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Chapter 17
Problem Decomposition Techniques
in Quantum Mechanical Reactive Scattering™

David W. Schwenkef ~ Donald G. Truhlar}

Abstract

In this chapter we discuss strategies for efficiently solving quan-
tum mechanical reactive and inelastic scattering problems using al-
gebraic variational methods. First we review the outgoing wave vari-
ational principle. Then we review three aspects of its implemen-
tation where problem decomposition techniques are used to make
the calculations efficient. The first of these involves partitioning the
Hamiltonian into a distortion part that is solved numerically and a
coupling part that is treated by expanding the difference of the full
outgoing wave and the distortion-potential-induced part of the out-
going wave in a basis. The second involves problem decomposition in
channel space or physical space in order to obtain efficient basis func-
tions for the fully coupled problem. In this section we also propose
a new pre-diagonalization technique that may be used as the basis
of a divide-and-conquer approach. Finally, we consider schemes for
partitioning basis functions into Hilbert subspaces as direct analogs
of domain decomposition in physical subspaces.

1 Introduction

In this chapter we consider the problem of predicting the rate of a chemical
reaction
A+BC— AB+C

where A, B, and C are atoms. The motion and interactions of these particles
are assumed to be governed by the laws of quantum mechanics. We restrict
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ourselves to the gas phase where the density is low enough so that only
bimolecular collisions are important and wall interactions are negligible. In
this case, we can separate out the motion of the center of mass of ABC
and hence reduce the number of coordinates by three. We further assume in
the present work that the Born-Oppenheimer (1,2] approximation has been
invoked to decouple the motion of the electrons from the nuclei. This makes
the quantum mechanical description of the reaction equivalent to that for
the motion of two point masses on a potential energy hypersurface (PES).
The PES can be determined using methods described in other chapters in
this book [3,4].

In comparing the structure of the multi-particle Schrodinger problem
to partial differential equation problems that arise in other chapters of this
volume, it is useful to consider some general characteristics of the problem.
We consider only the time-independent formulation, which leads to a six-
dimensional, linear, elliptic partial differential equation. The relationship
of the solution to the physical observables is contained in the total energy,
which is a parameter in the equations, and in the complex traveling-wave
boundary conditions where one particle is far from the other two; at the
energies considered here there is not enough energy to simultaneously break
all the bonds, so only the atom-diatom limit need be considered.

The solution of the quantum mechanical equation of motion (the Schrédin-
ger equation) for this problem yields a scalar function of the six internal
degrees of freedom. This function is called the wave function, and all ob-
servable attributes of the collision can be determined from it. When A and
BC are widely separated, the wave function can be written in the form

(1) gIME) 7%; vXj;gﬁlvj(Tl)ijgM(al, $1,01, ‘bl)fi’v(;zno (R1),

where the coordinates are (1,61, ¢1), the spherical polar coordinates of the
vector from B to C, and (R1,601,®;), the spherical polar coordinates of
the vector from the center of mass of BC to A. The subscript 1 indicates
the arrangement A + BC rather than B+AC (arrangement index a =
2) or C+AB (arrangement index a = 3). The function @qv; is an easily
determined real square integrable (£2) function that describes the vibration
of BC, and is labeled by its number of nodes (v, the vibrational quantum
number) and by the equation it solves (which in turn is labeled by j and «,
and here o = 1). For given ja, the ¢qy; form a complete orthonormal set.
The function ijeM is a linear combination of the product of two spherical
harmonics and describes the rotations of the system. The quantum number
J specifies the rotational angular momentum of BC, ¢ the orbital angular
momentum of A with respect to BC, J the angular momentum of the system
as a whole, and M the orientation of total angular momentum vector. Since
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space is isotropic, the equations of motion contain no explicit M dependence,
and thus the only part of the wave function depending on M is ijeM . There
is no coupling between wave functions with different values of J and M.
The final function in (1), fl"v(;;,)no, describes the radial relative motion of
A and BC, and it is not an £2 function. It is labeled by the previously
introduced quantum numbers as well as the boundary condition index no.
The radial function is regular (i.e., zero) at the origin and satisfies the large-
R; boundary condition

