scattering Matrix

Substituting Eq. (2.61) into Eq. (2.52), we obtain

Finm =t 2, 0O €| T Ay + 3, AT 1)y

8 B
o o (2.62)
-3 A (Tl 71H-B) I T)Apng
BB
or in matrix form
F=9P+B"A+ATB-ATCA, (2.63)

where %8 is the distorted-wave Born approximation to the scattering
matrix with matrix elements given by

R 5"0 = (yOn |u| oy 2.64)
and the matrix elements of B and C are given by
By = (| 1| W), 2.65)
and '
- ~ 12 -
Sy =Tl 5 (- B [Ty, (266)
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respectively. By virtue of Eqgs. (2.29), (2.33), and (2.34) we can rewrite
Y 8and B as

~ Anl 2

_yg"n= (g |__(;; E-H) | o) (2.67)
and

~ - (2]

By = 015 E- 1y (266

Now we require that.7;, be stationary with respect to changes in the
coefficients, Ag,, that is,

A (2.69)
—=—=0;n"=ngor n; all n, ny, B.
aABn'

This yields
A=C'8, (2.70)
and putting this into Eq. (2.63), we obtain
=5+ BT B, 27D

which is the scattering matrix due to the coupling potential. The full
scattering matrix is given by

$=%+.72+ BT B. @72

In summary, we must calculate the distorted waves and °S, evaluate
the matrix elements in Egs. (2.66)—(2.68), solve the linear Egs. (2.70),
and finally form the § matrix as in (2.72). Next we consider the evalu-
ation of the matrix elements in more detail.

3. CALCULATION OF THE %* & B, AND € MATRIX
ELEMENTS AND CONSTRUCTION OF THE FULL
SCATTERING MATRIX IN TERMS OF PARTITIONED
MATRICES

3.1. Basis Functions

Equations (2.1) and (2.61) are very flexible. For example they include
the asymptotic eigenstate functions of Eq. (2.54). However, because we
use multichannel distorted waves, (2.54) is not flexible enough to



Linear Algebraic Formulation of Reactive Scattering 61

represent the basis functions we use in the OWVP, but (2.1) with
@py= Ou is general enough for this purpose. To see this note that the
HIGFs of Eq. (2.56) have the form
P4 g)(R’ x) =7I? Z Awng 8 E'T')‘B’"B (R) §n(x), 6D
n
where the 2 i, is a radial HIGF.

We will use the flexibility of (2.1) not only to include multichannel
dynamically adapted basis functions but also to include functions ob-
tained by associating a set of g, functions with each of a subset of Fpy
functions. Our basis will include (g, functions that are not associated
with channels, and it will not be restricted to a direct product.

The special case of Egs. (2.1) and (2.61) that we actually propose to
use is

N‘ my
PEPR 0= Y, ZAgmn‘,ZAm.g.f.’un R (%)
n=l m=1 n'=1

Ne v
FE DS A anl B0
n=l nr=u,
1o >
+7 Y Abn Y, SrapR)Gpx), 3.2
B=1 =1
where ¢, and @, themselves are linear combinations of “primitive” basis
functions, m., U, va, and g, are new parameters that specify the ranges
involved in the various sums, N is the total number of channels defined
for the problem, N, is the number of channels summed over to form the
linear combination of HIGFs, N, is the number of channels summed over
to form the linear combination of eigenstate functions, M, is the total
number of basis functions of the third form in Eq. (3.2), and A§_,,
A5, and Af,, are special cases of the coefficients Agp,,.

Another way to specify the basis is to specify the three types of basis
functions that occur in (3.2) in terms of the general notation of (2.1). We
will label these three types of basis functions with a g, an e, orana to
denote, respectively, the HIGFs in the first summation of (3.2), the
asymptotic eigenstates in the second summation, or the arbitrary basis
functions in the third. Arbitrary basis functions have the form (2.1) with
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the only further restrictions that &y, Zpy, and @gy are real and henceforth
the tildes will be removed from these quantities.

Type e basis functions have the form of (2.54) where ?z"' is assumed
to be real, to satisfy (2.23), and to be an eigenstate of the /2 operator for
the square of the orbital angular momentum of relative translation. In
this case 8p = Tpy = 1, Jpy = tmpn,» and Qgy =, in (2.1).

Finally, a g type basis function has the form of (2.56), where the
are real, they satisfy (2.23), and are also exgenstates of 12 In this case
Tpy=1, the sum over Ybecomes a sum over n’, Qpy is set to ¢, and Fpy is
set equal to g,.,.,,,,, in (2.1).

The basis that we have defined above is more general than that which
we have used previously because of the presence of the type a functions.
Previously our basis sets consisted of type g and/or type e functions, and
these proved to be sufficient to obtain converged quantum dynamics for
a variety of electronically adiabatic atom~diatom reactions. However,
electronically nonadiabatic reactions involve one or more electronic
excited state surfaces. Quantum dynamics on excited state surfaces can
be more difficult to converge than dynamics on typical ground state
surfaces. This is true because the excited state surfaces can involve
higher occupancies of antibonding orbitals with the result that the
internuclear separation of the nuclei in the diatom may be much larger
than its asymptotic value. Hence an expansion in asymptotic eigenstates
and HIGFs generated by asymptotic eigenstates may not be the best
choice for spanning the coordinates of the diatomic. The arbitrary
functions are included in our formulation to allow us complete freedom
in defining basis functions that will be suitable for electronically nonadi-
abatic problems.

To define the radial HIGFs more precisely we first left multiply Eq.
(2.58) by (-2uR/f1 )Pu(x), then we substitute Eq. (3.1) into the resulting
equation and integrate over the coordinates x. This yields the following
set of differential equations for the radial part of the HIGFs:

d? Ll 1) 6
{d dR? Lki_ +kn }g nngmp R+ ZA”" Uni(R) 8 $'+’)'V”D R)=~ 8""”'"""9

with the boundary conditions
4
By (R) ~ 0, G4
R0

and
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: (3.5)
(1/2ik)" exP[i(k,.R - %’3)] ki >0,
ggn)pm; R) ~ gngmyn .
B i@l k) expl- ka| (R = R, K2 <0,
where for the large-R form of the HIGF
(3.6)

dngmyn= [ ARAugnf S5k Rty (R).

Next we discuss the calculation of the matrix elements of Section 2.5
in terms of this particular set of basis functions. These matrix elements
are not calculated directly; rather the matrix elements are computed from
the real analogues of %%, B, and C that occur in the SWVP for the
reactance (K) matrix [22]. Note that application of the SWVP for the K
matrix would yield different results from either the SWVP for the T
matrix or the OWVP for the S matrix, but in the method discussed in the
present paper (and used previously) we do not complete the calculation
with K matrix boundary conditions. Instead we use these real-valued
matrices until as late in the calculation as possible to avoid the extra cost
and storage of working with complex matrices. We do eventually require
the solution of the complex linear system in Eq. (2.70), but we can
arrange matters so that only a relatively small submatrix of Cis complex,
thus permitting most of the calculation to be done in real arithmetic.

3.2. Transformation of the Non-£? Basis Functions

In order to make most of the algebra real, as just discussed, we form
the complex basis lN“;;, the complex distorted functions, ", and the
complex HIGFs, gf,f.),,,,,, by transformation from their real analogues.
First we calculate the functions gﬁ’,!;,,,, that satisfy Eqgs. (3.3) and (3.4) but
with the large-R boundary conditions [10,18]

Bmy ~ (6.7

Rg—roe

1
~dugynk R, (kuR), £>0,
g2 | K1) expl=| k| (R = RY], K2 <0,

where

dng mgn = J dRAnpn(r)ﬁlp"(R)tmu"u(R)‘ (38)

We also calculate ©f,,, which is a real regular radial function that solves
(2.36) with the boundary condition (2.37) and
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)
K RIS, (knR) = Ami®Kommg(kuR)), K250, (3.9
e | )
Ofurt = 3@ kn| ) {Bn expl | | (R - R)]
R + Anr oKnn' eXp[—lkn] (R “Rf)]]» k: <0,

where °K is the extended reactance matrix, defined such that the subma-
trix with two open-channel indices is the ordinary reactance matrix. In
Egs. (3.7) and (3.9), J, and n;, are spherical Bessel and Neumann
functions, respectively, and Ryis an arbitrary numerical parameter.

o ;’;/;3 define the following real analogues of the matrices in (2.66)—

2 (3.10)
K = (9" 22(E ~ H) 1y,
2 3.11)
Bwy= (T3 | 25(E ~ H) 1™,
and
(3.12)

2
Cppr=(Tp | #2(H-E)1T),

where the distorted-wave radial function with X matrix boundary con-
ditions is

1
VR X) =g 3 Ao “funo R)Gn(X), G139
and the real basis function, T, is given by
B (3.14)
TR, X) =5 " cprgpy(R)opy(x).
¥

Transforming HIGFs to £? Functions

By taking linear combinations of the HIGFs it is possible to
transform a subset of them to localized functions. This has two
significant benefits — it reduces the space over which the quadratures
must be performed — and it also permits a larger fraction of the
solution of the linear system required in (2.70) to be done with real
arithmetic.

We start by considering the formal expression for the HIGFs [18]
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, , , 3.15
By (B = [ AR gang(R, Rl ), G139
where
” (R @ n'n"! R . R RI,
gnn‘(Rs R,) = ZAnn"An'n" Of ®) f ( ) < , (3‘16)
Y 'ﬁ,,,"(R)(r)f;,'"'v(R'), R>FR,
and the 9, solve
1 .
H? - B) 5 Y A fun (R)Gu(x) = 0 G.17
together with the boundary conditions
Y 2
(I?fm.'(R) _ {"Srm ki Rn/,.l(knR)v k;l >0, (3.18)
R ian,.'a [ka )% expl—ka| (R = RY), K7 <O0.

If we set the #,,, equal to zero outside the region Ri<R< Rﬁ, then (3.15)
yields

3.19
2 Aml'(r)fnn'(R)di'nB mu(R), R< R‘g, ( )
N s
BB = | 8o Ro=ksfy
Z Ao R)rtmyy(R), R > R,
where
i 3.20
Doy = By | AR (R bR (3.20)
and
3.21
dnnump = Annu JdR(r)fnpn(R) tmunp(R)A ¢ )
We can then form the set of localized functions. giam, by
(3.22)

g}%;ynxu(R) = é#-,, ’"ll(R) - ZAnn' gﬁln'mn (R)dﬁ’npm;p mp # mo,
s
where m = mg denotes the HIGF with the smallest value of Rf for each
value of n’, and the dim, solve
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dmlwnu = Zdn’nmu dll;'num“- (3.23)

n

We then have
2 (R)=0, R>Rf, mp#mo, (3.24)

so we can reduce the number of non- £? functions to one per open channel.

