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1. INTRODUCTION

Chemical reactions occurring on metal surfaces are of great technological importance,
especially for catalysis.}-0 Diffusion of reagents on the surface is a critical step in many such
reactions.127-9 Surface diffusion is also important in molecular beam epitaxy, chemical vapor
deposition, and controlled growth of thin films.!10 Diffusion of hydrogen atoms is particularly
interesting from a theoretical point of view because of the large quantum mechanical tunneling
contributions to this process.!1-38 Laser-induced thermal desorption, field emission
fluctuation, and linear optical diffraction techniques have been used to study hydrogen diffusion
on several metals, including Ni, W, Ru, Pt, Rh, and Cu.39-62 Theoretical studies of these
processes can complement the data available from these experiments and can eventually be used
to study subsurface and bulk diffusion processes more accurately than may be allowed by
current experiments. These subsurface and bulk processes are fundamental for energy storage
and fuel cell development, hydrogen embrittlement, and the possibility of subsurface hydrogen
in catalysis.

Under a broad range of conditions one can model surface diffusion of adsorbed atoms as a
unimolecular chemical reaction in which the chemisorption or physisorption bonds of the
adatom at an initial site are broken and new bonds are formed at another site. The system
composed of the adatom bound at the initial site is called the reactant, and the system composed
of the adatom bound at the final site is called the product.

In Section 2 we provide an overview of the reaction-path approach for calculating rate
constants of chemical reactions that involve large tunneling effects. We assume that the nuclear
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motion is governed by an effective potential. Section 2.1 discusses the Born-Oppenheimer-
Huang electronic adiabatic approximation for an adatom on a metal, which provides the
justification for this assumption. The reaction-path approach involves two steps: variational
transition state theory with quantized vibrations for the overbarrier reactive flux, reviewed in
section 2.2, and multidimensional semiclassical approximations for tunneling, reviewed in
Section 2.3. The semiclassical tunneling method presented here assumes small curvature of the
reaction path in isoinertial coordinates, which is a reasonable assumption for processes such as
diffusion of hydrogen on metals, although more general tunneling approaches are available for
other cases. In section 2.4 we discuss the embedded cluster method which is used to model the
hydrogen-metal systems studied with these theoretical dynamical methods.

In section 3, we present recent results of applying these methods to hydrogen and
deuterium diffusion on Cu(100) and to hydrogen diffusion on Ni(100).

2. METHODS
2.1. Born-Oppenheimer-Huang Approximation for a Metal

Often the existence of a potential energy function governing the atomic motions in a
system to be simulated is taken as a given. But this question merits further thought for systems
involving metals.

For molecular and insulating solids, the existence of potential energy functions governing
the internuclear (interatomic) motion is usually justified by the perturbational method used by
Born and Oppenheimer®3 or the variational method used by Born and Huang.%* Either method
provides a justification for the separation of electronic and nuclear motion in which the
electronic motion adjusts adiabatically to the nuclear motions. At this point a comment is in
order on the validity of the electronic adiabatic approximation for metals. Perturbation theory
shows that the leading nonadiabatic corrections are of the order of the vibrational excitation
energies divided by the electronic excitation energies.65 Let the maximum vibrational frequency
in wavenumbers be Dy, and let the smallest electronic excitation energy be AE,;,. Then,
denoting Planck's constant by h and the speed of light by ¢, hcUp,y/AE,; might be thought
to measure the importance of nonadiabatic effects, and—although this ratio is small for
closed-shell molecules, insulators, and semiconductors—it is not small for metals, which are
conductors. But it has been argued that it would be more appropriate for many properties of a
metal to use hcDy,y [(E), where (E) is the average allowed electronic excitation energy. For
most of the conduction band, (E) is on the order of 0.5(Eg — Ey), where Ef is the Fermi
energy, and Ej is the energy at the bottom of the conduction band, since excitations with smaller
excitation energy are typically blocked by the Pauli Exclusion Principle.65 Using this argument
leads to the criterion that the electronic adiabatic approximation is expected to be useful if

2hcVpmax / (E F— E()) is small, and this is typically reasonably well satisfied. Thus properties of




a metal, e.g., cohesive energy and normal modes of vibration, that depend on all the valence
electrons, and not just those in orbitals near the Fermi level, should be reasonably well
described by an electronically adiabatic treatment,%5 and we will adopt such a procedure here.
With this justification, we assume that an effective potential is available (the actual forms used
for the potential energy functions are provided in Sections 3.1 and 3.2), and we proceed to

consider how the dynamics may be modeled.
2.2. Variational Transition State Theory

The fundamental assumption of classical transition state theory (TST) is that any system
that crosses a dynamical bottleneck (DB) will do so only once over the course of its trajectory.
This is called the no-recrossing assumption.00-08 Using this assumption, TST calculates the
forward rate as the equilibrium one-way flux through the DB from reactants to products.

In order to calculate the reactive flux in a convenient way, we first transform to isoinertial
coordinates. Isoinertial coordinates are ones for which the kinetic energy has the same reduced
mass for every square term and there are no cross terms. The simplest example is mass-scaled
cartesians,67 which are similar to the mass-weighted cartesians®® of infrared spectroscopy (the
difference being that mass-scaled cartesians have units of length whereas mass-weighted
cartesians have units of massl/2 length). We use mass-scaled cartesians in which all the
reduced masses are (. We then calculate the minimum energy path (MEP) from reactants to
products, and we define a reaction coordinate, s, as the distance along this MEP. The MEP
begins at the saddle point, at which s = 0, and follows the path of steepest descent in isoinertial
coordinates towards the reactants (s = negative) and the products (s = positive). The reactants
and products are called minimum energy sites (MESs), and we define the value of s at the
reactant MES as sR.

We then define a dividing surface orthogonal to the MEP at each s, such that it separates
phase space into a reactant region and a product region. This dividing surface is a generalized
transition state, and it will be used as a trial DB. Conventional TST corresponds to calculating
the equilibrium one-way flux through the trial DB at s = 0, which is the highest energy point on
the MEP. In generalized TST, we calculate the equilibrium one-way fluxes for other trial
surfaces. First consider the result if the calculation is carried out by classical mechanics, which

we denote by subscript C. Then, for temperature 7 and trial DB at s, the calculated rate constant
1 o66-68
is
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where the superscript GT indicates a value corresponding to a generalized transition state, O is

the symmetry factor accounting for the number of equivalent paths from a particular reactant site
to products [4 for a hydrogen atom diffusing on a (100) face centered cubic (FCC) surface], kp




is Boltzmann’s constant, VMEP(s) is the potential energy of the system along the MEP at s with
zero of energy such that VMEP(SR) =0, and QgT( T,s) and Qg( T) are the partition functions

of the generalized transition state and reactant species, respectively. Notice that since the
generalized transition state corresponds to a definite value of s, it does not include any reaction-
coordinate motion. The remaining modes, i.e., those included in QgT( T,s), are called

transverse modes. Thus, if N is the number of atoms, the number, F, of degrees of freedom of
the reactant is 3N, but the generalized transition state has 3N — 1 degrees of freedom.