(2) 1 1

i FASE) = Gunokn ? expl—i(knRi—€n/2)]—Sinokn ? expli(kn R1—Lnm/2)],
where n denotes a particular set of avjf (each such set is called a chan-
nel), 8nn, is the Kronecker delta function (which is one if n = ng and zero
otherwise), kn is the wave vector defined by

3) ki = 2u(E ~ en) /17,

where p is the reduced mass of the system (we mass scale all coordinates to a
single reduced mass {5]), E is the total energy of the system, ¢, is the internal
energy for the choice of awj specified by n, & is Planck’s constant divided
by 27, and Siln, is a complex coefficient. The matrix with elements Sitne
is called the scattering matrix and is a dense, complex, symmetric, unitary
matrix. The scattering matrix depends parametrically on the total energy E
and from it we can compute all measurable quantities of the collision using
simple formulas [6,7,8]. Thus the focus of the remainder of this work is on
the calculation of the scattering matrix. ‘

The inclusion of YJ/M in (1) deserves special emphasis. Use of this kind
of basis function, which is intrinsically delocalized, allows us to take account
of conservation of J and M, which is absolutely essential for efficiency as
it greatly cuts down on the number of basis functions that must be con-
sidered at one time for convergence. The necessity to use basis functions
corresponding to definite J and M is a principal reason for emphasizing
delocalized basis functions in quantum mechanics.

For nonreactive problems, the most straightforward approach to deter-
mining the scattering matrix is to expand the wave function as in (1), sub-
stitute this into the Schrédinger equation, and project in turn on each of
the known products ¢1.7;;/57*. -This yields a set of coupled second or-
der ordinary differential equations (ODEs) for the unknown radial functions
f;,’,(lz,"). A linearly independent set of solutions is then numerically integrated
outwards from the small-R; region, where the f,{,(;j) are negligible, to the
large-R; asymptotic region, where the numerical solutions can be matched
to (2) to give the scattering matrix. For reactive problems, this straight-
forward approach cannot be used because basis functions defined in terms
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of a single set of coordinates cannot efficiently describe all three possible
reactants or products. Thus we turn to an alternate approach of using basis
functions to describe all degrees of freedom defining some of the basis func-
tions in terms of 74, Oy, ¢a, Ra; Oa, Pa With a =1 and others in terms of
such coordinates with oo = 2 and 3, and using a variational principle equiv-
alent to the Schrédinger equation to determine the scattering matrix. This
reduces the problem to performing quadratures and linear algebra. Both
steps can be performed efficiently on modern computers, and this approach
provides considerable scope for introducing the ideas of problem decomposi-
tion. Another approach to the coordinate problem of reactive scattering is to
use hyperspherical coordinates and wave function matching [9,10,11,12,13].
This allows one to return to the coupled ODE description, but with new
complications. The hyperspherical approach will not be discussed further in
this article.

Although the main motivation for the algebraic approach is the difficulty
of treating reactive scattering with the coupled-ODE approach, it turns out
that all of the details of our formalism that are important for the present
discussion also arise in nonreactive scattering. Thus to simplify the following
discussion of our formalism, we will only consider nonreactive scattering, and
hence we drop the label . We also drop the quantum numbers J and M,
which do not play an important role in the following discussion. Extension to
reactive scattering essentially only involves adding back the extra quantum
number (the arrangement index «) and carrying out a new class of integrals.
The explicit form of the integrals is given elsewhere [14].

In Section 2 we summarize the algebraic variational principle that we use,
and in Sections 3-5 we discuss three ways in which problem decomposition is
invoked to make the calculations efficient. Since our emphasis is on problem
decomposition techniques, we shall not discuss specific applications in detail,
but the reader is referred to a review {15] and a typical application [16] for
such background.