Itis also possible to express the small-R portion of the 2%, in terms
of the regular radial functions and thereby reduce the quadrature costs
[36], but the additional savings is not large, and we have not implemented
this option. Since the set of functions obtained after the transformation
(3.22) spans the same space as the original set, the solution of the
variational calculation is unchanged.

In the actual calculation of the B and C matrix elements, certain of the
formulas involve the fn,, associated with a given HIGF, and these must
be transformed as well using

i (R) = trgrg(RY = 3 Awimgtmon (RYA Sy i 2 i, (3.25)
n
One complication with using (3.22) is that when a distortion block
contains some closed channels, the linear system that must be solved in
(3.23) is ill conditioned, and therefore we do not use (3.22) in these
situations.

Transformation to Complex Boundary Conditions

The I'g and T bases differ only in the non-.%2 basis functions. Thus
it is convenient to denote the £ basis functions as I'f and the non-
£ basis functions as . The % subspace is composed of type e
functions, type a functions, and square integrable linear combinations of
HIGFs defined in Eq. (3.22). The ¢ subspace is composed of continuum

- functions, in particular the remaining HIGFs. With these designations,

we may partition the B, C, B, and C matrices as

¢ (3.26)
)

(ﬁ” ] 327

B= 5.z
&)
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(o o4 (3.28)
C= C.Z‘i CZB‘ ’
and
c Fw e ] (329)
Sles czml :
( J
Then the transformations may be written [35,36]
Be= (8 + X" FH)A, (3.30)
BZ¥=B%X, (3.31)
C = - B XT - XTBT + X7 — TR, (3.32)
% = o _ XTB4T, (3.33)
CFe= % _B¥ g, (3.34)
CeZ = (éz’r)T, (3.35)
and
CLe=c%2, (3.36)
where
3.37)

57;'!]3 = I dR Anpn(r)fngn(R)’mbnp(R)'

The transformation matrix, A, is required {35] to obtain the complex
OF % from the real “,y,, and the transformation matrix, X, is required
[35] to obtain the complex g%}, from the real regular functions and
the fgf,'ﬁp,,,,,. These matrices are most conveniently given when we parti-
tion the problem into open and closed channels. These matrices for
distortion block & are

1 .
As= [—(20 PR - (=R KGS ] (3.38)

and

68 TAWA, MIELKE, TRUHLAR, and SCHWENKE
1 ~Joo 1 ~Joc|
(1404~ (1+)d (3.39)
X5= .
0 0
where
ds=Ads, (3.40)

o stands for open, and c in this context stands for closed.
The reactance matrix due to the distortion potential for distortion block

Sis
K2 OKoc
O ] 8
KS—GK? ngch (3.41)

the distorted-wave scattering matrices for the individual distortion
blocks are given by

08¢0 =(1-i%Kg)™ (1 +i°K2), (3.42)
and the distorted-wave Born approximation to the scattering matrix is
given by

yﬂ - Ktmr '2/'7/‘8"" xnn' (343)

With these equations, in particular (3.30)—(3.43) we can calculate all
the quantities needed for (2.72) from real matrix elements.

Alternately, it is possible to solve (2.72) using a partitioned matrix
scheme [36] that permits most of the work to be performed in real
arithmetic. In this scheme [36]

I =P +BPTCTT RS, (344
B/ =B¢— ¥ TC.‘AZ"B_‘Z“ (3.45)
f=c— Czc'cz:z""czc, (3.46)
Ké —- (21)1/1(1 _ ing”)—l s (347)
and
(3.48)

= 1 ~ T
Xf=-5(1+idy,
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where the superscript f designates a matrix over the ¢ space in which the
contribution of the Fspace is “folded in” using partitioned matrices [36].

Once these folded matrices are constructed, the transformations to
complex boundary conditions are

o8 = 3 o &S, (3.49)
B/= B/ + X/ 9PHN, (3.50)
U=/ -BR/-X'B + X T - %" 9K, @3

and the full scattering matrix is given by

S=%+.5%+ B T B (3-52)

In summary, the S matrix is calculated from (3.52). The matrix
elements needed for (3.52) are obtained from the real °K, %%, B, and C
matrices in two steps. In the first step we construct the folded matrices
48, B, I, A, andX that is, (3.44)—(3.48). Then we transform the
folded matrices to their complex analogues by application of (3.49)—
(3.51).

3.3. Real Matrix Elements

The equations for the %%, B, and C matrices, (3.10)—(3.12), all have
the same general form: they are matrix elements of (2WH*)(H — E). The
functions involved can be type e, a, or g basis functions, as defined
above, or distorted waves. When we consider all possible pairs of
functions, we obtain the supermatrix of tableau 1:

Tableau 1

2u 21 20
<f|—-;(E—H)|f> <fl (E H)l g> <f|—,(E—H)le> <fl—,(E—I-1)Ia>
<g| e H)f> <g! L H-E)g> <g| (H E)l e> <g| R H-E)a>
<el71§(E—H)if> <eIF(H—E)Ig> <eI?(H—E)Ie> <el‘£;_‘(H—-E)la>

2 2 2 2
<a 1;%(5-1{)1;5 <al—f~]%(H—E)|g> <al—5%(H—E)le> <a1?‘§(H-E)1 a
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where we have used the letter f to designate a distorted wave, In this
scheme the upper left 1 X 1 submatrix is the distorted-wave Born
approximation to the reactance matrix, the lower left 3 x 1 submatrix is
the B matrix, the upper right 1 X 3 submatrix is B, and the lower right
33 submatrix is the C matrix. The upper left 2 X 2 submatrix involving
only ftype and g type functions represents those matrix elements that
are used in the GNVP formalism. All sixteen types of matrix elements
are used in the OWVP formalism,

Matrix Elements of 78

The matrix elements of the .%® matrix for initial channel no and final
channel n are

T =[dR'S Fuwt (R) B fiinlR), (3.53)
where
FaeR) =Y, Burnen (R (R), S (354)
exaR) =~ 2 VESRY1 - A, 3.55)
and
VIR(R) = [ dxgw()V™(Rx)n(x). (3.56)

Matrix Elements of B

There are three types of B matrix elements, and they are represented
by the second, third, and fourth rows in the first column of tableau 1.
These entries will be referred to as B* where x = a for arbitrary functions,
x = g for HIGFs, and x = e for eigenstate functions. B is given by

Bing=[dR Y, G0 (R)AmsfinR), @.57)
and for x = a, g, or e we have

GBn(R) = Y coyapy(R)epya(R), (3.58)
v
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GulR) =Y Aum gy R)ewaR), (.59

Gin(R) = tmyg(R)engn(R), (.60

2]—" int int (3 61)
epralR) =~ =5 [ Jaxou0v™ R x)m00) — 3 An'no;sy.n'vn»n(k)],

and

Oby.n= | dxpy(X)n(x). (3.62)

Matrix Elements of C

There are nine types of C matrix elements and they are represented
by the second, third, and fourth rows in columns 2—4 of tableau 1. These
entries will be referred to as C= where x=a, g,oreand x’ =g, g, or e.
If x=x"=athen

2 (3.63
Chy =] dRax Y covasy (RIop (5 (H ~ B Y coyapr v (R)9py (3.
¥ Y
First we write the operator in the coordinate representation:

2u R I P L ey, 12 G609
F(H—E):—WWR—7—8—"—2I‘+-:Z+F[W !—E+V l]+'k—2‘,

where R is the mass-scaled atom—diatom separation defined as the
magnitude of the vector in Eq. (2.16), r is the mass-scaled diatomic
distance defined as the magnitude of the vector in Eq. (2.17), and the
operators J and 7 contain derivatives with respect to nuclear angular
coordinates. We can write (3.64) as

2 1 &
;%(H —E)=—ﬁ5%R ~T - U(R,x), (3.65)
where
A_2 ial 1 aZ .;\2
r=;]‘§(E—V" ‘)+{—,——a—r,-r—7}, (3.66)
and
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ff, 2 r
URX) =~ 37 VIHRY) - 7. (3.67)

Putting (3.65) back into (3.63) and rearranging yields
Clr=J dRS. S cprapi®

¥ v
& »
x| [ dxgmi0 00 <5 ~ [ dxopo) oy (0o ap (R)
- dRY, 3 coapdR) [ dxapi QU R x)0my (%) iy gy (R). 6

T
We now make the following definitions

Opry = | dx@p(x) @y (%), (3.69)
Ty = [ dxQp ()T Oy (x), (3.70)
Uiitpy (R) = [ dxopy () UR x)0py (), G
B < 3.72
Ghby B =Y. covap® U gy (R), G.72)
Y
after which we write (3.68) as
aa 82
Ch=[dRY, 3 corapRf-Opr =57~ rjepy gy (®)

Y Y

(3.73)

-[dRY, 6E5MRIcprapy (),
”

which is the expression for a C matrix element in terms of general basis
functions.
For the case where x = g and x” = q, the C matrix element becomes

a N o
Gy = .[ ARy Aung B ngmy (R) > {‘On.ﬂ'v' w- Tmﬁ’v'} cpygpy (R)
n ,Y'

- [dRY. G Ry apy (R), @74
”
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where
B = Aun, Zangng R gy (R), @75
A
Ty = [ dx0u(x)TPp(x), 3.76)
and
(eff) 3.77)

Ungi(R) = [ dxgn(x)U R X)gpy (x).
For the case where x = e and x’ = a the C matrix element becomes
ea az
Cify = [ dR tuyy (R) > {—Onpvp'v' FYo T"a-B’v'} cpyapy (R)
v
efeff 3.78
- [aRY, G Ry apy (R, G718
v
where

e(eff) (3 . 79)

GBEVIR) = (R Uiy (R).

For those cases of C where x” = e, the C matrix element can be written
in the general form

Xe az
Cpy = J. dR TE"L)’(R) {“ 51}5 - kznp' } Ty (R)

~ [ dR GESD (R)tmymy(R), 3.80)

and for x =g, g, or e we have

Tha(R) =Z CpyaB{R) Opyns (3.81)
Y

Tﬁn(R) = Annpg rl:’n”mu(R), (3.82)

T (R = tmgn(R) S, (3.83)

(3.84)

G HPR) =Y, cpram(RUfia(R),
Y
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PR =T Ara2 b RIUSH(R), 3:85)

n

G (R) =t VU S (R), (3.86)
URin(R) = [ dxppx) U(R, x)0a(x), (3.87)

and
(3.88)

Unnt (R) = [ dxu(0U 1R X)0x(%).