As mentioned above, conventional TST places the DB at the saddle point on the PES, i.e.,
s =0 in Eq. (1), but this is not usually the best DB because this treatment neglects recrossing,
and the no-recrossing assumption is not completely correct. The interpretation of Eq. (1) for a
unimolecular reaction is that it represents, for a canonical ensemble at temperature T, the local
flux in the reactants to products direction through the dividing surface at s divided by the
concentration of reactants. Any trajectory that crosses the DB from the reactant side toward
products, even if it started on the product side, whether it ends as reactant or product, and
whether or not it returns to the DB again and again, and hence gets counted again, will be
counted as part of the forward flux, and the resulting rate constant may thus be overestimated.
The goal of canonical variational transition state theory (CVT) is to find the best generalized
transition state, i.e., the one that minimizes recrossing, which is the root of all the overcounting.
Minimizing Eq. (1) with respect to s would lead to the best possible upper limit to the classical
rate constant. However, in a canonical ensemble the rate is dominated by systems with energy
close to the minimum required to pass through the DB region. For reactions in the threshold
regime, the adiabatic separation of transverse coordinates from s is a good approximation,’1-73
so quantum effects on these modes can be included by quantizing transverse modes with fixed
5.7476  Doing this and also quantizing the reactant modes (which requires no special
justification) yields

6Ty o kgT Q% (T,s)  (—Vmgp(s)
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where QCT(T,s) and QR (T, s) are now defined as sums over states, in contrast to QgT(T, s)
and Qg(T), which are phase space integrals. The resulting expression in Eq. (2) is a hybrid
rate constant, since all modes except the reaction coordinate have been quantized, but the
reaction coordinate motion is still classical In quantizing the partition functions, we assume that
the reaction coordinate does not couple with any of the other modes and that the total partition
function can be separated into electronic and vibrational factors (for processes at a gas-solid
interface, there is no rotation or translation, because all modes that would be rotations or
translations for a gas-phase species are actually vibrations due to the presence of the
surrounding metallic lattice; see section 2.4 discussing the embedded cluster method).

The CVT estimate of the rate constant is obtained by minimizing the calculated rate
constant of Eq. (2) with respect to s. The position, s, along the MEP at which the variationally




optimized dividing surface (the variational transition state) at temperature T is ultimately placed
is called sEVT(T), and the CVT rate constant is defined as

ovr o kgT QVI(T) (Vs (T)
kK- (T)=0 PR exp kpT 3)

where superscript CVT denotes values determined at s*CVT(T ).

In the harmonic approximation,

CVTm
VT (1) = H[Zexp[ o (T)H (4a)
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where £CVT "™(T) is the vibrational energy of level v of CVT mode m at temperature 7, and

vmVT(T) is the frequency of CVT mode m in wavenumbers. Similarly,

R,m
OR(T)= H{Zexp :BT H (59)
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where £R ™ is the vibrational energy of level v of reactant mode m with frequency T)‘n% in

wavenumbers.

2.3 Small-Curvature Tunneling Approximations

The neglect of tunneling in the motion along the reaction path often underestimates the true
rate constant, especially at low temperatures for processes in which the reaction coordinate is
dominated by hydrogenic motion.”677 To account for tunneling along the reaction coordinate,
we assume that when tunneling occurs, the system is at a low enough temperature that it passes
through the DB in the ground state or in a state where the effective potential has almost the same
shape as the ground state.66,78 Under such conditions the effective potential for tunneling is the
vibrationally adiabatic ground-state potential energy curve, defined as




VE(s) = Vagp (5) + Egansy () (©6)

where V\Ep(s) is the potential energy of the system at s on the MEP, and sgansv (s) is the sum
over the zero point energies of all transverse modes at s. The maximum of VS (s) is called
Vf‘G and is the threshold energy (that energy above which the transmission probability is unity
and below which it is zero) when the transverse modes are in the quantal ground state, and the
reaction coordinate is classical. For surface processes modeled by the embedded cluster
approach (see section 2.4), there are a total of (Np + 1) moving atoms, where Np, is the number
of moving metal atoms and the additional atom is the hydrogen atom. This yields 3N, + 2)
transverse modes, which, as mentioned below Eq. (2), are all vibrational.

To include quantal effects on the reaction coordinate, k<CVT in Eq. (3) is multiplied by a

CVT/G

ground-state transmission coefficient, K , which accounts for tunneling along the reaction

path. The rate constant including tunneling is given by

The transmission coefficient is the product of two factors.”8 The first factor is the ratio of the

Boltzmann average of the quantum probability for transmission through VS (s) to the
Boltzmann average of the classical transmission probability for VS (s). The second factor is the

ratio of the Boltzmann average of the classical transmission probability with Vﬁ‘G as the

threshold energy to that with Vf’ [s = sEVT(T)] as the threshold energy. The product of these

factors gives the following expression for the ground-state transmission coefficient at the CVT
level:

dE PS(E)exp(—E/kgT)

KCVT/G (1) J"S (s=5")
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where the lower limit of the integral in the numerator is approximate for a model in which
VS (s) increases monotonically from s = sR to the barrier top, and where PG(E) is the
quantum transmission probability at energy E for the effective potential. This transmission

probability is approximated semiclassically by7?
PO(E)=1/{1+exp[26(E)]} ©)

where O(E) is the magnitude of the imaginary action integral for barrier transmission and
depends upon the tunneling approximation used.




Several methods by which PO (E) may be approximated are available.67-68.78,80-89 For
most processes, tunneling is not localized to the DB region, and the tunneling path is
significantly shorter than the MEP. The best tunneling path should be chosen in principle as
that path which minimizes the imaginary action integral.84 When the curvature along the
reaction path is small, we use a small-curvature tunneling approximation,76:81,82,86-88 i
particular the centrifugal-dominant small-curvature semiclassical adiabatic ground-state (CD-
SCSAG) method,86:33 to estimate this effect. This approximation is abbreviated SCT (small-
curvature tunneling) for brevity.

In Eq. (8), the tunneling energies are selected from a continuum. However, in a
unimolecular reaction, such as the case when an adatom diffuses across a solid surface between
minimum energy sites, the reaction coordinate motion is initially restricted to discrete energy
levels in the potential energy well, and each site-to-site hop is more accurately represented as a
transition initiating in a discrete energy eigenstate rather than from a continuum energy state.
This discretization becomes very important at low temperatures when excited states have small
occupancies compared to the ground state. To account for this, when such quantization may be
important we replace23 the integral in Eq. (8) by a sum over discrete energy levels E‘l,g below
VZf‘G where the energy levels correspond to exciting the reaction-coordinate mode (F) of the
reactant. Then, in Eq. (8), only energies above V;;AG are treated as a continuum, and the
ground-state transmission coefficient becomes

& dER G( R R o0 G
> =PO(EN Jexp(~Ef [T )+ | ac 4E PO (E)exp(E/kgT)
CVT/QG 7y _ 7=0 9V Va
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where the Q has been introduced in the superscript to indicate that the reaction coordinate energy
levels have been quantized. The upper limit, M, of the summation is the number of excited
energy eigenstates, E‘l}, of the reaction coordinate motion below V?G.