2 Variational Principle

We first sketch out the derivation of the variational principle we use. We
start with the Schrédinger equation which takes the form

(4) , (H — E)¥(H)no =,
where H is the Hamiltonian operator, which is the sum of the six-dimensional

Laplacian times :2%3 (the kinetic energy) and a scalar function (the PES).
We partition the Hamiltonian as

(5) H=HD +V©,
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where VC is defined by

(6) VC=H-HD,
and HD takes the form

(7 HD =T 4 Vvib 4 VD,

where T is the kinetic energy operator, Vv is the potential energy of the
isolated diatomic, and VD is a distortion potential, the choice of which is
discussed in the next section. All potentials are assumed to be represented
as analytic functions of the internal coordinates possibly combined with
nonlocal projection operators (which will be called projectors). We assume
that we have numerically obtained the Green’s function

2

h
D(%) = lim —"(E — HD + j¢)~1
(8) G EEI(I)I+ o (E — HD +14¢)1,

and the distorted waves 9(*)? which solve
©) (HP ~ By =0,

The function ()" is expanded as in (1) and its radial part is regular at
the origin and is subject to the boundary conditions of (2); ¥(-)» is its
time reversed counterpart. In practice the GP(#) and ()" functions are
obtained by the coupled-ODE approach that is discussed in the introduction.
In fact, in most cases we do not actually construct GP(£) but rather we
directly solve the coupled ODEs for required integrals over the GP(*) [17];
that detail of implementation need not concern us here, but the efficiency of
this technique is critical to the issues discussed in Section 4. Then a formal
solution to the full problem is given by [18,19]

(10) V()0 = (E)n — GDER)YPE)n,
where

2
(11) U= ——hgvc,

Referring to (2) and constructing wave packets from wave functions with
such boundary conditions, ¥(+)" is used to construct wave packets with an
unscattered wave and outgoing scattered waves, whereas ¥(-)n is used to
construct wave packets with an unscattered wave and incoming scattered
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waves, which is the time-reversed description [20]. It is convenient to define
the quantity

(12) pEn — _Gp@YEEn,

which may be called the outgoing wave. (Note that actually ot V)V is the
difference between the full outgoing wave and the part induced by the dis-
tortion potential, but we always call it just the outgoing wave.) Thus

(13) n = ) + gE",

and it can be shown by taking the large-R limit of (10) that the scattering
matrix is given by

(14) Snno = OSnno + Snnaa
where 0S,,,,, is the scattering matrix due to the distortion potentials, and
(15) Snno = (YO U[T(HIno),

In (15) and the equations that follow, {alb|c) means the integral

(16) (alblc) = / R2dR/ dcos@/%dq)/ r2dr/ dcosf d¢

x a*(R,©,®,r,0,$)b(R, 6, <I>,r,9,¢)C(R,9,<I>,r,0,¢),

where * denotes the complex conjugation. In practice three of the six in-
tegrations in (16) can be carried out analytically. The remaining three-
dimensional integration is carried out by direct products of Gaussian quadra-
tures {14].

Equation (15) could be used with some trial ¥(+)70 to compute an ap-
proximation to the scattering matrix, but the results would be very sensitive
to the choice of the trial function since if the trial function differs from the
exact one by the amount §¥(+)no the computed scattering matrix elements
differ from the exact ones by (p(-)n|i{|§U(+)m0). We seek instead a sta-
tionary expression for the scattering matrix which gives rise to errors which
involve integrals containing the product §¥(-)n*§¥(+)no, which should be
much smaller. This can be done in several ways. In the method we use, we
write

(17) Snno = Snno + Snno - Snno,

where we use three different expressions for Spn, on the right hand side.
The first is obtained by substituting (13) into (15):

(18) S‘n.no = <w(_)n|u|r¢(+)no> + <¢(—)n'ulw8§-&/ﬂ0>.
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In the second we substitute 1(-)" obtained from inverting (10) into (15) to
obtain

(19) Snng = (\I/(—)n|u|\1;(+)no> + (q;(—)n|uGD(+)ui\p(+)no),

In the third, we start with (19), substitute (13) into the second terms and
simplify using (12) to get

(20) Sano = (T U@ ) — (WERIUlCHm) — (TSI LS.
Putting (18)-(20) into (17) and using (8) to simplify to result, we have

Snno =<'¢v(—)nlu,¢(+)no> + <Q/)(—)n|u]‘p(o+v)vno> + <‘P(O—‘2,n'ul¢(+)no>

21
W B e

The error in the scattering matrix obtained using this expression with a
trial function is — 24 (§0(-)n|H — E|6¥+)no). An additional feature of this
expression is that is gives a symmetric scattering matrix for all choices of
U(+)no and P(-)n, '