Note that G§*™ and GES™ are called 94, in Ref. [22].
For those cases of C where x” = g, the C matrix element can be written
in the general form

Ry = [ dR Ty tmgng(R) = [dR'S GulR) Ay Bl my(R), 389

where the auxiliary matrices, 7%, are given by (3.81)—(3.83) and the
auxiliary matrices, G, are given by (3.58)—(3.60) respectively.

4. REACTIVE SCATTERING

4.1. Basis Functions and the General Form of the
Matrix Elements

In this section we extend the theory presented in Sections 2 and 3 to
reactive collisions. The new element in this extension is the presence of
more than one chemical arrangement. As mentioned below Eq. (2.2),
each chemical arrangement will be denoted by an arrangement quantum
number ao; for the case of atom—diatom scattering, o = 1 represents A +
BC, o = 2 represents B + CA, and a = 3 represents C + AB. Each of
these arrangements will have its own set of operators; in particular, Vi™,
b VP V€ and HP will each have an o as a subscript identifying the
operator with the appropriate arrangement. Each arrangement also has
its own set of coordinates Ry and X4, where Ry is the mass-scaled radial
separation between the atom and the center of mass of the diatom for
arrangement o, and X, is the collection of all other coordinates. Because
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the coordinates are different for each arrangement, Eq. (2.16) is gener-
alized to

Ro = MoS, @.n

where S, is the vector from the diatom mass center to the lone atom in
arrangement C.,

2 Y%
Mo = mo(Mmee + Mo) ) 4.2)
Mmoo (Mo + Mo + Mar)

mq is the mass of the lone atom in arrangement ¢, and my and mq- are the
masses of the other two atoms. Note that Ry is the magnitude of Rq.

The Hamiltonian may be still written as in Eq. (2.12), but now the
kinetic energy T may be expressed in any of the three mass-scaled Jacobi
coordinate systems associated with any of the arrangements. Thus

1 (4.3)
T=——Pa P
2u
where L is still the same as in Eq. (2.14); and the 6-dimensional nuclear
momentum in the center-of-mass frame is

44
m=4ﬁg}} ¢

Tra
where

fo= M3sq, 4.5)
and s, is the vector directed from B to C for o. = 1, from C to A for a0 =
2, and from A to B for o = 3.

The coordinate X, consists of nuclear components, @, and electronic
components, X. The nuclear components in turn consist of the angular
part of Ry and all of r.

The diabatic electronic functions are denoted by Xy(X.;Ro,00); they
are functions of the electronic coordinates, x., and they depend paramet-
rically on the nuclear coordinates, R and . Note that a given electronic
function can be written as Xy(X.;Ra,®a) 0Of Xy(Xe;Ro, @) for any o or
o or even as Xy(X;R,0) since R=Ry and @ = ;; that is, we can use
whichever nuclear coordinates are most convenient in any given context.
Since the electronic functions are diabatic,

PoXz(Xe;Ra,00) = 0. (4.6)
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The bras and kets in the electronic space are denoted by (2.4) and (2.5),
and they are orthogonal, as indicated in Eq. (2.6).
The potential is given by

V=3 31X} Vax Ratood(x'1, @D
oY
where
Vie(Ra, 0a) = [ dxeXs(kei Ras 0o) A% Xy (Xe; Rer, @), “4.8)

I/-\IE” is the sum of the electronic Hamiltonian and the nuclear repulsion,
and, just as for Xy(x.;Ra,®q), the potential surfaces Vy,» may be written
in any of the Rq, ®q coordinate systems or even in the R, @ notation, as
convenient. We note that Eq. (2.9) still holds in the multiarrangement
case. Again, as a consequence of Egs. (4.6) and ( 4.7), all electronic
integrals reduce to the one simple integral (2.6), and we do not have to
work with the electronic wavefunctions.
‘We next proceed as in Section 2 by partitioning the Hamiltonian as
H=T+ Vv 49)
where V¥ is the vibrational potential of the diatom of arrangement c,
and V§' is the interaction potential between the atom and the diatom of
arrangement @, the vibrational potential is given by

Vit =lim v, (4.10)

Rg—roe

and the interaction potential is given by
vE=y- vk, @.11)

The channel wave number for arrangement o is defined as in Eq. (2.39)

- but with kqu. replacing k. and €q, replacing €,.

The asymptotic Hamiltonian is
Ha=T+Vd (4.12)
and the asymptotic eigenfunctions, ¢, must satisfy
H‘&(T)w.(x«z) = Eqnon(Xa), (4.13)

where n is the channel index for arrangement o The channel index
represents the set of quantum numbers ¢, X, v, j, and [ and the Qox are
the arrangement-dependent channel eigenstate functions which were
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described in Section 2.1. Note that we systematically include o explicitly
in many of the function labels, even though its value is implied by n,
because it plays an important role in the form of the equations.

We proceed by partitioning the interaction potential into a distorted
part and a coupling part

Ve'=Ve+ Ve, ¢-14)

where the distortion potential is restricted to a single arrangement, that is,

At = Boa, A (4.15)
with A, defined above Eq. (2.25) and
V2= Y A% Qun V00| .16)
where
Vint® = [ dxofan(ke) V5 (RosXa) P (Xo). @17

The coupling potential is given by
vE=vir-ve, (4.18)
and the distorted-wave Hamiltonian is given by
HE=T+V&+ V8, (4.19)
in terms of which the full Hamiltonian is
H=HE+V§. (4.20)

The Schrédinger equation for the wavefunction that satisfies outgoing
scattering boundary conditions is

(Hlu) + Vg)\y(ﬁ%"o = EyHoon, 4.2

where ng denotes the initial channel, and o denotes the initial arrange-
ment. We expand the full wave function for initial arrangement ¢ and
initial channel no as

pHowm 2 l}l&")uu'lo, (4.22)
o

where W§%" is a particular arrangement component of ¥ The
Schrédinger equation can now be written as
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(B~ H¥iporo = - 12 3 g ipoom, .23
s

where the coupling operator, U, is given by [42]

(4.24)
o=~ %E; (H~ E+ 8uuE - HR).

This is identical to the scheme conventionally used to couple arrange-
ment components corresponding to electronic exchange in Hartree—
Fock theory and electron scattering [43,44], and it is called the Fock
scheme. Other schemes are possible [45]. In the Fock scheme the
arrangement component wavefunction, ¥, satisfies the coupled set
of generalized Lippmann—Schwinger integral equations [8,46]:

\y‘(;)ﬂo'h - 5!100“’<+)m + Gg("') z ﬂua'\*‘g.t)m, (425)
o

where the distorted wave, y®%", is a solution of
(HE, - By =, (4.26)

The distorted waves have a form similar to (2.35); however, they are
now dependent on arrangement,

B 1 ~
VO (Ray Xo) = 2 3, AT S N Re) oo (K. @27
The radial part of the distorted waves obey the set of differential

equations (2.36) and are subject to the boundary conditions (2.37) and
(2.38). The distorted-wave Green’s operator G5 is given by

2
GB® =lim ~ 2= (B~ B2 + ie)", “.28)
.20
-0
and the full scattering matrix is given by
(4.29)

Snny = Boa osﬁno + Faner

where %S* is the distorted-wave scattering matrix which is determined
from the boundary condition of the form (2.38), and % is the scattering
matrix due to the coupling potential and is determined variationally.

As discussed in Section 2, the variational part of the scattering matrix
is given by Eq. (2.71). For reactive scattering the distorted-wave Born
approximation to the scattering matrix is given by
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Fha= (91 2 @ 1y, (430

Bpy, is given by

By = (T %5; (E - H) | ytoomy | (431
Cpp is given by
Copr = (T i—luz H-B)|Tp), “32)
and the coupling operator is
—— %x Ve (4.33)

The general basis functions, g, in each arrangement are the same as
described in Section 3, and they are again designated as type g, ¢, and a
to denote HIGFs, eigenstate functions, and arbitrary functions, respec-
tively. All the restrictions on basis functions that are described in Section
3.1 apply here as well.

Inthe multiple-surface reactive case we calculate the scattering matrix
from the real analogues of %S, .2, B, and T; these are called K,
748, B, and C, respectively. These real valued matrices are used until
as late in the calculation as possible to avoid the extra effort of dealing
with complex matrices. Equations (2.36), (3.3), (3.7), (3.9), and (3.14)
hold for the determination of the real analogues of the distorted waves,
the HIGFs, and the general functions; and Eqs. (3.10)-(3.12) become

ﬂfﬁnu = (‘Van l %l:; (E- H) } WOO"O> s (434)
2
By = (T ,,—u (E - H) Ly, (4.35)

and
5 (436)
Cop=(Tp| 55 (H-B) T

The & matrix defined by Eq. (3.37) is zero in the reactive case, that is,
o # o, because &7 is block diagonal by distortion block, and the distor-
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tion blocks do not couple together channels for more than one arrange-
ment,

The forms for the %2, B, and C matrices for reactive scattering are
more general than for the single arrangement case in that some of them
now contain functions written in the coordinates of two different ar-
rangements, that is, exchange integrals. These manifest themselves in
the appearance of the B,W, and C** matrices, which are analogous to
the O, e, and U* matrices of the nonreactive formalism.

4.2. Real Reactive Matrix Elements

The real matrix elements that we need to calculate for Egs. (3.44)—
(3.52) are the elements of .74%, BZ, B¢, CZZ, C%¢, C°%, and C*. The
superscript .% represents the %2 subspace of basis functions which
contains type e and type a functions and the %> HIGFs. The superscript
c represents the non-%?subspace of basis functions, which contains the
remaining HIGFs. In addition to these functions we need the non-.%
distorted waves to calculate .F4%. The most general forms of the %2, B,
and C matrices are given by (4.34)-(4.36). However, when one distin-
guishes among the various types of basis functions that are used, and
when one considers the distorted waves, 16 specific forms for the .7,
B, and C matrices result, and these are given in tableau 1 of Section 3.3.
To obtain a particular entry in tableau 1 for the reactive case, one
substitutes the appropriate basis function of type g, e, or a or the
appropriate distorted-wave function, operates to the right with H — E,
and rearranges the resulting expression so that the radial integrals over
Ro and Ro, are outermost, and the integrals over the rest of the coordinates
used to span the full coordinate space are innermost. The label oy is
associated with the bra for a particular matrix element in tableau 1 of
Section 3.3, and the label « is associated with the ket.