A complication occurs in practice because the nature of the reaction coordinate changes
along the reaction path. Near the barrier top and over most of the reaction path, the reaction
coordinate is a mostly hydrogenic mode. For H diffusion on Ni(100), for example,
sR =-15 A, and the reaction coordinate is mostly hydrogenic from s = —12 Ato s=12 A,
and there are two transverse hydrogenic modes. For s <—12 A, though, the amount of metal-
motion character in the reaction coordinate increases until at s = sR, there are three hydrogenic
transverse modes, with frequencies UlR > ﬁf = 63}{. In the harmonic approximation, a very
good approximation to the effective potential along the reaction coordinate in the vicinity of the

reactant is

Vegr (s) = Ve (s = sR)+—;—hc(—'Il§ - 5§)+é—f3(s —sR)Z. (11)
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In Eq. (11), f3 is the force constant corresponding to 63R and is equal to u(chﬁ_ql}) , and

51}} is the frequency in wavenumbers of the reactant normal mode that corresponds to the
reaction coordinate, which is the lowest-frequency mode at the reactant MES. The energy levels

of the reactant, computed from this potential, are
ER =Vg(s= sR)+%hc5}} +vheDR, v =0, 1, .... (12)
Then, from Eq. (12),

Y= heDY. (13)

When Eq. (10) is used to calculate the transmission coefficient, the small-curvature
tunneling approximation is abbreviated SCTQ. Equation (7) is now replaced by

kCVT/QG(T) - KCVT/QG(T)kCVT (T) (14)

In the SCTQ and SCT approximations, the imaginary action integral in Eq. (9) is given
by81.82,86,88

8(E) = (27/h) j:; ds Jzueff(s)[vf ()~ E (15)

where sg and s1 are the limits of the tunneling path, and i is an effective reduced mass which
accounts for reaction-path curvature. The physical interpretation is that the effective reduced
mass, peff, in Eq. (15) is smaller than the inertial reduced mass, i, because the tunneling path is
shorter than the MEP. The effective reduced mass is calculated as86,88

exp{—za(s) —[a(s)? + (dt/ds)2}

Hege (s) = 4 min (16)
1
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Cn is the reaction-path curvature component along generalized normal mode m, and ¢,,,(s) is

the ground-state concave-side vibrational turning point of mode m.

fcc lattice

Figure 1. Model of the (100) surface of a face centered cubic (FCC) lattice. The upper figure shows a 6-
atom embedded cluster; the lower figure is a close-up looking down on these 6 atoms. R and P are fourfold

minimum energy sites for the adatom, and fa is a twofold transition state.

For interpretative purposes we note that including only the first term in the numerator of
Eq. (10) yields the tunneling rate constant, kwn(T), when substituted in Eq. (14), and including
only the second term yields the overbarrier rate constant, kgyer(T). The fraction of reaction that

occurs by tunneling is

Kun(T)
F, = tun .
) )+ ker () e




The diffusion process on an FCC crystal face consists of the hydrogenic atom hopping
from an equilibrium four-fold minimum energy binding site, through a two-fold transition state,
to another MES. The (100) surface and the stationary points of interest are shown in Figure 1.
Assuming that the hops between the MESs are uncorrelated, meaning that the H atom remains at
each fourfold site long enough to become thermalized, and therefore the previous history has no
effect on each subsequent hop, the surface diffusion coefficient is given by90

D(T) = (/12 /4) ki (T) 1)

where A is the lateral distance between two MESs (which, for the (100) surface, is equal to
Ry/+2, where Ry is the lattice constant), and kyy; (T) is the hopping rate constant.

2.4. Embedded Cluster Method

The hydrogen-metal systems in this study are modeled b‘y the embedded cluster
method.2429 The systems consist of a single hydrogenic atom and a finite lattice of metal
atoms, stacked as (100) FCC planes. A solid-state cluster, consisting of an increasing number
of moving atoms (Np), is surrounded by a set of immovable lattice atoms, fixed at geometries
defined by the bulk lattice constant, turning all isolated-molecule rotations and translations into
vibrations. We start with N = 0, i.e., a rigid metal lattice, and we run the dynamics
calculations for this simple (but often unrealistic) system. We then increase Np, allowing lattice
atoms near the representative site of diffusion to move. When these metal atoms are allowed to
move, their motion couples to the reaction-coordinate, and this has an effect on the dynamics.
As we further increase Np, and atoms further away from the diffusion site are allowed to move,
the coupling to the reaction-coordinate subsides, and the rate constant eventually converges.
The movable atoms are chosen as those which fall within the boundaries of either of two
hemispheres which have equal radii and are centered at representative sites which depend upon
the system being studied. The radii are expanded until the desired number of atoms, Np, are
enclosed within the hemispheres. The centers of the hemispheres are somewhat arbitrary, but
need to be well defined for consistency within the study, and they naturally must be near the
reactant and product MESs for the specific process; otherwise the coupling of lattice motion to
the reaction-coordinate will not converge in a physical manner.

The full lattice is created large enough that all movable atoms in the largest cluster
considered (Npax = 56 for Cu and Npax = 36 for Ni) are surrounded by all interacting
neighbors in all directions as far as the distance at which the potential is cut off. The result is
that each movable atom is in the environment necessary to be treated as part of an infinite metal
lattice.

For the Cu(100) system, the expansion spheres are centered precisely at the reactant and
product MESs (as determined by the rigid system with N, = 0), and the full lattice consists of
324 atoms: 78, 70, 60, 52, 38, and 26 lattice atoms in the first through sixth planes,

10




descending down perpendicular to the (100) top surface. For the Ni(100) system, which is part
of a larger project studying subsurface diffusion, the spheres are centered at octahedral
subsurface sites immediately below two adjacent surface atoms. The full lattice consists of 666
atoms: 100, 98, 100, 98, 78, 78, 58, 38, and 18 lattice atoms in the first through ninth planes.
These values are somewhat larger than for Cu because the Ni potential energy function has a
larger cutoff distance.

Since convergence with respect to N, was found to be relatively rapid for both systems,
we limit the presentation of results and discussion here to the rigid (N = 0) and fully converged
(Np = Nmax) Systems unless otherwise specified. We refer readers to journal articles for some
intermediate results.2%93 The N, = 56 metal cluster for Cu consists of 20, 18, 16, and 2
moving atoms in the first through fourth planes, and the N, = 36 metal cluster for Ni consists of
12, 16, and 8 atoms in the first, second, and third planes, respectively. Since there is one
adatom, the total number of moving atoms, N, equals N + 1.

3. APPLICATIONS

We used the POLYRATES6:94 code to calculate hopping rate constants for H and D on
both Cu(100) and Ni(100). We made calculations without tunneling, as well as with SCT and
SCTQ tunneling corrections. All vibrational energies are calculated in the harmonic
approximation in the present work.

3.1. H/Cu(100) and D/Cu(100)

The potential energy for the H/Cu system is approximated as a sum of pair potentials. As
a consequence of the Born-Oppenheimer approximation, these pair potentials are independent of
isotopic mass, i.e., the same for D/Cu as for H/Cu. For both the H-Cu and Cu-Cu interaction
potential, we used a Morse-spline function of the following form:

De{l exp(- R—Re))]z—l}, R<R,-D,
5
V(R)=1Y C(R-R, - D, ), R.-D,<R<R.+D, (22)
i=3
0, R>R.+D,

where R is the Cu-Cu or H-Cu interatomic distance, De, ¢, and R, are Morse parameters, and
R¢, D¢, and C; control the spline for smoothing the potential cutoff, R¢ + D;. The parameters of
the H-Cu potential were based on earlier work by Valone et al.1® and Truong et al.26 For the
Cu-Cu interaction,24-26 D, and ¢ were chosen?4 to match features of the Lennard-Jones pair
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potential of Halicoglu and Pound,®! and Re was chosen24 to yield an interatomic spacing
consistent with the bulk lattice.

For both the Cu-Cu and H-Cu interactions, R and the spline width, 2D, were chosen in
such a way that the cutoff was smooth and did not introduce any spurious behavior in the
frequencies. The parameters C; were chosen to make the potential function and its first and
second derivatives continuous at R = Rc — D.. The values of all pair potential parameters used
in Eq. (22) for both the Cu-Cu and H-Cu interactions are listed in Table 1, and the functions are
plotted in Figure 2.