- Equation (21) gives us a prescription to compute the scattering matrix
given a trial function, but it does not indicate how to choose parameters
contained in the trial function. We reinforce the stationary nature of (21)
by using the following procedure. Represent the trial function as a linear
combination of known basis functions:

(22) \Il(o+)n = Z fignf‘g.
B

The basis functions are regular at the origin and must either be £2 or have
the limit

.1 .
(23)  Jim Ty = R D Pui(r)VfM (66,0, ®)psyse expli(kui R — o /2)},

vje

where pg, ;¢ is some coefficient. Other choices either cause the matrix ele-
ment integrals to diverge or introduce incorrect boundary conditions. Then
(21) can be written as

T

(24) +B"

Itn

=§B+

[
(1o
(e
(AN

o)
N

where double underline denotes a matrix,

(25) (E%)nno = ($OInUfp+ino),
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(26) (B)sn = (Arls |edlpHin),

) @6 = 25 (ArTalH ~ BIFy),

where the superscript 7' means transpose and Az denotes the time reversal
[8] operator. Note that C is square and very large, éB is square and its row

and column dimensions are about an order of magnitude smaller, and é and
é are rectangular. We then require that

ORSuno _ ORSpno _ 0¥Suny  098umy 0

(28) o Z0nne  ONOnne  O¥Onne _
ORAgn  0%Apn  ORAp,  0%Ag,

for all n, ng and B, where R means real part, and & means imaginary part.
This results in the linear equations

(29) CA=B,
and thus
(30) s=s"+B"¢7'B.

This is our final result. We call this the outgoing wave variational principle
(OWVP), and we attribute the original derivation of a variational principle
with this flexibility to Schlessinger [21]. In Schlessinger’s work and our
original derivation [22], we used boundary conditions based on the T matrix
instead of the S matrix, where the T' matrix is defined by

(31) T-5-1

This version of the variational principle is called the scattered wave varia-
tional principle (SWVP); since (31) is linear in the two matrices, the OWVP
and SWVP yield identical results. For other kinds of variational principles,
see, for example, Refs. [23,24].

The appearance of a time reversal operator in (26) and (27) may at
first be surprising, but it becomes clear by elaborating on the discussion
below (11). The natural formulation of a transition amplitude in quantum
mechanics is < ¥ FIH'|®; >, where ¥; is the initial state, H’ is the operator
causing the transition, and ¥; is the final state. For scattering the final
state is the time reversal of the initial state because the initial state evolves
from a pure state in the infinite past into a mixture of states in the infinite
future [25], whereas the final state evolves from a, mixture of states in the
infinite past to a pure state at the detector [20]. Thus the natural description
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of scattering phenomena involves the time reversal operator in the bra [26].
In practical work when spin-orbit coupling may be neglected, one typically
choses a phase convention such that application of Ar reduces to complex
conjugation on the radial components of the wave function or trial function
but no conjugation on angular parts [8]. In our work ¢y;(r) is real, and
the trial function consists of sums of terms, each of which is a function of R
times a function independent of R. Thus A7 reduces to complex conjugation
of the functions of R.

If desired, one can solve for a single column of é, which yields a single
column of §, which is sufficient to calculate all observables for collisions
involving a particular initial state. This is useful when one employs iterative
methods [27,28].

In practice, we have found it efficient to expand \Ilng using a mixture
of £2 functions and functions with the boundary conditions of (23). Since
our choice of £2 functions leads to matrix elements of € which are real when
two £2 functions are involved, it is valuable to solve the linear equations in
(30) by blocks, with the real block eliminated before considering the complex
blocks [see (42-45) below]. The largest calculations we have carried out to
date involved on the order 104 basis functions, about half of which were real.
The dimension of the scattering matrix was about a factor of ten smaller.
The cost of the calculation was about evenly split between the construction
of the matrices SB B and € and the determination of S by (30).