Coordinate Systems

The forms of the matrix elements that we need to calculate depend on
the coordinate system used. As mentioned in Section 2.1, some parts of
the calculations are most conveniently carried out in a body-frame
coordinate system. The coordinates used in the space frame are x, and
®o, Where @ is the collection of nuclear coordinates Ra, ra, O, Po
(here @, is an angle, not a basis function), 8y, ¢o. When o =1, the
coordinate Ry is the magnitude of the vector given by Eq. (4.1) and is the
mass-scaled distance from the center of mass of BC to atom A, rq is the
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magnitude of the vector defined in Eq. (4.6) and is the mass-scaled
distance from atom B to atom C, ©y and @, are the colatitude and
longitude of Ry, and8, and ¢q are the colatitude and longitude of 1y [8].
The nuclear coordinates of the other arrangements are defined by cyclic
permutation of the three atoms,

In the body frame, which is related to the space frame by a rotation,
the nuclear coordinates of interest are Ra, Yo, Yo o, Ou, and Yo (X« here
is an angle, not an electronic quantum number), where Yo is the angle
between ry and Rq, and @y, Oy, and X, are the Euler angles which relate
the space frame to the body frame. For computational reasons it is
convenient to transform the three internal nuclear coordinates from
Ra, ra, and Yo to Ry, Ra,, and Axg,, Where Aqg, is the angle between Ry and
Ro,. Transformation between the two sets of nuclear coordinates is
accomplished by the equations [18,47,48]

Fa= MOU[RE, + (M Ry + 2 **RoRo, 0ol 2, 437
COSYa = (—1) %M *YFT R, + R, COSAuny)/ras (4.38)
rag = MORE + (M Ray)? + 2 RoRo, COSAGg,] %, (439
CO8Ya = (~1)F0M *O(F Ry, + Re: COSAx0,) T (4.40)

% = (M — mo)(M ~ mia (M = e, = oM %, (441
and

M9 = [mgme,/(M — mo)(M — mq,)] ‘/:’ (442)

where Pq is the parity of the permutation from (12) to (c.0t), M here is
the total mass of the three atoms, and, as before, mq is the mass of the
lone atom in arrangement O.

After this transformation, the set of nuclear coordinates consists of
R, Ry Aoy Po, O, andye. The volume element for the six-dimen-
sional integration over these coordinates is [18,48]

(MDY R2ARGRE AR aytlc0s Aoadyosin@od BadOc. (443)

We define the collection of Euler angles as €, and the volume element
over the Euler angles as

deg = dyosin@ed®odOy; (4.44)
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hence the total volume element becomes

(MO REARRE AR ACOS AodzadXe. (4.45)

The basis functions depend on X., Ry, Ra,, Aoca,, and &q,but the poten-
tial only depends on Ry, Ra,, and Ao, Since the potential is independent
of the Euler angles, the integration over & can be done analytically,
which reduces the dimensionality of the numerical quadratures to 3,
However, at this stage of our formulation we do not remove the Euler angle
dependence by analytical integration because it would complicate the
presentation of the rest of this section; a detailed description of the integra-
tion over the Euler angles in Eq. (4.45) is given in Appendix A of Ref. [8].

Exchange Matrix Element of %8

The matrix element for % for initial channel o and final channel 7 is

Fmno= [ dRay 3, Fun(Rao)A%y OfineRas), (4.46)

where "
Frn(Rao) = [ dRo. 3" A0 frrn(Ro) Wk (R, Roc), (4.47)

and "

W (Ro, Rog) = RaRoo MY [ d 003 AnaleadXeon(ReRop Ao Xe)

XTU(Ra,RogrAace) o (RosRaes Accis £ Xe)- (4.48)

Exchange Matrix Elements of B

There are three types of B matrix elements and they are represented
by the second, third, and fourth rows in the first column of tableau 1 in
Section 3.3, These entries will be referred to as B* where x = a for
arbitrary functions, x = g for HIGFs, and x = e for eigenstate functions.
B* is given by

Bio, = [ dRoy 3" Gin (RagA%5, O (Ro), 449)
and for x = a, g, or e we have

GinlRa) = [ dRe 3" coyapfRe)W fys(Ras R, (4.50)
Y
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Gha(Ro) = [ dRo 2 Aﬁ‘n‘,éi.vn,,mﬂ RIWESRGR,), 45D
§n(Re) = | ARt (RIW 0 (ResR), .52
where

WESS (RoRa) = RoRay( M) [ d COS Ao dEad¥,Papy(Ros Ry AuceyEake)

(4.53)
X U “(Roy Ry Do) dogn(Ros RagsBooEaXe)-

We will also use alternate forms of the B matrix elements [36] for
reasons which will be given in “Radial Quadratures” in Section 5.10.
For functions of type a, g, and e, these forms are given by

Bjy, = [dRq [ dRq, 2 A% iR

2
<3 {os‘:fswea,m;,% + mwa.m} cvap R

+[dRa Y T3y (Ra)cp1gp+(Ra), “54)
¥
Blno =[dRa S, F i (Rod A%y &gy (R — | dRoTrnsRedlmRa), )
and
(4.56)

Bfn = _[dRo(Tnon,,(Ru)( +TaJtmung(Ra)+JdRa7 %ffB(Ra)tmun‘,(Ru).
where

B ReyRa) = RuRog(M %) [dc0sAq et G ResRoy Doy Earke)
X Qo B y(RouRoy AcowEarXe), (4.57)
%% (RooRe,) = RoRa (M%)’ Jdcos g dead® Dan(RarRug s, €ake)

A
X Toy@oto, B y(RousRogs Ao Xe)s (4.58)

r 4.59
FR L (Ra) = [dRo, T B funRop) C o (RosRey), (4.59)

n
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F g (Re) = [ dRy, 2 A% O f, (R IW(R Ry, (4.60)

Ton (Re) = JdRuOZ A, © Fin Ro B (RooRey), .61y

Fup (Ra) = [ dR 2 BB i (Ra ) CE (R Ry, 4.62)
%“=%(E‘Vma‘)+{],§:£ %} (4.63)

Crt ™ (RooRoy) = RuRog (M’ [ dc0sige et Bon(ResRa, Aoy Eark,)
% Ugj(RosRonAaoe)PospfRa-RopAaapCake) . (4:64)
BO%RaoRop) = RaRo (M) [ deosqe, dEadX Den(RosRoy Do o)
X Qo' (RosRogrBoogsEarXe), (4.65)

o (RoyRa) = RaRoy (M [ deosAon, deodXeanRas Regp Ay Eav X,)

x U Sif(RmRamAua«)¢w{Ra,Rm),Am,,sa,xe). (4.66)
and
2 7
USi(RoRopAagy) =~ ?:’L'V'N(Ru,Romwa) E? (4.67)
o0

Exchange Matrix Elements of C

There are nine types of C matrix elements and they are represented by
the second, third, and fourth rows in columns 2—-4 of tableau 1 of Section
3.3. These entries will be referred to as C* where x = a, g, or e and
x'=a, g, ore.If x=x"=athen

iy =[dRo @R 'S cpyp(Re)

Yy v

Q0o 9’
X {“Q;Bv,ﬁ'y'(R“’ Roy) Fro Thydy(Re Rm’)} cpyapy (Rag)
oy
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afel (4.68)
- [dRo, 3T G RN Ry (R
T Y

where

B (RooRe) = R (M) [ doosBoadead PopRasRoyBasy ek

4.69
% (putrB‘Y'(Rﬂ"R %’Awntewxz) B ( )

ng,y.(Ra,R%) = RRo (M 0lg)3 j dcosAg deX Do p{RaRopBogyEaXe)

T (4.70)
X T%(P%B’y‘(RwRuﬂ,A‘m‘,vewxe) ,

afel aoyleff) @.71)
G by (RouRa)) = | dRaCadpRa)Cpriy (RoRoy):
and
S Re) = RoRay (M%) [ dc05 g dEadl P o RooRo ey ko)

Cpvpr
4.72
X Ug:,f(RwRuﬂ’Auao)(P%.B'Y(RchxurAuog,vaxe)- ( )

For the case where x = g and x” = @, the C matrix element becomes

ga N
CBy = [ dRo @Ry Y Aty &g (Re)

n
a’l
XZ {_(Bﬁf'v'(RwRﬂn)é‘T - T%’Y'} CB'Y'qﬁ'Y'(R%)
, RO‘n
|
o 4.73
- I dRo, Y, GV (Ra) v apy (Ray), “73)
»
where
N ff

GESRe) = [ dRa T M Mg RO (R

w

For the case where x = ¢ and X’ = a, the C matrix element becomes

aZ
5 =] ARy ARatm (R S {—ﬁﬁf‘fglv,(Ru,R%)éR—: - Tﬁ‘:&.{} cpydpy(Ray)
. oy

¥

(4.75)

- j dRy, 2 gﬁ(fif'?’(Rw)CB’v"lB'v'(Ruu)’
-

4.74)

86 TAWA, MIELKE, TRUHLAR, and SCHWENKE

where

G55 Ry = [ ARt (R CFO R o). (4.76)

For those cases of C where x’ = ¢, the C matix element can written in the
general form

xe 32 A
CBB’ = .“dRanq‘B"ﬁ(R“n {—E&: - 1%} [mﬁln‘],(R%)

- [are, Gy Ra gy (Ro) @1
and for x = a, g, or e, we have
Thu(Ra) = 3, [ dRucpyapy(Re) B3Rk, @.78)
Y
Th(Rep = Y, | AR oA, 2 ngny R BT R R, (4.79)
Thu(Rey) = [ ARotyp (RIBEReuRoy). (4.80)
aleft Ol (=
G (Rag) = 3 [ dRucpy Gy (R CR ™ (ResRey), (4.81)
Y
GEORa) = 3, [ AR, 2 RICHPR Ry, 482)
(4.83)

G (Rap) = [ ARat R CISMR, R, )

B9 (RouRay) = RoRo (M%)’ jdcosAa%dsadxe%MRWR%,AWeu,xe)
X ¢ayn(Ru-Raﬂ,Aoanv8arxe) ) (4.84)
and
CRra™(Rq.Ry,) = RoRa (M)} I dC05Aqo dE0dX Do py(RosRo g Ay EcoXe)
X U g (Ra Reg Ao Dap( R Rogy B e - (4.85)
Note that Gfs and 5™ are called 7, in Ref. [22].
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For those cases of C where x” = g, the C matrix element can be written
in the general form

4.
Gty = [ dReThny RaJtmgn (R~ | ARy T, Gin(Red A8, 800 (R §56)

where the auxiliary matrices, 7, are given by Eqgs. (4.78)—(4.80), and
the auxiliary matrices, G%, are given by Eqs. (4.50)—(4.52), respectively.

5. COMPUTATIONAL CONSIDERATIONS

In this section we specify in detail our current computational methods
and discuss the factors that weighed in their selection.

5.1. Basis Functions

In the previous sections we have specified the basis functions in a
very general way to allow future flexibility. In actual computations
performed so far we have imposed further restrictions on our basis, in
part so that the matrix elements may be efficiently calculated. We now
specify the more restricted basis to be considered in the rest of this paper.