Table 1. Potential parameters used for the Cu-Cu and H-Cu
interaction in Eq. (22).

Parameter Cu-Cu H-Cu

a (A 2.287 1.43
D, (kcal mol!) 9.4378 7.2875
Re (A) 2.578942 2.34
Rc(A) 5.157883 7.02
C3 (kcal mol-1 A-%) 4472 154.619
C4 (keal mol-! A-4) 6231.8 2168.84
Cs5 (kcal mol-1 A-5) 233727 8156.16
D¢ (A) 0.0529 0.0529

Although this potential energy function is not quantitatively accurate,29 it has been widely
used, and it is qualitatively realistic. Thus it has become a prototype potential to use with new
theoretical methods.

The determination of the energetically optimized bulk lattice constant for the assumed
potential energy function was a very important process. When lattice atoms move from their
original bulk lattice positions defined by the lattice constant, they do so as a result of their
proximity to the exposed surface (surface atoms behave differently than bulk atoms because
they have different numbers of neighbor atoms) and/or the presence of the adatom. If the lattice
constant is not energetically optimized, then when an atom is allowed to move, it will do so not
only at the surface but also in the bulk. Therefore, the effect of unfreezing of an atom may not
be a result of physical coupling to the process under study but rather a result of inconsistent
lattice spacing. As a result, the effect of allowing lattice atoms to move will be overestimated.
A lattice constant properly optimized for the potential being used prevents these artifacts.
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Figure 2. H-Cu and Cu-Cu pair interaction defined by Eq. (22) vs. interatomic distance.

The potential energy of a bulk atom is calculated as one half of the sum of all pair
potentials between a selected bulk atom and all other atoms in the system, using the assumed
potential energy function for Cu-Cu interaction. The optimum, energetically minimized lattice
constant is that which yields the minimum energy for a bulk atom. This value was determined?2’
to be 3.5818 A, which is close to the experimental bulk lattice constant of 3.61 A92 To avoid
the artifacts discussed above, the energetically minimized lattice constant was used for all
Cu(100) results presented here unless otherwise specified.

Table 2. Binding Energies and barrier heights (kcal/mol) for H on Cu(100).

Fixed lattice (N, = 0)  Relaxed lattice (N, = 56)

Binding Energy

4-fold site 50.3 50.3
2-fold site 384 389
Barrier Height

classical I1.9 114

vibrationally adiabatic ground-state 10.6 9.9
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Calculated binding energies and barrier heights for H on Cu(100) are given in Table 2. The

binding energies are referenced to a hydrogen atom fully separated from the surface, and they do

not include zero point contributions. The classical barrier height is calculated as the energy
difference between the twofold saddle point and the fourfold reactant MES, and the vibrationally
adiabatic ground-state barrier is calculated as the energy difference between V?G and

Vg (s

sR). Diffusion coefficients for the H/Cu system with the optimized lattice constant are

given for a range of temperatures at the CVT (no tunneling), CVT/SCT, and CVT/SCTQ levels
for both rigid (N p = 0) and moving (N, = 56) lattices in Table 3. The results for the D/Cu
system are given in Table 4.

Table 3. CVT, CVT/SCT, and CVT/SCTQ diffusion coefficients (cm?2/s) for H on Cu(100)
surfaces with N, = 0 and N, = 56 at a variety of temperatures. Numbers in parentheses are

powers of 10.

N,=0 Np = 56
T (K) CVT CVT/SCT  CVT/SCTQ CVT CVT/SCT  CVT/SCTQ
40 255(-61)  2.00(-23) 4.15(-22) 502(-58)  4.49(-22) 1.02(-20)
50 927(-50)  3.03(-:23) 4.15(-22) 4.03(47)  6.83(-22) 1.02(-20)
60  4.89(-42)  4.55(-23) 4.15(-22) 778(-40)  1.04(-21) 1.03(-20)
80  233(:32)  L16(-22) 423(-22) 1.06(-30)  2.84(-21) 1.06(-20)
100 157(-26)  4.96(-22) 6.99(-22) 342(25)  1.35(-20) 1.80(-20)
120 125(22)  9.83(-21) 1.01(-20) 1.65(21)  2.37(-19) 2.25(-19)
200 9.07(-15)  2.18(-14) 9.75(-15) 457(-14)  1.53(-13) 1.04(-13)
250  225(-12)  3.75(-12) 1.94(-12) 837(-12)  1.80(-11) 111(-1D)
300 9.06(-11)  1.27(-10) 7.63(-11) 279-100  4.75(-10) 2.92(-10)
400  9.64(-9) 1.16(-8) 8.24(-9) 2.34(-8) 3.16(-8) 2.12(-8)
500  1.64(-7) 1.83(-7) 1.43(-7) 3.45(-7) 4.19¢-7) 3.03(-7)
600  1.09(-6) 1.18(-6) 9.72(-7) 2.10(-6) 241(-6) 1.86(-6)
800  1.20(-5) 1.25(-5) 1.09(-5) 2.07(-5) 2.23(-5) 1.84(-5)
1000 5.08(-5) 5.23(-5) 4.71¢-5) 8.26(-5) 8.68(-5) 7.49(-5)

To evaluate the effect of tunneling on this process, we calculate the ratio of the diffusion

coefficients calculated including tunneling to those calculated without tunneling (i.e., CVT/SCT
to CVT and CVT/SCTQ to CVT). This quantity is given in Table 5. At high temperatures,
tunneling does not contribute significantly to the diffusion coefficient. But as the temperature -

decreases, tunneling becomes increasingly more important, and at temperatures < 100 K,

virtually the entire process proceeds by tunneling.




Table 4. CVT, CVT/SCT, and CVT/SCTQ diffusion coefficients (cm2/s) for D on Cu(100)
surfaces with Np = 0 and Np = 56 at a variety of temperatures. Numbers in parentheses are
powers of 10.

N,=0 N, = 56
T (K) CVT CVT/SCT  CVT/SCTQ CVT CVT/SCT  CVT/SCTQ
40 1.92(-63) 4.19(-33) 5.18(-32) 2.34(-60) 2.49(-31) 3.05(-30)
50 1.86(-51) 7.25(-33) 5.20(-32) 5.50(-49) 439(-31) 3.06(-30)
60  1.88(-43) 1.55(-32) 5.52(-32) 2.18(-41) 9.78(-31) 3.34(-30)
80  2.02(-33) 9.72(-31) 1.04(-30) 7.28(-32) 6.90(-29) 8.40(-29)
100 223(:27) 1.73(-26) 1.78(-26) 3.99(-26) 5.89(-25) 7.91(-25)
120 2.45(-23) 7.76(-23) 6.25(-23) 2.77(-22) 1.50(-21) 2.53(21)
200 343(-15) 473(-15) 3.24(-15) 1.56(-14) 2.81(-14) 5.61(-14)
250  1.01(-12) 1.23(-12) 9.11(-13) 3.50(-12) 5.12(-12) 9.65(-12)
300 4.60(-11) 5.24(-11) 4.11(-11) 1.33(-10) 1.73(-10) 3.06(-10)
400  5.58(-9) 6.00(-9) 5.05(-9) 1.30(-8) 1.51(-8) 2.37(-8)
500  1OL-D) 1.06(-7) 9.27(-8) 2.07¢-7) 2.28(-7) 3.32(-7)
600 6537  725(7) 6.53(-7) 1.33(-6) 1.42(-6) 1.96(-6)
800  8.02(-6) 8.15(-6) 7.55(-6) 1.37(-5) 1.42(-5) 1.81(-5)
1000 3.48(-5) 3.51(-5) 3.30(-5) 5.60(-5) 5.74(-5) 6.96(-5)