Although we have focussed on a trial function with ‘complex boundary
conditions, this is not essential. Similar ideas can be used to solve for wave
functions with real, standing-wave boundary conditions, from which the S
or T matrix can be constructed by a transformation, and we have solved
some large-scale problems this way [29]. However we have found that the v
direct variational solution for wave functions with the complex, traveling-
wave boundary conditions leads to more stable results [29], and it will be
the focus of the rest of this chapter.

3 Distortion Potentials

In this section we discuss the simplest aspect of problem decomposition’in
the OWVP, namely the choice of the distortion potential V2 in (7). In
order to conveniently discuss the distortion potentials, we introduce the
scalar product (n|a|n’) defined by .

(32)

27T
(nlaln’)—-/ dcosG/ d@/ r2dr/ dcosf d¢ Bonjn (r)V;1F*(0,9,0,2)

x a(R,©,8,7,0,8)¢u ;.. (r)Y (9¢e<1>)

J/l:

where a is some operator. In practice it is possible to transform the scalar
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products so that three of the five integrations can be carried -out analyti-
cally. The remaining two-dimensional integration is not expensive. Then
admissible distortion potentials are dependent on the form of the matrix
elements (n|H|n’) in the limit R — oo. In particular, it is necessary that

(33) lim (n|H|n') = lim (n|HP|n’)
R—oo R—o0
and
(39  Jm E(nlHp) - H) = Jim R2{(n|HPp) - HEZ),

where HS2, is the result of the limits in (33). If these two relations are not
satisfied, then the correct boundary conditions cannot be obtained.

It is advantageous to consider distortion potentials which exploit some
or all of the decoupling permissible by (33) and (34). The basis func-
tions specified by n = vj¢ are eigenfunctions of the operator T' + Vvit and
limp—.o0 R2V = 0, so any distortion potential that also satisfies limp_,oo R2VD =
0 is possible. In general, we will want to use basis functions which are lin-
ear combinations of terms corresponding to different vj¢. In this case, off-
diagonal coupling can come from T + Vvib, This can restrict the choices of
the coupling in the distortion Hamiltonian.

The simplest possible choice is thus VP = 0. In this case the radial
part of the distorted waves are Bessel functions, which are easily calculated.
However this choice is not practical except for very large £ because of the
nature of the potential energy V. Atoms have hard cores so that in the
limit R — 0, the potential energy is very repulsive and since we are con-
cerned with relatively low energies, there will be a finite distance R below
which all radial functions will be negligible. Unless £ is large, the regular
Bessel functions will not be negligible for R smaller than Ry, and so S in
(24) would have elements orders of magnitude larger than S. Although in
principle the remaining terms of (24) would cancel out the spurious larger
contributions if the basis were large enough, in practice this would be almost
impossible for real problems. [Note that the two terms on the right side of
(30) are not separately unitary, although the left side becomes unitary as
the solution converges.] One possible fix is to multiply the Bessel functions
by some arbitrary cutoff function. This would implicitly define a new VD,
but it is an unnatural way to proceed. Next we discuss distortion potentials
which do not suffer from these drawbacks.

In our work we use distortion potentials which take the general form

(35) VD =" Anu|n)(nlVin)(w,

nn’
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where A, is a coefficient which specifies a particular distortion potential
scheme, V is the potential energy of the interaction of the diatomic with the
atom, and |n)(n| and |n’)(n’| are projectors. The projectors are defined so
that

(36) (n/IIVDIn///) = Aprgmn (n”lVln’”),

which is a function of R. The coefficient A, is defined by partitioning the
set of n into disjoint sets. These sets are called distortion potential blocks.
Then if n and n/ belong to the same distortion potential block, A, = 1.
Otherwise it is zero.

The use of distortion potentials effects a problem decomposition. Part
of the coupling is in the distortion problem, for which we solve (8) and (9),
and the rest, defined by (6) and (11), is treated by the algebraic variational
principle. The optimal distortion Hamiltonian coupling is the compromise
between making either of the two sides of the problem decomposition too
large. As the distortion blocks become larger, less coupling needs to be taken
care of by the variational principle, so fewer basis functions are required to
expand \Ilg'v%,n, and less work is required in evaluating the right hand side of
(30). On the other hand, as the distortion blocks become larger, the amount
of work to determine the distorted waves of (9) and distorted-wave Green’s
functions of (8) increases, the amount of memory or disk needed to store
these functions increases, and the work in evaluating the matrix elements
for the right hand side of (30) increases.