No further restrictions were imposed on the HIGFs. For the .%? basis
functions, we restrict discussion, until Section 5.12, to the case where
dp in Eq. (3.2) is 1, so we now suppress the v index in the last sum of this
equation. This leads to type a basis functions of the form

T = Raygp(Rop) Pp(Xery) . G.1)

where the precise form of @p depends on the frame in which the
calculations are done; this will be discussed further in Section 5.2.
Section 5.12 discusses contraction schemes by which matrix elements involv-
ing more general basis functions of the form of (3.14) may be calculated from
the matrix elements of B and C in the primitive basis of (5.1).

All the equations are decoupled in the total angular momentum
quantum number J, in the parity P = (=1)*, and in the z-component,
M;, of the total angular momentum, where z is the initial momentum
direction in a space-fixed coordinate system.[39] The results have no
dependence on M,. For systems with two or more identical atoms, the
equations further decouple into 2 or 4 symmetry subblocks labeled by
their symmetry S.[35] Each JP block is solved separately, and we may
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solve each JPS block separately as well. However, computation of all S
blocks in a single run is often desirable since some of the work is common
to all symmetry subblocks and may be performed only once if storage is
available for intermediate quantities,

The whole calculation involves three computationally intensive parts,
These are the solutions of the distorted-wave problems, the quadratures
to form the matrix elements of .7%%, B, and C, and the solution of the
linear variational system. The relative cost and memory requirements of
these steps vary markedly depending on the problem to be solved and
on the basis set and numerical options selected.

5.2. Space and Body Frames

When we use space-frame basis functions we calculate the matrix
elements of the variational functional (i.e., the matrix elements of .75%,
B, and C) directly in the space frame, and when we use body-frame basis
functions we calculate these matrices in the body frame and obtain a
body-frame S matrix, which is transformed to a space-frame S matrix in
an extra step. We have implemented both options.

When we use space-frame basis functions, we restrict them such that

On = Tarowy () 7 1R, RoX (K, Re,, ) 62
and
0= rotlre) U Reyini Ry o). O

where Yo,j, iS an asymptotic vibrational function for arrangement
o, Xp is an unrestricted vibrational basis function (to be chosen for rapid
convergence of the solution of the 3-body problem), and the rotational -
orbital functions " are given in terms of spherical harmonics by [39]

M,

FHER) =Y, (Glmme | M BT (R, 64
m,-ml
The index n will indicate a specific choice of 0, %, v, /, and £, while B is
associated with a specific choice of a, ¥, j, § and . Notice the two
distinct notational uses of )(: as a vibrational function and as an electronic
quantum number.
If space-frame basis functions are used, the allowed values of [ for a
given JP block and a given basis function with rotational angular mo-
mentum quantum number j are

lj=JISISHj+ T, (5.5)
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subject to the constraint on [ that
(D =P 66

At high J it is often possible to obtain well-converged results while
retaining only the lowest few allowed values of [ in the basis because
the centrifugal potential makes the contribution of high [ functions
negligible. We employ one of two rules guiding the set of [ values
retained in the calculation. We either retain

j~JI << min[f§)j+J 1] 6.7
or we retain
1j = J 1< [< min{max(0,((&™ — ), 1j+J 1, (5.8)

where [§™ is a parameter that is increased until convergence is attained.
‘When we use body-frame basis functions, we restrict them such that

b4 g A .
bn = Folauni (Ta) Zoes (R R )X (%63 Roty @03 9
and
~ A
0p = reg (1) Zyay (ogs Rog) X (e Rayy @) (5.10)

where Xy and Ap are as above. ng‘ ’P(ﬁlu, ﬁq) is given by {8,47,49,50]

=JIMP A 2J/+1 I
Zig" (T, Ra) =\f mw_m,g(@m O, X))

+ (~1)*PDLy, (@, O, X1 Yial¥e,0], G.11)

where Do is a rotation matrix element [51] having Euler angles
@y, O, and Ya; Yo is the angle given by

Y = arccos(hy - R, (5.12)

and Q is the magnitude of the projection of j (or /) on the atom-to-diatom
axis. In this case the index n denotes a specific choice of &, X, v, j, and
Q, and P denotes a specific choice of ¢, X, j, 2, and X,.

The operation of 7 on the body-frame functions 7};’-‘{’” leads to [47,50]

| dRadRuZHA”" (o, RVDZ (R Re) = 8{ L0+ D)+ + 1) - 20%80rm
ML 2)8a 0V + B0
A (LA (DB a-VT+0ar |, (5.13)
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where
MU=+ 1) -QQE1). (5.14)

If body-frame basis functions are used the allowed values of Q for
a given basis function having rotational quantum number j are given
by

0<Q<min(J,j) if P=(-1y, (5.15)

or

1<Q<min(,j) if P=(-1)"*. (5.16)

We have found that well-converged results may often be attained while
retaining only the lowest few Q, which is consistent with recent work
by other workers [52,53].

The transformation from the body frame to the space frame is
accomplished using the body-frame-to-space-frame transformation,
which is given by the orthogonal matrix

! .
e _[@=Bar+ D))" o JLePEDR) s
Tm—[ e QIO LI 5 )

5.3. Asymptotic Vibrational Functions

The asymptotic vibrational wavefunctions ¥, solve the eigenvalue
equation

(5.18)

a1 @ G+’
wTearl ¢ 2urd

+ VE¥re) - Savj:] Xewj(ra) =0,

where VE® is given by Eq. (4.10). The wavefunction and associated
eigenenergies are obtained by the Rayleigh—Ritz variational principle.
For single-surface problems we use a basis of No(HO) harmonic oscil-
lator eigenfunctions. For multiple-surface problems we need basis func-
tions on each surface, and if V,,- does not become diagonal in ¥ at large
Ra, the asymptotic eigenfunctions are mixtures of the two diabatic
components. Here we consider the case where the vibrational problem
corresponds to single surface. The Hamiltonian matrix elements are
calculated using Gauss—Hermite quadrature of order No(HO) + 14. Since
the harmonic oscillator wavefunctions are defined on the region
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(—oo, e ) and thus do not have the desired ry = 0 boundary conditions,
their use requires some special handling. First we reset all quadrature
nodes for ry < 8 to r = 8, where 3 is a parameter that typically ranges
from 10~ a to 107! ap. Second, the elements proportional to 1/rZ are
made nonsingular by replacing r3 in the denominatorby r% +r§ , where
we take ro typically to be about 1073 ao. For sufficiently repulsive
potentials the calculation is quite insensitive to the exact values of 8 and
ro; thus no practical problems are encountered by ignoring the formal
ro =0 boundary condition. (In the unlikely event that this procedure ever
encounters difficulty, it would be a simple modification to change to
basis functions of the proper form [54]).

5.4. Distortion Potentials

By partitioning the interaction potential into a distortion potential and
a coupling potential, the scattering matrix is split into associated terms
as indicated in Eq. (2.72). Only the contributions to the S matrix due to
the coupling potential are treated variationally (the contributions due to
the distortion potential are calculated numerically), and thus our basis
set requirements are determined principally by the coupling potential.
As the coupling in the distortion potential is made more extensive, both
the density and spatial extent of the basis functions needed to represent
the residual coupling are diminished, and this permits substantial reduc-
tions in the size of the translational basis [18]. However, as more
coupling is added to the distortion potential, the effort involved in the
calculation of the radial functions increases, and the computation of the
matrix elements of Z4%, B, and C becomes more expensive. An optimal
strategy must strike a balance between these competing considerations.

We consider distortion potentials of the form given by Egs. (4.15) and
(4.16). The distortion potential has a block diagonal form, and the
resulting calculation for the distorted-wave problem decouples into
several smaller problems.

The most elaborate distortion potentials we have used involved “full
intra-arrangement coupling” [17]. This means that all channels within a
given arrangement are coupled:

A= 1. (5.19)

For some problems that use this coupling scheme, even the distorted-
wave Born approximation yields converged results [55], and thus no
translational basis functions are required. The resulting distorted-wave
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problems are, however, so costly for most applications that this is not an
efficient choice. At the other extreme we have the “single-channel”
distortion potential (which we only use in the space frame), for which

Alam' = 5nn'~ (520)

A slightly less extreme choice is the single-state distortion potential
(which we use only in the body frame); this corresponds to

A = 83,3, 00,01 (5.21)

In the single-channel and single-state schemes the solution ot the

distorted-wave problems involves very little work, but a larger transla-

tionalbasis is required to achieve converged results for the final S matrix.
The “full rotational coupling” scheme is defined by

Ay = 85,7:8v1 (5.22)

and it was used in many of our prior studies. The motivation for this
scheme is that channels within a given v level tend to be the most strongly
coupled. For problems requiring many high-j states, though, this scheme
can be unnecessarily expensive, so more recent calculations [22,27,28]
have used more optimal schemes which couple only the lowest, most
important rotational states within a given vibrational level (all j < j4,,
where j4, is an input parameter) and which treat the remaining channels as
either single-state or single-channel blocks depending on the frame. For
calculations at high total angular momentum, the last few rotational states
are responsible for a significant fraction of the total number of channels, so
decoupling these states can result in vast savings without appreciable impact
on the size of the basis set required for good convergence.

The reason we do not use single channel distortion potentials when
calculations are carried out in the body frame has to do with the
computation of the scattering boundary condition matching functions.
These are formed using the space-frame matching functions [see, e.g.,
(3.9)] and the space-frame-to-body-frame transformation given by Eq.
(5.17). This yields functions which have nonzero coupling between
different values of Q. If the variational functional is to be formed in the
space frame, no special restrictions are needed, and we make use of
single-channel distortion blocks for channels in states that have weak
coupling. Thus the space frame permits smaller distortion blocks than
can be used in the body frame. Additionally, if high-/channels are to be
omitted from the basis, they may be culled prior to any computation,
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whereas in the body frame, we require that all possible open-€2 channels
be retained to satisfy the boundary conditions.

5.5. Solving the Distorted-Wave Problems

In the space frame, the distorted-wave radial functions solve the
set of homogeneous Egs. (2.36) subject to the boundary conditions
(2.37) and (3.9). In Eq. (3.9), Ry is a numerical parameter chosen to
avoid overflow or underflow problems; in practice we take
Rf=R,f,ﬁﬂ+,, which is the outer finite difference boundary condition
point for arrangement o.. Equation (3.9) is equivalent to (2.38) along with

% = (1 - i°%K)~'(1 + %K), (5.23)

but the use of (3.9) allows the boundary conditions to be imposed at a
smaller value of Rq.