Table 5. Ratio of tunneling to non-tunneling diffusion coefficients
for H on a moving (N, = 56) Cu(100) surface. Numbers in
parentheses are powers of 10. '

CVT/SCT CVT/SCTQ
TK) CVT CVT
40 8.94(35) 2.0337)
50 1.69(25) 2.53(26)
60 1.34(18) 1.32(19)
80 2.68(9) 1.00(10)
100 3.95(4) 5.26(4)
120 1.442) 136(2)
200 335 2.28
250 2.15 1.33
300 1.70 1.05
400 135 0.91
500 1.21 0.88
600 1.15 0.89
800 1.07 0.89

1000 1.05 0.91
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Figure 3. Arrhenius plot for H diffusion on Cu(100) Solid lines are for Nj = 0, dashed lines are for Np = 56.
CVT, CVT/SCT, and CVT/SCTQ diffusion coefficients represented by circles, squares, and diamonds,

respectively.

Tables 3 and 4 show that the CVT/SCTQ diffusion coefficient becomes independent of T
at very low temperatures. This effect is also shown in the Arrhenius plot of the data in Figure
3. For both rigid and moving surfaces, the plot of the diffusion coefficient with quantized
reactant states levels off at approximately 90 K. To quantify the analysis, we next define two
temperatures of interest on the Arrhenius plot.

First, we note that the Arrhenius plot of the CVT/SCTQ diffusion coefficients in Figure 3
consists largely of two approximately linear regions (7 above approximately 120 K and T below
approximately 90 K). An intermediate transition region (7 between 90 K and 120 K) of high
curvature joins the two linear regions. We define the transition temperature, T, as the point of
maximum curvature (analytically, the point of maximum second derivative) of this intermediate
transition region on the Arrhenius plot.

We will next derive an approximate analytic formula for Ty, We begin by noting that at
low temperatures, the denominators of Egs. (4b) and (5b) closely approach unity, and by using
Egs. (6) and (12) and the convention that VMEp(sR) =0, the ratio of partition functions in Eq.
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e oxn| - L [yG[.CVT _ LCVT R
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where Tjow denotes a low temperature.

Next, we approximate the transmission coefficient at low temperature by assuming that
only states below Vz‘f‘G make a significant contribution to the diffusion coefficient (i.e., that the
contribution due to the states in the energy continuum is negligible). This approximation, along
with Egs. (12) and (13), allows us to write the ground-state transmission coefficient, Eq. (10),
as

S CE

M R\ (24
G[ CVT ~R ¥ pG( R E,
exp Va'lsy ' (T, }hc E P~ E, Jexp| — J
kg Tiow {kBTlow a[ ( IOW)] B ( V) (

v=0 kg Tiow

where the denominator of Eq. (10) has been integrated directly. Substituting Egs. (12) and (23)
into Eq. (3) and then substituting Egs. (3) and (24) into Eq. (7) gives the following expression
for the low-temperature rate constant:

R M G/{ R —VRCTR
K(Tiow) = 0c0F Y, PO(E Jexp| ———2- (25)
v=0 kpT1ow
and, from Eq. (23),
2 M =R
D(Tiow) = 2 ocoR 3 PG(E§)exp(M} (26)
4 - kpTiow
v=0

For the H/Cu system, in the harmonic approximation of Eq. (12), there are a total of 4 states
below sz‘G. Therefore, M = 3 in Egs. (25) and (26). For the D/Cu system, M = 5. Equation
(25) is also the expression for the tunneling rate constant, kgyp (Tlow)~

Using Eq. (26) as the expression for the low temperature diffusion coefficient, the point
of maximum curvature of the Arrhenius plot (Figure 3) occurs when

d3[D(T,
___[_ﬁ_loigl =0 Q7
d (1/ T]OW ) Tow=Ty
Making a parabolic approximation to the vibrationally adiabatic potential energy curve,?>
assuming that E, the activation energy for the diffusion of the adatom on the surface, is much

larger than hcﬁ?, and solving for T in Eq. (27) yields the following expression for the

transition temperature:93
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(28)

where "ﬁi

Egs. (25) and (26) only differ by a constant, the same result would be obtained if Eq. (25) were
used in the third derivative in Eq. (27). ’
A second temperature of interest on the Arrhenius plot is the point at which the diffusion

| is the magnitude of the imaginary frequency at the top of the potential barrier. Since

coefficient levels off and becomes visually temperature independent. At very low temperatures,
the v = 0 (ground-state) term in Egs. (25) and (26) dominates the other (excited-state) terms,
and the expression for the overall rate constant approaches the low-temperature limit,

—RpG({ R
k(T)'T_)E)—) ocV3 P (EO ) (29)
or
A _R,G(oR -
D(T) =55 O<TF P (E§) (30)
4 T
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Figure 4. Logarithm to the base 10 of the contribution to the rate constant of each quantized state with energy

below V:‘G versus inverse temperature for H diffusion on Cu(100) with N, = 56.
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In Figure 4, the logarithm to the base 10 of the contribution to the overall rate constant of
each of the quantized states for the moving (N, = 56) surface is plotted using the same abscissa
as was used for the Arrhenius plot in Figure 3. Note that the contribution of the ground state is
independent of temperature, and is, in fact, the low-temperature limit to the rate constant given
in Eq. (29). At roughly 90 K (the temperature at which the Arrhenius plot levels off), the
contribution of the ground state is approximately one order of magnitude greater than the
contribution of the first excited state, and it is several orders of magnitude greater than the
contributions of the higher excited states (see Figure 4). As a result, we empirically define a
level-off temperature, T, as the temperature at which the ground-state contribution to the rate
constant is greater than the first excited state contribution by one order of magnitude. Making
the same approximations that led to Eq. (28) then gives the following expression for the
level-off temperature:

=R
Tp = ’“‘”3 . 3D

l*l

The precise values of the transition temperature and the level-off temperature are

kg| 27 +1n(10)

dependent upon their definitions. However, the definitions given above are reasonable. It can
be shown?3 that when the VO is parabolic [which is a reasonably valid approximation93:95 and
was used to derive Eqgs. (28) and (31)], then the transition temperature, Eq. (28), corresponds
to the temperature at which all states contribute to the rate constant equally. For H on Cu(100)
with Np = 56, 6:? =983 cml. Using coordinates scaled to a mass & of 1 amu, we fit the Vf

curve to a parabola from s =-13 Atos=13 A, where s& = -17 A, and we determined the

magnitude of the imaginary frequency, Bil, from the second derivative of this curve, i.e.,

/)
|—i| Zm{dz:i/sG /’L]z G2

This yields IB*I = 458 cm-l. Then, Egs. (28) and (31) yield Ty = 105 K and Ty =90 K,
both of which are visually consistent with the Arrhenius plot in Figure 3, indicating that the
assumptions made in the derivations are valid. ‘

We note that computing |D il from the second derivative of Vygp(s) at its maximum
instead of from a global fit to V,”(s) would have yielded 461 cm-1, resulting in about the same
level of agreement.