In our work, we include the basis functions most strongly coupling to
the initial ones of interest in a single distortion block while decoupling as
much as possible other less important functions. Further discussion of the
tradeoffs is provided elsewhere [30].

4 Basis Function Contraction

In this section we are concerned with the choice of basis functions used to
expand the outgoing wave, i.e., the functions f‘g in (22), and how the ideas
of problem decomposition can be used to improve efficiency.

In our work we have used two types of basis functions to expand ¥
The first are £2 functions which take the form

(+)n
ow -

~ 1
(37) Fﬁ,ﬁ"’ = I_{(bvj(r)yjjeM(o’(p’e*cb)tm(R)v

where ¢, (R) is a Gaussian centered at Ry, and having width parameter wm.
Here § indicates a particular choice of v, j, £, and m. These functions are not
orthogonal because different Gaussians will overlap, however orthogonality
is not required in our formalism. In fact, when treating reactive processes,
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we expand ‘I’gv)vn in terms of three such sets of basis functions, with each
set using the coordinates most natural for the particular partitioning of the
three atoms into atom and diatom. Thus each set uses a different set of
coordinates, and hence each basis function of one set has nonzero overlap
with all basis functions of the other sets. It also has nonzero overlap with
functions in the same set that have the same v, j, and £.

The second type of basis functions that we use are the continuum func-
tions, and these are generated by applying a Green’s function to a £2 basis
function of the form of (37):

(38) Ip. =GP ca.

These functions can be computed using similar techniques as used to de-
termine the distorted waves {14,17]. In particular, these functions have the
explicit form

(39) f ,C R Z A’UJZ ‘UB}ﬁeﬂ ¢'UJ( ) (6 ¢’ e (I))gf;j-l)ﬁ( )
vjl

where the functions g(+) s(R) solve an inhomogeneous second order differ-
ential equation subJect to the boundary conditions that they be regular at
R = 0 and (23) is satisfied. We call these radial functions half-integrated
Green’s functions (HIGFs). As we have presented them, these HIGFs are
obtained using the Green’s function for the distortion Hamiltonian used to
generate the distorted wave. However it is clear from (21) and (22) that
this is not necessary. It is not clear what advantage there would be to use
a different distortion Hamiltonian to generate the HIGFs. The motivation
for (38) arises when one considers the variational principle [17,23] for the
amplitude density, which is equal to ¥ (+)». The result is equivalent to
(21) with the restriction that only basis functions of the type given by (38)
are used. The present formulation is much more general. It is generally
desirable to use the £2 functions of (37) rather than those of (38), because
they are cheaper to deal with, but some HIGFs are required to ensure that
\I!(o+&,n has the correct boundary conditions at large R. However we typically
find we need fewer HIGFs than £2 functions to obtain a given level of con-
vergence, so it can be advantageous to use more than the minimum number
of HIGFs.

Although we have had good success using Gaussian basis functions for
the R coordinate, we note that the function being expanded is far from
Gaussian. Our formalism is not limited to Gaussians, and thus it should be
possible to improve the efficiency of the calculations by introducing a dif-
ferent set of basis functions carefully tailored to the problem. One strategy
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is to form these as linear combinations of the Gaussian basis functions, and
in such a case they are termed contracted basis functions. This contraction
can be done in several ways. For the £2 functions, it is possible to energy
adapt [17,31] the basis functions by diagonalizing a small matrix, and then
using the eigenvectors whose local wavelength is approximately correct as
contracted basis functions. (This may be considered to be a problem decom-
position in that one transforms to energy to take advantage of the natural
decoupling of states of widely differing average energy.) Another option is
to solve a one-dimensional scattering problem {24,32].

For the HIGFs, we have considered in previous work [33] the contraction
of the R part of the £2 functions on the right hand side of (38). In this
case the contraction coefficients were based on full scattering calculations
with restricted avjf basis sets. The results were quite encouraging. These
calculations were carried out using the variational principle for the amplitude
density, and with the more general framework presented here, it is clear that
possibilities also exist for contracting after applying the Green’s function.