The half-integrated Green’s functions 2w solve the inhomogeneous
Egs. (3.3) subject to the boundary conditions (3.4) and (3.7). We solve
Egs. (2.36) and (3.3) using the finite difference boundary value method
{2,8,22,56] with an N5P-point representation of the second derivative
operator except near the large-Ry edge of the grid, where lower-order
approximations are used to conveniently impose the nonhomogeneous
boundary conditions. The calculations are done one distortion block at
a time. In matrix form (2.36) is written

[E‘% I+ D(R)j}((R) =0, (5:24)

where

I”l - 61!" kll + A!lﬂ Ug’l(crn(R) (5.25)

The finite difference approximation converts this to the set of equations

3, b f(Riww) + D(RE(R) = 0, (5:26)

where ¢, is a finite difference coefficient used to represent the second
derivntive operator at point { in terms of data at the points
i—vegi—vi+ ;... ;i +Vy,. Atlarge R, we specify conditions at one
point beyond the edge of the grid, and we have used two different
schemes for treating the finite difference approximation at the last few
points. In the first scheme, we require the use of an equal number of
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points before and after the point for which the derivative is to be
evaluated. Then we have
vLi=vy,; = min[(NEP = 1)/2, No(F) + 1- i}, (5.27)

where Nu(F? is the number of finite difference grid points. This results in
only a 3—;?01nt formula at the last grid point. In the second scheme, we
remove this restriction and use as many points as possible without increas-
ing the bandwidth of the resulting linear equations. For this case we have

L= NP -1)/2 (5:28)
and

Vui=min{(NEP - 1)/2, No(F)+1-1]. (5.29)

Thisresults in a(N5? + 3)/2-point formula at the last grid point. In recent
calculations we have usually used the latter approach.
Equation (5.26) together with the boundary conditions

f(R)=0, i<0, (5.30)
and

fRvm+1) =1, (5.31)

where I is the unit matrix, can be written as a supermatrix equation

AF =y, (5.32)
where
f(Ry)
Fe f(l.?z) ,
: (5.33)
f(Rnym)

0
0
: (5.34)

Bo= ,
fo(F) - (N”’-l)/2+1
ol

1)12

_ﬁll‘fa(ﬂ 1

and
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D(Ry) + cil cl1 P
cil DR+l - el
(535)
A=
MRl MO DRy + PL

Thus A is a real, nonsymmetric, banded matrix with upper and lower
bandwidths both equal to Ns(N:° — 1)/2, where Ns is the number of
channels in the distortion block under consideration. We solve (5.32) by
LU factorization of A using the LINPACK routine SGBFA [57] and then
performing N backsubstitutions and forward eliminations using the
LINPACK routine SGBSL. [57]. The work involved in the LU factori-
zations is proportional to Ya(NEP — 1)2N3NugF) and the work to then
obtain the radial functions is proportional to 7A(NE° — 1)NINu(F) [ 57].

For a given translational basis function, t,,, the radial HIGFs solve a
supermatrix equation

together with the boundary conditions
gn(Ri) =0, i<, (5.37)
glrl(RN.,(ﬂ+ 1) = gﬁc, (538)
where
gm(R1)
_ gm(RZ)
=l (5.39)
gn(Rnyp)
tm(R1) 1
tmu(RZ) 1
: (5.40)
B = tng(RNo-0V° - 12 ;} 1 ,
g(RNo(Fy - (VEP - 1y T = C(pr_ 1(),2 ~hized gﬁc
"”B(RN\:(F) I-c YalF gBC
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A is the same as in (5.35),

(En(R)wn = 2 (R, (541

and the elements of the boundary condition matrix g5¢ are obtained by
evaluating the right hand side of (3.7). Since A is the same for the
calculation of all the radial HIGFs as well as the regular radial functions,
we need to do only one LU decomposition per distortion block, and, as
a consequence, the total work for calculating all the radial functions is
proportional to

1 3 5.42
Na(FINS [ (V2P = 1%+ 5 (mg-+ DV = 1)), ©42)

where ms is the number of distinct #,, radial functions used to define the
HIGFs in distortion block 8.

Calculations in the body frame proceed in essentially the same manner
as discussed above except that we now calculate matrix elements of the
A matrix, Eq. (5.35), directly in the body frame. The only complication is
that the boundary condition matrices g of Eq. (5.38) are initially formed
in the space frame and then transformed to the body frame using (5.17).

5.6. Generation of the Finite Difference Grid

A central element in our computational strategy is that a subset of the
finite difference grid points is used as a quadrature grid for the evaluation
of the matrix elements of .74 2, B, and C. This means that the numerically
computed radial functions never need to be interpolated to carry out the
quadratures. Evenly spaced grids are easier to implement in the finite
difference methods, but the quadratures over R are computationally inten-
sive, so we use Gaussian quadrature nodes to increase their efficiency. The
foundation of the grid is established by dividing the region to be covered
into N°® segments ¢ and then laying N§5(c) repetitions of N§%(c)-point
Gauss—Legendre quadrature nodes on each segment. This yields the NgtS
quadrature points that are used in the integration over Ry, where

N
NE®S = 3" NESO)NE°H(). 64
o=1
We then use one of three “grid spacing schemes,” denoted GSSa(6) with

6 =0, 1, or 2, to make the grid more uniform. In the “none scheme”
[GSSu(0) = 0], no additional points are added. In the “truncate scheme”
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[GSS«(©) = 1], we add several additional, evenly spaced, points between
successive quadrature points according to the rule

=Nt | BRI (5.44)
hs(o)

where the R; are quadrature nodes, n; is the number of points added
between the nodes at R; and R;+1, hs(0) is the minimum spacing between
successive quadrature points in segment o, that is,

hs(G)= min (R — R), (5.45)

Ri,Riy < segment &

and INT[x] denotes the integer part of x. In the “round scheme”
[GSSu(0) = 2], we instead calculate the number of evenly space points
to be added by the rule

ni=INT [—Riﬂ L l] - L (5.46)
hs(o) 2

In the next step we add nk(c) additional evenly spaced points between
each consecutive pair of grid points in segment G. Finally, the large-Rq
edge of the grid is further augmented by N3P points that have a geomet-
rically decreasing stepsize determined by the decrease factor f 5D The
initial spacing of these Ni© points is chosen to be s(N°). This procedure
is used to decrease the spacing between the final few points and thus
decrease the error associated with the requirement that lower order finite
difference approximations are used at the far edge of the grid. In
tabulations of the parameter sets, we usually give the region over which
the grid extends by specifying the values of RE.0 and Ry (me1 at which the
boundary conditions are specified. These points are positioned such that

Ryt — Riopy = Rigp) — Rio(p-1, (547

and
Ri~Ri=R —Ry=Ro—R1=Rj—Ra.... (5.48)

Note that in our published work so far, N has been taken as 1, but the use of
N°> 1is expected to allow for more efficient calculations in the future.

5.7. Calculation of the Finite Difference Coefficients

The finite difference coefficients, cb, at grid point i are determined
by the requirement that
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PRR -

—;;;zl |, = 3 chF(Riw) (549
V==L

for all polynomials F of order less than or equal to Vy; + vz;. Such
polynomials may be evaluated exactly at nearby grid points by the finite
Taylor series

P Ry (R R
ro= 2 art 'R (=1) (5.50)
v=l
This can be written in the form .
Ad=V, (5.51)
where
(Alw = (R_‘H’.L%__‘l_‘)!i.@“_’ , 552
b= d;,;f.(f) R (5.53)
and
Fy = F(Ri-y,+v-1). (5.54)

Multiplying Eq. (5.51) by A~! and selecting ds gives

& F(R) _ (5.55)
d3 =R |R’_ = Z[A N3y F(Rimoi4v-1) »
]
and we may now identify the [A™']3, as the desired coefficients. The ch

thus solve the linear system

0
0
1

Ac=|4f. (5.56)
0

The system of Egs. (5.56) is often ill conditioned, so we instead solve
[22]
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0
0
A&=|g|. (.57
0
where
-t (5.58)
o-[fsa=t]
r=  max |R-R, (5.59)
i~viskSirog;
and
(5.60)

A
E{; = 3 hZC().

A is a Vandermonde matrix [58], and we use a specialized algorithm [58]
to solve (5.57).

5.8. Selection of the Finite Difference Parameters

The two principal sources of difficulty in the finite difference method
arise from the use of unevenly spaced grid points and the need to use
lower-order formulas at the large-R edge of the grid. This first consid-
eration can be partially ameliorated by using low-order Gaussian quad-
ratures in the generation of the grid, as these have the most evenly spaced
nodes. Care must be taken, however, that this does not significantly
increase the cost of the quadratures since the quadratures are typically
the more expensive step. When we use N° = 1, we typically use values
of N2t in the range of 7-12.

To increase accuracy of the final results without increasing the number
of quadrature points, we can add additional grid points for the finite
difference calculation and/or increase the number of points used in the
approximation of the second derivative operator. In the past we have
used values of Nf” in the range of 7—15. For the lower values, stable
results usually require a significant number of additional grid points,
whereas it is often possible to use only the quadrature points at the higher
values. The optimal choice will depend on the particular system studied,
but we have found the higher orders preferable in recent work.
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The treatment of the large-Rq edge of the grid is a matter of special
concern. The spacing between the last few points must be considerably
smaller than that used in the main part of the grid due to the lower values
of N2 required, as discussed in Section 5.5. Sudden decreases in the
stepsize cause unstable results so we have adopted a gradual geometric
decrease by a factor f5 over NP points. For low values of NEP we can
use f2° in the range of 0.7, but the higher values require a much more
gradual change, typically in the range of 0.9-0.95. High requirements
on the value of f&° require a concomitant increase in N2 to reach the
required stepsize reduction, and for some problems that require rela-
tively few quadrature points this can account for an appreciable fraction
of the grid points.

The region over which the finite difference calculation needs to be
solved is often significantly larger than the region required for the matrix
element quadratures. Additionally, the most intensive quadratures—
those for the reactive matrix elements—typically have nonnegligible
contributions only from a small region of the grid. Thus, the quadratures
on the large-R,, portion of the grid may often be evaluated with less effort
than those for the small-Rq region or even completely neglected. We can
take advantage of this by treating some segments of the grid with a lower
density of quadrature points.

5.9. Obtaining °K and the Regular Radial Functions

In the space frame the numerical solutions, f(R;), obtained from (5.24)
are, in the large-Ro limit, of the form

£(R) = XR)P + N(R)Q, (5.61)

where the matrices P and Q are independent of R,

ann'k:?Ri i (knRi k% >0
(R = Je k) ! (5.62)
Sun(2! kn 1) 2expll kn IR = R)] k<O
and
N ’(R) _ _aml'k:{zRin{,,(knRi) kﬁ >0 (563)
T S (2Mknl) ™ expl kn I(Ri — R)] K2 <O.