We can also make comparisons to previous results obtained with other theoretical
methods, in particular to the calculations of Sun and Voth37, who used path integral transition
state theory (PI-TST) and to those of Valone, Voter, and Dolll9, who used transition state
theory with quantum effective potentials (TST-QEP). We note that these comparisons suffer
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from some serious limitations. First, previous work?® has suggested that the embedded clusters
of lattice atoms used in the PI-TST and TST-QEP studies were too small to yield converged rate
constants. Second, both studies used the experimental lattice constant, rather than the one
energetically optimized one for the assumed potential energy function, to create the Cu lattices.
The effects of this have been discussed earlier. Third, the previous studies were limited to a
smaller range of temperatures. Despite these limitations, the comparisons are interesting.

In Table 6, the present calculated diffusion coefficients are compared to PI-TST and
TST-QEP results. All values listed in this table were calculated using a specially constructed
lattice with the experimental lattice constant, Ry = 3.61 A, to duplicate the system used in the
PI-TST and TST-QEP calculations. In general, the agreement is very good for temperatures
greater than or equal to 120 K, but as the temperature is lowered below this, the CVT/SCQT
results predict a faster onset of the temperature independence of the diffusion coefficient than do
the PI-TST and TST-QEP results. Table 6 also gives the ratios of the diffusion coefficients
calculated for a moving surface to those calculated for a rigid surface. The number of moving
lattice atoms, Nmoving, is 56 for the CVT/SCTQ results, 30 for the PI-TST results, and 36 (all
surface layer atoms) for the TST-QEP results. These values are also in good agreement for
temperatures greater than or equal to 120 K, and the disagreement of the 7 = 100 K results can
be traced to the faster onset of temperature independence seen in the CVT/SCTQ results.

Table 6. Comparisons of CVT/SCT and CVT/SCQT results to PI-TST results.37 and TST-
QEP results.19 The CVT results in this table were calculated using the experimental lattice
constant of 3.61 A to get a better comparison between the two methods. The number of atoms in
the moving lattice, Nmoving, is 56 for the CVT results, 30 for the PI-TST results, and 36 (all
surface atoms) for the TST-QEP results. Numbers in parentheses are powers of 10.

TK) CVT/SCT  CVT/SCQT PI-TST TST-QEP
D(N,, = 0) 100 2.2(-23) 3.2(-23) 1.2(-24) 3.5(-25)

120 4.8(:22) 5.2(-22) 3.1(:22)

200 3.3(-15) 43(-15) 6.9(-15) 1.0(-14)

300 3.3(-11) 3.7(-11) 6.9¢-11) 7.9¢-11)
D(Nmoving YDV, = 0) 100 17 8.0 42 74

120 21 18 18

200 7.7 3.0 5.5 24

300 4.1 23 33 1.9

We now consider the results obtained using the energetically minimized lattice constant.
The onset of temperature independence can be seen in the CVT/SCTQ results shown in Figure
3. Figure 5 shows the logarithm to the base 10 of the diffusion coefficient ratio described
above. The ratios are plotted for the CVT, CVT/SCT, and CVT/SCTQ levels of theory and
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compared to the PI-TST and TST-QEP results which are given in Table 6. The CVT ratios
logarithmically increase with decreasing temperature, and the CVT/SCT and CVT/SCQT ratios
level off at approximately 110 K. The PI-TST and TST-QEP ratios, however, do not level off,
and this may be a consequence of the use of the non-energetically optimized lattice constant in
the latter studies (see previous discussion). Finally, we again stress that all of these
comparisons must be interpreted with the disclaimers discussed above. For more extensive
comparisons of CVT/SCT, PI-TST, and TST-QEP results, we refer readers to Ref. 29.
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Figure 5. Logarithm to the base 10 of the ratio of diffusion coefficients for H on moving Cu(100) to those
for H on rigid Cu(100). CVT, CVT/SCT, and CVT/SCTQ are represented by solid circles, squares, and
diamonds, respectively. PI-TST and TST-QEP results are represented by hollow circles and squares, respectively.
Nmoving = 56 for CVT results, 30 for PI-TST results, and 36 (all surface atoms) for TST-QEP results.

Finally, we evaluate the importance of variational optimization of the dividing surface.
Conventional TST places a dividing surface orthogonal to the MEP passing through the saddle
point, which in a classical world would yield an upper bound to the rate constant. We can
evaluate the importance of variational placement of the dividing surface to minimize the classical

rate constant by comparing the conventional TST rate constant [i.e., the rate constant determined
CVT

with s = 0 in Eq. (1)] to the CVT rate constant [i.e., the rate constant determined with s = s,
in Eq. (1)]. At all temperatures for both H and D on moving Cu(100) with Nj = 56, the
conventional TST rate constant is exactly equal to the CVT rate constant, indicating that
variational optimization of the dividing surface is not important for these systems. For the rigid

(Np = 0) system, variational optimization makes a slight difference in the calculated rate
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constants. The effects are greater at lower temperatures and are greater for H than for D.
Specifically, variational optimization decreases the H/Cu diffusion coefficient by 34% and 5% at
40 K and 1000 K, respectively. The D/Cu diffusion coefficient is decreased by 8% and 4% at
these temperatures upon variational optimization.

3.2. H/Ni(100)

For a system with only one non-metal atom, the total potential energy is estimated by the
embedded atom method (EAM)96:97 ag

V=3 EE)+E T o(R)| 33

J#i

In this expression, the summations over i and j are over all atoms in the system, F; (ﬁ,-) is the
energy required to embed atom i into a vacancy at a point where the electron density due to all
other atoms in the system is p;, ¢; is a pair potential, and R;j is the internuclear distance
between atoms i and j. The expressions for the electron densities are given in other
references.93,96

The energy to embed a hydrogen atom at a point where the density is p is given by%8
Fy(p) = anpexp(-Pup) (34)

and that to embed a nickel atom is given by98

Apexp(—ap)+ Bp? exp(—Bp) + Cpexp(—7p), 0<p<p.—A
5 4 3
Fni(p)=14sp-pc) +Bilp=p.)" +Cslp~pc) +D;,  pc—A<p<p. (35
Dy, Pe<p

where the coefficients have been adjusted for the present work to agree as closely as possible
with experimental results as discussed below. The repulsive pair potential, ¢;;, is defined as

J

CZ(R;\Z:(R;
-l

where C is a constant, and Z(Rij) is the effective charge for the atom defined by Foiles et al.,
as99

Z(Ry)= ZO(I + ﬁR’/)exp(—aR) (37)
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where the parameters Zy, ¢, 3, and y have again been determined to match experiment. The
cutoffs for the electron density contributions and the pair potential are established by a
smoothing function which has been defined previously.100

The work presented here used EAM parameter set 5 (EAMS). For a complete description
of and discussion of the evolution of this parameter set, see reference 93. For the Ni(100)
surface, EAMS accurately reproduces experimental hydrogen vibrational frequencies and
surface binding energies. Table 7 lists the surface binding energies, hydrogen-nickel
equilibrium interatomic distances, hydrogen distances above the surface plane, and hydrogen
vibrational frequencies calculated by EAMS and compares them to literature values
quantities.38,101-111 The EAMS potential also accurately reproduces the bulk values!12-116 of
the monovacancy formation energy (EII{/) and the sublimation energy (Es). The energetically
minimized bulk lattice constant, R, for EAMS is 3.5211 A, fit to the experimental value of
3.52 A.92 These three bulk quantities are compared to experiment in Table 8.