The techniques used in some of the previous work to obtain contracted
basis functions correspond to problem decomposition in channel space. In
particular the scattering problem is fully solved for one channel [32] or a
subset of channels {33], and the resulting solutions are used as basis functions
for treating the fully coupled set of all the channels.

So far we have just considered contracting functions for the coordinate
R. Since the Gaussian functions are highly localized, we can consider con-
tracting the ¢,,jij£M of (37) by diagonalizing the full Hamiltonian averaged
over R weighted by a single Gaussian. This would yield functions approx-
imately adiabatic with respect to the coordinate R. The use of adiabatic
functions has proven its value many times in calculations not using a varia-
tional principle [34]. Zhang and Miller [35] have shown that this technique
is also valuable in algebraic variational calculations.

Another valuable option, although not really basis function contraction,
is to use more general vibrational functions in (37) [14]. Both this option and
the others discussed in the previous paragraph are problem decomposition
techniques in that one first treats the coupling in coordinates other than R,
for a fixed R or averaged over a narrow range of R, and one then uses the
results as basis functions for the full problem spanning all R.

It is also possible to form contracted functions coupling all degrees of
freedom. For example, would could diagonalize the purely £2 part of __C_:
required in (30), but use only a subset of the eigenvectors (selected on the
basis of their energy eigenvalues or the character of the eigenvector) to form
the inverse in (30). This could be advantageous since for this part of C,
the basis functions are independent of F, so the diagonalization would have
to be performed only once. This idea could be implemented in a divide-
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and-conquer way by partitioning the basis functions into several groups,
each diagonalized separately. The partitioning might be based on channel
indices, or — for localized basis functions — on physical space.

A characteristic of the techniques discussed in this section is that a
part of the problem is decoupled from the other parts to get good basis
functions for treating the fully coupled problem. Then the basis functions
are combined wvariationally for the full problem. The variational character
of the final step makes up to some extent for the deficiencies of the basis
due to the fact that it was obtained in decoupled steps.

5 Optical Potentials and Related Approaches

In previous sections we considered methods for improving the efficiency of
our calculations that did not lead obviously to simplifying approximations.
In this section we manipulate our equations to reveal the possibilities of
introducing a phenomenological function, called an optical potential, which
hopefully allows results of useful accuracy to be obtained at reduced cost.

We start by partitioning the basis functions f‘p into two groups called
P and @ so that we can write

~Q
(40) B= (%),

and

5QQ QP
X ¢ C
(41) ¢= (_~PQ ‘C?,PP) :

(42) s=s"+8"¢" "8,
where

(43) észéng—B_Q TQQQ -1§Q’
(44) B =B"-g" "¢ T8,
and

(45) Q~f _ QPP _ &P TERQ -1 5P

If the @ functions are all real, then (42-45) form an attractive solution to
(30) since _Q:QQ will be real. However, in this section we want to consider
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the more general case. First though, we make a connection to work in other
fields. If our basis functions were localized, P and Q could be associated
with different domains of the physical space. Then (43)-(45) would provide
a generalization of traditional domain decomposition techniques [36,37]. We
may, for example, consider (45) to represent the Schur complement of func-
tion space P connected to function space Q.

Consider (43) in more detail. It can be rewritten as

Sndy =(O U |y

o + 3o @EOMUITS)E™ T g (T U HIm).
BB

Now provided
- 2 ~
(47) (pOnU|T) = E’é(zﬁ(-)"lE — H[Tp),

which will be true if the internal part of I's is othogonal to the internal part

of ¥(+)no or if limg 0o 's = 0, where R is the continuum coordinate for
1(+)no, we can write

(48) Sf,{o = <¢(-)n|u +uopt|,(/)(+)no>,
(49) Bf,, = (AzTalU + Uortfy(Hm),

> = (Agl 2 H-FE opt|T°
(50) Cﬁﬂ’_< T ﬁ|?( ~ E) — Uert| ﬁ’)y
where

(1) {aldomilp) = Yol 25 (1 = B)EG)C™® ~)par(Earlog (2 - EYO).
Bp

We define

B2
52 Vopt = —__fopt

(52) o
and we call this the optical potential. This kind of partitioning was first
introduced into quantum mechanical scattering theory by Feshbach [38] and
was introduced into algebraic variational calculations by Nesbet [39].