The regular radial functions can therefore be obtained by

OfR;) = f(R)P™. (5.64)
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and we also observe that
0K= QP—I_ (565)

We could solve for P and Q by using (5.61) at two different values of
R;, but for increased stability we employ a least squares fit involving a
larger number of points. This results in the system

Y XR)R) =Y [XRIP+ Y. IRIN(R)IQ,
3 NR)M(R) = ¥ NRIXRIP+ Y INRIQ. .69

where we include values for the last N**¥™ points. We typically use a value
for N*¥™ of about 12. For calculations in the body frame we first form
the J(R;) and N(R;) matrices in the space frame using (5.62) and (5.63),
we then transform them to the body frame using (5.17) and solve (5.66).

5.10. Quadratures

In this section we give details of the various numerical quadratures
required in the calculation.
Nonreactive Potential Matrix Elements

For the case where o= we calculate matrix elements of the
interaction potential using

AR W
W
UpptR) =~ 25 3 oy 3™ R i B, 567
i=1 A=0

where the whg, and r; are, respectively, the weights and nodes of an
N2V-point optimized [59] vibrational quadrature, and the 5} are the
Percival—Seaton coefficients [44] in the space frame and generalizations
of these coefficients in the body frame. The vy are potential expansion
coefficients.

The expansion coefficients are obtained by numerical integration of

in 20+ 1 it
W = 25— [ d(cos Yo)PA(COSYa) V™ *(RaFa Yo, (5.68)

where Py (cosYq) is a Legendre polynomial of order A. The integral (5.68)
is calculated by an N&s-point Gauss—Legendre formula. We input the
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quadrature size and compute the upper limit of the potential expansion,
Amax, Which is given by

Amare = Min[2jmax + 1, NSA], ‘ (5.69)

where jmay, is the largest rotational quantum number used in arrangement o,
In the space frame we have [44]

A ~
=] dRadfe F/HGRIPACOsY) ZipBouRa).  (5.70)
This can be evaluated in terms of 3-j and 6-j symbols as [44]

I = 1 2 + 1) + DREG+ DRl + 1)]% X

o h i) (BN )b J G
000]l00O0]|jgm Al

In the body frame we have [47,50]

A ~ « A A -~
78 =[ dRadts Zge o RIPrcose) Zifl o), O

which can be evaluated as [47,50]

fé?f’:(—l)“ﬂﬁgpnp‘[(ij+ D(2jg + n1* [g’ 3’ g’] [gp g —jfng]' (5.73)
A large fraction of the Percival-Seaton coefficients are zero. For
instance the coefficient in Eq. (5.70) is nonzero only if (jp+ A +jp) =
O(mod 2), (/s + A + fp) = 0(mod2), and the triangle rule holds for both
triplets (jp, A, jp) and (£, A, fy). We calculate and store only the nonzero
coefficients. Equation (5.67) is then implemented using a matrix-vector
multiply to treat the sum over the index i followed by a sparse SAXPY
for each value of A.

Vibrational Quadratures

The optimized vibrational quadrature scheme that is used to obtain
the weights and nodes required for the quadrature over ry is detailed
elsewhete [59], so this section will consider only two recent modifica-
tions. In the past we have used nodes obtained only from the asymptotic
v = 0 wavefunction, but we now permit any v level to be used. In
parameter set specifications this new parameter is called v&, and it
should be assumed to be 0 when not specified. (For all choices of v2" the
nodes are obtained from the wavefunction with the lowest allowed value
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of the rotational quantum number j in the JP or JPS block being consid-
ered.) The inclusion of this new option is motivated by the observation
that the matrix elements involving the higher vj states are the hardest to
converge. By selecting the quadrature nodes to be optimal for the hardest
cases, we obtain more rapid convergence.

In gene.:ral the new nonasymptotic vibrational functions will span a
le%rger region of space than the type e functions, so we have modified the
vibrational quadratures to handle this complication, For example, when
we use distributed Gaussians to span the vibrational coordinate, we
generate the N2¥ optimized nodes as before and also calculate 1;’3V
candidate nodes for each nonasymptotic vibrational function according
to Gauss—-Hermite rules. The list of candidate nodes is then ordered and
all those less than the largest optimized node are discarded. Next we
calculate the spacing, D, between the largest two optimized nodes. We
then accept the first candidate node farther than D from the largest
current node and discard all smaller candidate nodes. This procedure is
repeated until all candidate nodes are exhausted. For each basis function
pair, nonzero weights are assigned only to the N&" nodes that fall closest
to the maximum in the overlap between the two functions.

Exchange Angular Quadratures

The exchange angular quadratures are always performed in the body
frame. For basis functions of the form in Eq.(5.10), which includes those
of Eq. (5.9) as a special case, the ng,“matrix elements are given by

- 3 1
R =M ) RoRs, | d(050,) 7= 15(re) V(Yo 0
(5.74)
2u int,0q 1 /P
X [?)V (Rau, Xo) a Xp(re,) Yj”.Qu.(Y%v 0) d‘ézﬂﬂ,,.(Ao:aﬂ).

where Tty COSYor, Fayy COSYos, and M* are given by Egs. (4.37)—(4.41),
respectively. The modified rotation matrix elements are given by

T = [(1 + 8, 0)(1 + 8 O

J
X (o, + O Wdlo o + P10 g0 + P DG o 1575

and Eq. (5.74) is evaluated using NSa-point Gauss—-Legendre quadra-
ture. We proceed by forming the intermediate quantities

1
bpi= e x8(ra() Yol vo(i),01, (5:76)
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2 » (6.7
Vi==27 V"% [Ra, Xag(D)IRaRag (M VP wid Gyoy [Aace()],

and
5'.5 =baVi, (5.78)
where w; and x(i) are, respectively, the quadrature weights and nodes.
The final result is then obtained by a matrix multiplication:
cige= Z bpibip. 79
i
The matrix elements of B§§° are obtained in a similar manner except that

the —2uVi™o/#2 factor is dropped from Egs. (5.74) and (5.77).
If space-frame matrix elements are required, we then transform via

a0y _ Jj g b
(C BB )space - Z z Tﬂ:- @ TIQ:»' [ (C b”ﬂ"')body (580)
Qp Qg

using the transformation of Eq. (5.17).

Screening Parameters

The three-dimensional numerical quadrature required for the ex-
change matrix elements has nonnegligible contributions over a consid-
erably smaller region of space than that covered by the quadrature grids.
By including only those points that are required, huge reductions in cost
may be achieved. We have introduced five separate screening parame-
ters to control the selection of grid points to be included in the calculation
[22,35]. The first of these, & (where the subscript ¥ refers to the
vibrational functions, not electronic functions), acts by rejecting all
points for which the diatomic vibrational functions Yay(re) and/or
Yuvj{re) are small. In particular, for each arrangement, upper and lower
bounds on 7, are calculated such that Iy, < & for all v and j. Then
during the innermost quadrature (over cosAua,), We neglect all points for
which re and/or ro,, which can be determined from R, Ro, and cosAqq,
using (4.37) and (4.39), fall outside the allowed region. This reduces the
work required to construct the Band Cmatrices at 2 given pair of Reand
Re, values. If all angular quadrature points are neglected, additional
savings are attained during the calculation of the 7, T, 7, and G matrices.
Savings are also realized in the final quadrature to obtain the % 5, B,
and C matrix elements if all angular quadrature points are rejected for
every Ry, at a given value of Rq. Since the innerradial quadrature involves
the bulk of the work, the second effect is by far the most important.
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The second and third screening parameters, €z and €y, are used in the
inner radial quadrature. We determine the element of maximum magni-
tude of the W%, C%%M and B*% matrices and, if these are less than
Ew, Ew, and &5, respectively, the contribution of these matrices at this
Ro, Ro, pair is neglected.

The radial screening parameter, €4, determines the starting points for
the radial quadratures. We find the largest value of R, such that every
regular radial function and radial HIGF in arrangement o is less than the
fraction €,¢ of its maximum magnitude, and we exclude all radial
quadrature points less than this value.

The final screening parameter, &, is used to set the value of the
non-HIGF basis functions and the tn,,, (Ro) associated with the HIGFs
to zero when their radial part is less than the fraction €, of its maximum.

Radial Quadratures

The radial quadratures are performed separately for each pair of
arrangements subject to the constraint that & < 0. The B matrix elements
for the case o > 0 are obtained using the alternate forms of (4.54)—
(4.56). These formulas express the remaining B matrix elements only in
terms of auxiliary matrices % #°f, and T with o < 0. This provides a
significant savings because the calculation of the auxiliary matrices is
the most computationally expensive portion of the numerical quadratures.
For a given o, 0 pair, the contributions to the various .92, B, and C matrix
elements are accumulated simultaneously at each pair of radial quadrature
points, and this permits most of the computational work to be written as
matrix multiplications and to be performed using efficient library routines.

5.11. Contraction

The contraction scheme outlined here is similar to that used in other
contexts for locally adiabatic basis functions [3-6,32]. We need to obtain
the B and C matrices in terms of contracted basis functions, but we
calculate them first in the primitive basis set as described above. The
primitive basis functions, I'g, span three arrangements and can be part
of the ¢ subspace or the .% subspace (as defined in Section 3.2). The &
subspace is decomposed into parts called d and F, where d contains the
%* HIGFs, and F contains the type e and type a functions. We define
the subspace G as the union of subspaces d and c, that is, G contains all
the HIGFs. The contraction is performed within the F subspace, and the
G subspace is not contracted.
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The reason that we contract the basis is that it is expected that fewer
contracted functions will be needed to obtain converged calculations.
The contraction is performed in terms of a matrix which we designate
as Z. The Z matrix in the primitive basis is square and orthogonal; its
columns are the eigenvectors of a partially decoupled Hamiltonian
matrix, and it has the same row and column dimensions as the square
CFF matrix. To form Z in the contracted basis we discard those columns
that correspond to linear combinations of primitive basis functions that
are to be excluded. This results in a rectangular Z’ matrix which is used
to obtain the B and C matrices in the contracted basis. These matrices
are given by

B’ =(Z)"B (5.81)
and
¢ =(2Z)'cz, (5.82)
where B’ and C’ are in the contracted basis and B and C are in the
primitive basis.
General Form of the B, C, and Z Matrices

When we distinguish between the G and F subspaces, the B and C
matrices have the general form

B= [2:) (5.83)
and
c= gz gr . (5.84)
The various matrix elements of (5.83) and (5.84) are given by (4.31) and
(4.32).