Ni, like Cu, crystallizes as an FCC structure, and the picture in Figure 1 applies here as
well as to Cu. Diffusion coefficients for H on Ni(100) at the CVT, CVT/SCT, and CVT/SCTQ
levels are given in Table 9 for the rigid (Np = 0) and moving (N, = 36) Ni(100) surfaces.

As for Cu(100), the CVT/SCTQ diffusion coefficients for Ni(100) level off at low T and
become independent of temperature. Figure 6 is an Arrhenius plot of the CVT/SCTQ diffusion
coefficients. The plot also shows experimental results performed at a variety of surface
coverages varying from 6 = 0.12 to 1.0 and the results of one other theoretical study. George
et al.50 and Mullins et al.57 measured the diffusion coefficient with laser-induced thermal
desorption at several temperatures between 211 and 283 K. Lin and Gomer#9 used the field
emission fluctuation technique,#! and Zhu and co-workers00:61 ysed linear optical diffraction
techniques to examine this process at lower temperatures (between 75 and 200 K). Mattsson et
al.38 studied the process with path integral techniques with an EAM potential function and used
numerical Monte Carlo techniques to evaluate the path integrals. Their study covered a
temperature range down to 25 K, but to preserve the resolution of the Arrhenius plot and enable
adequate visual comparison to other results, only results down to 40 K are shown in Figure 6.

Diffusion coefficients are plotted for the George et al.,5Y Mullins et al.,>” and Zhu et al.50
experiments and for the calculations of Mattsson et al..38 For the Lee et al.6! experiments, the
data were fit to an Arrhenius form,

D(T) =D, exp(_;;‘j) (38)

where R is the gas constant, and E, is the activation energy, which can be determined from Eq.
(38) as

o[ DD}

Ea(T) =-R d(l/T)

(39)
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Table 7. Binding energies (kcal/mol), hydrogen-nickel interatomic distance A, hydrogen height above the surface (A), and hydrogen vibrational

frequencies (cm-1) calculated in this study [for a rigid (N » = 0) and moving (N, = 36) Ni(100) surface] compared to experimental and calculated
values from the literature. In the literature column, experimental values are listed first, followed by calculated values in parentheses.

Binding energy Rpni Ry_surface Frequencies
Site N,=0 N,=36 Lit N,=0 N,=36 Lit N,=0 N,=36 Lit N,=0 N,=36 Lit
H(a) 64.73 64.76 644 £ 0.6 1.84 1.83 1.82-1.84b 0.53 0.50 0.5+0.1b 767 753 589¢
64.6 £ 0.9¢ 1.9-2.0¢ 0.9-1.0¢ 597a
62)f (1.78)8 0.3)8 621h
(62)t .8y (0.32)i (532)k
(69)8 a.9nf 0.8)1 (588)8
(79) (1.92) 613)f
637)
(686)!
(726))
517 524 387¢
(645)2
fa 60.73 60.76  (63)% 1.56 1.56 0.94 0.93 1277 1270 (1428)8
a7 438 449
290i 292i

aChristmann, Schober, Ertl, and Neumann, Ref. 102
“Mértensson, Nyberg, and Andersson, Ref. 111

¢Rieder and Wilsch, Ref. 106

&Upton and Goddard, Ref. 104

iNgrskov, Ref. 105

kK arlsson, Méartensson, Andersson, and Nordlander, Ref. 110

bStensgaard and Jakobsen (D/Ni), Ref. 108
dL_apujoulade and Neil, Ref. 101

fNordlander, Holloway, and Ngrskov, Ref. 107
hAnderson, Ref. 103

JUmrigar and Wilkins, Ref. 109

IMattsson, Engberg, and Wahnstrom, Ref. 38



Table 8. EAMS5 calculated values for bulk lattice quantities
compared to experiment.

Quantity EAMS experiment
monovacancy formation energy 1.66 eV 1.39-1.70 eV?
sublimation energy 443 eV 4.45 eVb

bulk lattice constant 3.5211 A 3.52 Ac

a Refs. 112-115

b Ref. 116
¢ Ref. 92

Table 9. CVT, CVT/SCT, and CVT/SCQT diffusion coefficients (cm?/s) for H on rigid
(Np = 0) and moving (Np =36) Ni(100) surfaces at a variety of temperatures. Numbers in

parentheses are powers of 10.

N, =0 N, =36
T.(K) CVT CVI/SCT __ CVT/SCQT CVT CVT/SCT___ CVT/SCQT
40 343(-25)  267C15) 1.88(-14) 301(:25)  259¢-15)  1.83(-14)
50 738(21)  529¢15)  192(14) 6.68(:21)  524(15)  1.88¢-14)
60 580(-18)  131¢-14)  2.39¢-14) 547¢-18)  131¢14)  236(-14)
80 267(-14)  341¢13)  341¢13) 254(-14)  344¢-13)  3.49¢-13)
100 437¢-12)  1.55¢-11) 1.21(¢-11) 426(-12)  155(11)  126(-11)
120 135-10)  3.01¢-10)  2.03¢-10) 134(-10) . 3.02¢10)  2.12¢-10)
200 1.49(-7) 1.92¢-7) 1.35(-7) 1.51¢-7) 1.97¢-7) 1.40¢-7)
250 1.28(-6) 1.50(-6) 1.14(-6) 1.31(-6) 1.54(-6) 1.17-6)
300 5.43(-6) 6.08(-6) 4.85(-6) 5.58(-6) 6.25(-6) 5.01(-6)
400 3.35(-5) 3.57(-5) 3.04(-5) 3.46(-5) 3.67(-5) 3.13(-5)
500 9.97(-5) 1.04(-4) 9.16(-5) 1.03(4) 1.07(4) 9.47(-5)
600 2.06(-4) 2.11(-4) 1.91(-4) 2.12(4) 2.19(-4) 1.98(-4)
800 5.04(4) 5.12(4) 4.76(-4) 5.22(4) 530(4)  4.93(4)
1000 8.59(4) 8.68(-4) 8.20(-4) 8.90(4) 8.99(-4) 8.49(-4)

Then Eq. (38) yields the pre-exponential factor, Dy(T). Notice that both E,(T) and Dy(T) are
treated as functions of temperature. The two-part linear plot for this data in Figure 6 is derived
from the pre-exponential factors and activation energies in two temperature ranges (120-160 K
and 160-200 K for hydrogen, and 120-170 K and 170-200 K for deuterium) reported in Ref.
61. For the Lin and Gomer#® experiments, the data in the high-temperature region of the plot in
Figure 6 is derived from the pre-exponential factor and activation energy of the data in that
region, and the data in the low-temperature region is estimated from the fit for this data in Ref.

49. The current results are calculated in the low-coverage single-adatom limit.
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Figure 6. Arrhenius plot for H diffusion on Ni(100) compared to experimnental measurements and

theoretical calculations.

Our results are in excellent agreement with those of George er al.50 and Mullins ez al.57
and with the high-temperature results of Mattsson er al.,38 and they are in reasonable agreement
with those of Lin and Gomer.4® All low-temperature measurements and calculations (i.e., all
except the Mullins er al.,57 and George er al.3" experiments) showed a leveling off of the
Arrhenius plot similar to that which was discussed in the previous section for H on Cu(100).