The usefulness of the optical potential is that if we can evaluate it simply,
it is possible to carry out a small calculation including only the P functions
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and adding the optical potential to the interaction potential and obtain the
same result as the larger calculation including both the P and @ functions.
The problem is that the exact optical potential of (51) is no easier to de-
termine than solving the problem explicitly including both the P and Q
functions. However, it may be possible to obtain an approximate optical
potential which gives results of useful accuracy.

Let us consider some of the properties of the optical potential. It is

nergy dependent, both explicitly as indicated by (51) and implicitly through
QQQ, which contains the energy [see (27) and (41)]. It is nonlocal so that
more work may be required to evaluate its matrix elements as compared to
U. If all of the @ functions are £2 and hence real, the optical potential will
be real. Otherwise the optical potential will have nonzero real and imaginary
parts.

Perhaps the most troublesome property of the optical potential is its
non locality. There is extensive literature on using local phenomenological
optical potentials in electron scattering [40], and these are mostly based on
physical arguments relating to the role of electronically excited states. Lo-
cal approximations to the optical potential are also widely used in nuclear
physics, in which case they are typically justified by energy averaging but
determined in practice by empirical considerations [38]. Neither the electron
scattering or nuclear reaction literature is particularly helpful in the present
context. Local approximations more suitable for scattering processes involv-
ing molecular vibrational and rotational motions have also been advanced
[41], but they are less well developed.

It is possible to obtain local potentials that are fully equivalent to the
nonlocal optical potential, but these show strong energy-dependent structure
as a function of scattering energy; useful approximations can be obtained
by smoothing these potentials [42]. Other approaches include treating the
optical potential by perturbation theory [43] or attempting to collapse its
effects into a smaller number of “effective” channels [44].

Considerable progress should also be possible employing nonlocal opti-
cal potentials, though, by choosing the ) space to make the calculations
convenient. For the present application to reactive scattering, one could
consider several choices for the @ functions. One choice, considered by Baer
and coworkers [45] and Seideman and Miller [46], is to have Q include all
continuum functions. In that work the phenomenological optical potentials
were taken to be purely imaginary, with negative imaginary parts, nonzero
only at the boundaries where the interaction potential is small. The as-
sumed form of the phenomenological optical potentials was quite simple —
nevertheless quite encouraging results were obtained.

Another partitioning would be to assign functions with €yzjzas > E to
Q and other functions to P. In this case all Q functions are £2 (the HIGFs
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?;:1:62 in this case since k2 sisas

Perhaps the most promising avenue of approach is based on returning
to the domain decomposition analog. For example, suppose we choose our
basis functions such that

< 0), and the optical potential would be

QPP 0 _QPR
gPR gQR gRR

Iiet the sizes of the partitions be MP, M@, and MR such that the order of
Cis

(54) M = MP + MQ + MR,

Then, instead of solving the M x M complex equations for é, we may solve
the following much simpler set {36]:

(55) QPP(EP:X;P) _ (EPQPR),
(56) CF W) = (B,

57) (QRR _ QPRTip _ :~QRT§Q)§~R _ ER _ QPRTEP _ ;QRTEQ’
(58) F-w x4

(59) A=W - x°4".

Extension of this three-partition approach to four or more partitions is
clearly possible. Any number of basis set partioning schemes may be imag-
ined to make the smaller problems real, independent of energy, and for par-
ticularly convenient for solution by iterative or parallel methods.

The new ideas presented in this section are topics of current research.

6 Concluding Remarks

We have seen that techniques for solving quantum mechanical scattering
problems with linear variational principles and delocalized basis functions
allow for a number of divide-and-conquer strategies. Some of these are
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analogs in spectral space of techniques used in other fields in physical space,
whereas other problem decomposition avenues are specialized approaches
based on the specific nature of the scattering problem.
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