Consider the case where the translational parts of each of the primitive
type e and type a functions are Gaussians with centers specified .by
RS, where 1 <m <N, and N is the total number of distinct Gaussian
translational basis functions in the F subspace. In particular 1<m =
NT for arrangement 1, NT+1<m<NT+N7 for arrangement 2, and
NT=NT+NI+NJ. We arrange the F subspace basis functions such
that all of those with m = 1 come first, those with m = 2 come next, and
so on. Then the B matrix can be written as
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BG

Bfm=1)
B=|B(m=2) | (5.85)

Bf(m=N")

and the C matrix can be written as
GG
rcc Co%(m’ = 1) C(m’=NT i
c=| C=D CTm=m=1) - CMm=1,m=N)| (56
CF(m = N CFm=N,m'=1) ~ CFm=m =NT)

- The Z" matrix is a block diagonal rectangular matrix with the form

I 0o .. o0
FF*
2o|0 2T 0
SRS (5.87)
0o o o zZ¥
v{here the various diagonal blocks, Zf", of Z’ contain a subset of the
eigenvectors of the decoupled Hamiltonian matrix, Hy, defined by

n? ,
HZF=ZCFF(m=m)+EOFF(m=m'), (5.88)

where the matrix elements of the OF are overlaps of basis function pairs
in the F subspace.

Calculation of the Z Matrix and Performing the Contraction

The contraction is performed by blocks in the following fashion. First
we diagonalize H, and we collect the resulting eigenvectors by col-
umns into the square matrix, Z,\. Eigenvectors are retained in Z& if they
satisfy some criterion, for example,

E; < E+ 8, (5.89)

where E; is the eigenenergy associated with the eigenvector, E is the total
scattering energy, and 8¢ is an arbitrary parameter. This eliminates some
basis functions and produces the rectangular Z;'  where a prime is added
to the right superscript to denote the contraction. The appropriate sub-
blocks of B and C are contracted using
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CFFmn’) = (ZEF 1T CFF(m,n’) ZEE (5.90)
COF'(m,m’) = CF (m,m') Zit (5.91)
CF'Om) = [ZEF T CFO(m,m"y (5.92)

and
(5.93)

B (m) =25 1" BF(m) .

5.12. Symmetry

Simplifications exist for systems having identical atoms [35,37]. In
these cases some arrangements are indistinguishable and the basis func-
tions are the same to within a phase factor. As a result, the basis functions,
distorted waves, and HIGFs need be obtained only for the unique
arrangements. Also the number of unique arrangement pairs is less than
the total number of arrangements pairs, and the .% 5, B, and C matrix
elements need be calculated only for the unique cases.

If identical atoms are present, at least one arrangement will contain a
homonuclear diatomic molecule. When this is the case, the interaction
potential is an even function of Ya (the angle between ry and Ry) for that
arrangement, and as a result, the coefficients in the interaction potential
are only nonzero for even values of A in the Legendre expansion of Eqs.
(5.67) and (5.68). Furthermore, the amount of effort to perform the
quadrature, Eq. (5.68), for the potential expansion coefficients is cut in
half because the domain of the integral in Eq. (5.68) can be reduced to
0 < Yo <7/2 as opposed to 0 < Yo < 7.

Since the potential expansion includes only even values of A for
homonuclear arrangements, the distortion potential couples even rota-
tional states or odd rotational states, but it does not couple even j with
odd j. This decreases the size of the distortion blocks, resulting in less
computational effort to obtain the radial functions of the distorted waves
and HIGFs for the homonuclear arrangement.

Another use of symmetry [35,37] concerns the correction to the
reactance matrix due to the coupling potential, which is given by

=55 + BTCR. (-94)
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Specifically, we exploit the symmetry of Z%™®, B, and C by introducing
the unitary transformation [35,37]

Ul U = U] & PU, + UIB'ULUICU)'ULBU,, (5.95)

where Uy and U, are chosen such that .#.9°2 B, and C are block
diagonalized or symmetrized. After these matrices are block diagonal-
ized, #is formed separately for each block, resulting in significant
savings in computation time and memory use. For the A + B, case the
savings in computation time over the ABC case is approximately a factor
of 4, and for the Az case the savings is approximately a factor of 21.6.
For further details see Ref, [35].

For cases involving identical atoms, the contraction procedure de-
scribed in section 5.11 can also be carried out more efficiently by using
Eq. (5.95).

5.13. Linear Algebra

After the matrix elements are calculated and the basis set contractions
are performed, we must solve the linear system of (2.71). Since C is
symmetric, we may form the UDUT decomposition [57] or an LU
decomposition. The latter requires about twice the memory and twice
the operation count of the UDU” algorithm, but it is often faster on
vector-pipeline supercomputers. In certain cases we perform a row and
column scaling of the C matrix using the inverse of the square roots of
the absolute values of the diagonal elements as scaling factors. The
calculation proceeds in two steps. First we decompose C*% and solve
(3.44)—(3.46), which involves a large real linear equation solution to
form [C##]' BZ and [C*#]"'C%*. We then transform to complex
boundary conditions using (3.49)-(3.51), decompose C”, and construct
S by (3.52), which involves a small complex linear equation solution to
form {C/]'B.

6. MEMORY CONSIDERATIONS

In this section we outline the memory requirements of the major stages
of the algorithm. An extensive discussion of memory management is
available elsewhere [22], so here we only summarize the results and
indicate recent modifications. The following notation will be required:
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Omax: number of arrangements (typically three)
Ounique:  Number of unique arrangements (1 for A3, 2 for A + B2, or
3 forA+BC)
M:  total number of basis functions
M*:  total number of basis functions of type x (x = ¢, a, or g)
MY: number of basis functions of type x (x = e, @, or g) in
arrangement O.
M&a: number of basis functions of type x (x=e or g) in distortion
block 8 for arrangement o,
ME: M+ ME
M(S): number of basis functions in symmetry block S
mmax: the maximum number of translational functions per vibra-
tional-rotational-orbital function
N: number of channels
Ng: number of channels in arrangement o
Ng. number of channels in distortion block § of arrangement o
N(S): number of channels in symmetry block §

& : number of radial quadrature points in arrangement o

& : number of optimized [59] vibrational quadratures nodes
for arrangement o
No(F): number of finite difference grid points in arrangement o

Ng: number of potential expansion coefficients in arrangement o

Oq: number of distinct Qp(xo) anddnp(Xo) rotational-vibra-
tional—orbital basis functions in arrangement o

%o: The number of distinct vibrational functions xﬁ(ra) in
arrangement O.

The code begins by calculating a number of energy-independent
quantities. This requires storage (in words) equal to

Qlunique 2
MEimt = Z NQV -Zzg + (50tmax + 3Ctunique)Mmax maxOq . (6.1)
o=1 o
The first part of ME= accounts for the optimized vibrational quad-
rature weights, and the remainder contains various pointers. The
next major use of storage is in the calculation of the radial func-

tions. We require
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Mg =Ng™ 2 MM +ME)+3 Y N ME ©2)
deo

words of storage to hold the radial functions and boundary condition
matrices for arrangement o. The sums in (6.2) include all distortion
blocks that have open channels and/or HIGFs. We have not specified
the effect of using localized type g functions in (6.2); if this option is
used we need store only the nonzero portion of the HIGFs, and this
significantly reduces the first term. During the calculation of the radial
functions we also require storage for the A matrix of (5.35) and the
potential expansion coefficients. This requires

MEL® = N (PN BNEP + 1)/21+ NEY N} 63

words of storage. Thus the maximum storage used during the calculation
of the radial functions in arrangement o is about
ME + T8 M+ maxseq ME4® | Some of the U% matrix elements
that are calculated during the distorted-wave problems are also required
during the calculation of the %2, B, and C matrix elements. The amount
of storage required to save them, however, is quite large, so we instead
recalculate them when needed. Much of the work involved in the
calculation of the U}, matrix elements is in the calculation of the
potential expansion coefficients, vi™® | given by (5.68), and these can
be retained since the storage required is slight. Our code has several
options in which the vi™® are also recalculated [22,35] but for most
applications the additional savings in storage is too small to compensate
for the added computational expense of these options.

The space required to store the 7% %, B, and C matrix elements
obtained for arrangements o’ < ot is

o o
M) =Y s (Mo + Noe) + Y saoeet (Mo + NoYMoesr + Now),

o=l o=l

(64)

where o’ + 1 is defined modulo unique, So- is a symmetry factor approxi-
mately equal to 15 when o is homonuclear and 1 otherwise, S+l 18
equalto 4 when arrangements o’ and o + 1 are equivalent by symmetry
and 1 otherwise. We also require temporary local storage equal to

Mg = 06(20041 + Nas1)

+ (Mo + Na){ (Ot + 2Naat) + max (Masy + M5415)} (6.5)
Se o+l
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to hold the W, B, C*f, F 7°f, G,G°" ,7, and 7 matrices as well as the
work space needed for the matrix multiplications. Notice the strong
dependence on O,. Since we do not require elements of 7% % and B
associated with closed channels we need not calculate them; thus if we
take advantage of this we can replace Ny in (6.4) and (6.5) and the
equations to follow with the number of open channels in the ath arrange-
ment. After all the quadratures are finished we discard the radial func-
tions and reorder the matrix elements. This reordering requires

Sniax
MEw 4+ MYEC(qrique) + Y MEBC(S)
5=

words, where

MEBC(S) = % [N(S) + M(S)]~ ©6)

We then discard the disordered matrix elements and solve (2.72) foreach
symmetry block. Assuming we use the UDUT algorithm [57] and com-
plex boundary conditions without contraction and without presolving a
subblock in real arithmetic, the maximum storage required during the
linear algebra is

s Senax
M8 = max Y, MEBL (5% 4+ 2(MKBC (S) + N(SM(S)) + > NESH| (6.7)
5'=1 S'=S+1

If instead we use (3.44)—(3.46) and M* + M® >> M&, the middle term is
reduced by a factor of 2. Also, if we contract the primitive B and C matrix
elements as in Section 5.11, a slight increase in the storage requirements
may be incurred during this procedure beyond that required just after
reordering. However, the magnitude of M™2 as well as the memory
integral, that is, the time weighted memory requirements, for the entire
calculation will be significantly decreased by contraction.
The maximum storage required by the program is given by

o

max] Z M+ max MPY® | max (M0 + M),

@ formg Sea o

MPEos 4 max
s

(MKBC (auniq“c) + z MI(‘B.C( S)), Mnlg
s=1
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We have also implemented a number of options to store part of the
required data on disk and these are detailed elsewhere [22].

7. SUMMARY

We have presented a very general linear algebraic variational method
for reactive scattering, and we discussed our numerical implementation
in detail. The equations presented here should allow for the extension of
converged quantum mechanical dynamics calculations to a more diffi-
cult class of problems.
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