Lin and Gomer?#? find the transition temperature to occur at about 100 K, and Zhu and
co-workers00.61 find it to occur at approximately 160 K. The results of the path integral studies
by Mattsson er ul.38 showed the transition temperature to occur at about 40 K, somewhat low in
comparison to experiment, and this transition temperature is not shown in Figure 6. Using Eq.
VO

(31) and a parabolic fit to the curve as a function of s in mass-scaled coordinates with

4 =1 amu from s=-12 Atos =12 A, where sK =-L5 A, we calculate ‘Eil for this

process to be 288 cm-l. Using this value with Eq. (28) yields a transition temperature, Ty = 66
K, which is, to our knowledge, the only theoretical approximation to predict a transition
temperature so close to the experimentally reported values.

We note that computing IT)*I from the second derivative of Vpgp(s) at its maximum
instead of from a global fit to VaG (s) would have yielded 292 cm'! (see Table 7), resulting in

the same level of agreement.
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Figure 7. Logarithm to the base 10 of contributions to the rate constant of each quantized state with energy

below Vf(" versus inverse temperature for H diffusion on Ni(100) with N, = 36.

We analyze the level-off regime by examining the individual contributions to the rate
constant of each of the quantized states below V‘{\G as we did with the Cu(100) studies. In
Figure 7, the logarithm of the contributions to the rate constant of each of the quantized states is
plotted against the same abscissa used in the Arrhenius plot in Figure 6. Again we find that the
onset of visual temperature independence on the Arrhenius plot coincides with the temperature at
which the ground-state contribution to the rate constant is greater than the first excited state
contribution to the rate constant by about one order of magnitude. Lin and Gomer4? find the
level-off temperature to coincide with the transition temperature at about 100 K. Zhu and
co-workers90:01 do not observe a level-off temperature in their experiments. They present
results for the diffusion coefficient measured at temperatures as low as 120 K, at which point
the diffusion coefficient is still not visually temperature independent, therefore we can only state
that the level-off temperature in these experiments is below 120 K. Mattsson et al.38 found the
level-off temperature to coincide with the transition temperature at 40 K. For this process, we
calculate 6; =524 cm-! with the EAMS potential surface. Using Eq. (31) with this quantity
o

and given above yields a level-off temperature of T = 55 K. This temperature is

consistent with the Arrhenius plot, justifying the model of Eq. (31) for this process.
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We also make one very important remark about these results in terms of Eq. (20). Lin and
Gomer# and Zhu and co-workers®0:6! suggest that the transition temperature marks a shift
from activated over-barrier diffusion to non-activated tunneling diffusion. This hypothesis is
based on the observation that at the transition temperature, the activation energy shifts
dramatically from a high value, which is close to the assumed classical barrier height of the
reaction, to a much lower value, indicating that at this temperature, tunneling begins to dominate
the reaction. To determine whether this is an accurate interpretation of the transition
temperature, we calculated kg, (7) from Eq. (25) [M = 2 for H diffusion on Ni(100)] where
the energy eigenstates, E(I)(, EIR, and F/§ were determined by Eq. (12) (53}2 = 524 cm! for
this process with N, = 36 as mentioned above), and the transmission probabilities, PG(EE(),
were calculated in the SCTQ approximation as 1.87 x 10-12, 1.36 x 107, and 3.06 x 10-3, for
v =0, 1, and 2, respectively. At the transition temperature, Ty = 66 K, kyp is equal to
2.44 x 102, and ke, (Ty ) +kover (Tyr ) is equal to 2.51 x 102, which yields Fyy, (T ) = 0.97
from Eq. (20). This indicates that at the transition temperature, 97% of the process still occurs
by a tunneling mechanism. Similar calculations at temperatures above Ty indicate that tunneling
still dominates well above the transition temperature. For example, the tunneling contributes
about 55% of the hops when T = 125 K. Therefore, we conclude that the transition temperature
does not mark the shift from over-barrier activated diffusion to tunneling diffusion, but rather it
indicates the point at which excited-state contribution to the rate constant becomes negligible
compared to the ground-state contribution.

The data in Figure 6 are fit to an Arrhenius form, Egs. (38) and (39), and the
pre-exponential factors and activation energies for various temperature ranges are extracted from
the plot and compared to experiment in Table 10. As expected, our activation energies and pre-
exponential factors agree very well with those of Mullins et al.>7 and of George et al.50 in the
temperature ranges of those experiments. Only below the transition temperatures of the other
low-temperature experiments do our calculations disagree significantly with any of the
experimental values. This is, of course, simply an artifact of various locations of the transition
temperature. That is, since our calculated transition temperature is lower than the experimental
ones, our low-temperature diffusion coefficients are also lower than experiment, because our
diffusion coefficients continue to decrease after the experimental ones have leveled off.

Finally, we note that variational optimization of the dividing surface is not important for
the H/Ni(100) surface diffusion process. For all temperatures studied and for both N, = 0 and
Np = 36, we find sSVT = 0, so the CVT rate constant is precisely equal to the conventional

TST rate constant.
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Table 10. Activation energies (Ej,, kcal/mol) and pre-exponential factors
(Do, cm?/s) for surface diffusion of H on Ni(100) with 36 moving Ni atoms
for several temperature ranges compared to experimental values. Powers of
10 in parentheses.

E, Dy

T(X) CVT/SCTQ Experiment CVT/SCTQ  Experiment
40-50 0.011 2.09 (-14)
55-65 0.41 8.36 (-13)
70-80 1.9 6.79 (-8)
85-95 29 2.64 (-5)
100-140 35 3.22 5.33(-4) 8.(-6)*
120-170 3.8 1.2b 1.66 (-3) 1.5 (-9
156-161 39 3.5¢ 2.69 (-3) 8. (-6)°
170-200 4.1 3.5b 4.28 (-3) 1.1(-6)P
211-263 4.3 35+0.34 6.17 (-3) 2.5 (-3)d
223-283 4.3 4 +0.5¢ 6.55 (-3) 4.5 (-3)¢
300400 4.4 7.64 (-3)

aLin and Gomer, Ref. 49

bLee, Zhu, Deng, and Linke, Ref. 61

¢Zhu, Lee, Wong, and Linke, Ref. 60
dMullins, Roop, Costello, and White, Ref. 57
eGeorge, DeSantolo, and Hall, Ref. 50

4. CONCLUDING REMARKS

In this chapter, we reviewed canonical variational transition state theory with the small-
curvature tunneling approximation with quantized reactant states. We presented results obtained
by such calculations for the diffusion of H and D on Cu(100) and for diffusion of H on
Ni(100). Where applicable, we compared the calculated diffusion coefficients to experimental
values and to other theoretical calculations, and in most cases we found very close agreement.
We showed that at very low temperatures, the diffusion coefficient loses its temperature
dependence for both interfaces, and this is in agreement with three sets of experimental results
on the Ni(100) surface. We showed that this onset of temperature independence occurs when
the ground-state contribution to the diffusion coefficient is greater than that of the first excited
state by about one order of magnitude.

We also showed that the EAMS5 embedded atom parameter set for the H on Ni system

gives very good agreement with experimentally determined energetics, H-Ni interatomic

distances, and vibrational frequencies for the (100) surface as well as with quantities defining
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the lattice itself (monovacancy formation energy, sublimation energy, and bulk lattice constant).
Current and future work is being aimed at fitting a new embedded atom parameter set so that
these experimental quantities are also accurately reproduced for the Ni(111) crystal face without
damaging current agreement with the (100) face and bulk quantities. An accurate potential
energy surface for the H/Ni system (gas-solid interface and bulk) will allow us to study
subsurface processes!!7 and eventually to carry out calculations for other reactions such as the
Ni(111) surface catalyzed reaction of H with methyl radical.
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