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Quantum Mechanical
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i. Introduction

The most popular approach to the quantum mechanical treatment of inelastic col-
lisions is the close coupling method, which converts the partial differential
Schrodinger equation with scattering boundary conditions into a set of coupled
ordinary differential equations with nonhomogeneous boundary conditions.!-3
These equations may be solved by boundary value methods* or propagation tech-
niques, and the latter may be subdivided into so-called approximate solution
approaches#’7 and invariant embedding (also called approximate-potential)
approaches.’!t The R matrix propagation algorithm!l-14 is a stable and efficient
invariant embedding algorithm for the solution of the close coupling equations for
molecular collisions, and the present chapter provides an introduction to the com-
puter program RMPROP which employs this method for molecular collisions.

RMPROP is a program for the solution of the close coupling formulation of the
Schrodinger equation as applied to atomic and molecular collisions. It obtains the
solution by propagation of Wigner’s derivative matrix, called the R matrix, from
small to large values of the scattering radial coordinate. It requires information

University of Minnesota.

* University of Minnesota and NASA Ames Research Center.

749



Modern Techniques
in
Computational Chemistry:
MOTECC-91

Edited by

Enrico Clementi

international Business Machines Corporation
Kingston, New York 12401, U.S.A.

s
anl

ESCOM
Leiden 1991



A Iﬁ

750 Modern Techniques in Computational Chemistry: MOTECC-91

about the asymptotic states of the collision partners and their interaction potential
function, and it yields the scattering (S) matrix or elements of this matrix, from
which all physical observables of a fixed-energy collision process may be calcu-
lated by the researcher. The program may also be used to calculate specific state-
to-state cross sections if desired. In the current version of the program,
calculations may be performed for multiple energies, multiple potential function
approximations, or multiple stepsizes in a single run, or information may be saved
and re-used to perform calculations at one or more additional energies at a later
date. Additionally, if desired, the program may be stopped and continued at a
later date to propagate the solution to a larger value of the scattering radial coor-
dinate.

The user must supply a subprogram that gives matrix elements of the interaction
potential in the basis of the close coupling problem as a function of the center-of-
mass separation of the collision partners. The basis functions are labelled by a full
set of quantum numbers of the asymptotically separated collision partners, and
each basis function defines a “channel”. The program is distributed with a test
suite which contains several examples of such potential subprograms and solutions
of the resulting close coupling equations with various numbers of channels. The
potential functions in the test suite may readily be modified to perform calcu-
lations with other potential energy functions for a wide variety of problems. In
the examples in the test suite the close coupling basis consists of simultaneous.
eigenfunctions of the total angular momentum, the orbital angular momentum of
relative translational motion, and the noninteracting Hamiltonians of the sepa-
rated collision partners.

Some limitations on the program are that rearrangement collisions cannot be
treated, and at least one of the collision partners must be neutral. In addition, if
one of the collision partners is an electron, so that there is no strong repulsive
potential when the collision partners are at zero separation, the orbital angular
momentum quantum number must be nonzero in all channels.

The program solves the close coupling equations by R matrix propagation,!i-14
which means that the scattering radial coordinate r, which equals the distance
between the centers of mass of the collision partners, is divided into sectors, the R
matrix is propagated locally across each sector, and the local R matrices are com-
bined into a global R matrix, which is propagated towards large r. This algorithm
has the advantage that the stepsize, i.e., the sector width, may be increased in
regions where the interaction potential is relatively constant, so that very few steps
are required in the large-r region. The major computational steps are as follows.
In each sector the close coupling equations in terms of the interaction potential
between the collision partners are transformed to a local, sector-dependent basis
by diagonalizing the interaction potential matrix at the center of the sector. The
transformed equations are solved under the assumption that the potential function
does not vary across the sector. These solutions to the transformed equations and
the derivatives of these solutions with respect to the center-of-mass separation (Or



“hapter 17. RMPROP 751

formation equivalent to the solutions and their derivatives) are matched to the
.axt sector at the boundary so that a sector R matrix propagating the solution
wrough a sector and across one of its boundaries is defined. When the sector R
satrices are combined, a global R matrix, which propagates the solutions from
he strong-interaction region at small r to the asymptotic region at large r, is
btained. The solutions in the asymptotic region are matched to scattering
:oundary conditions from which an S matrix is calculated. The user should
2peat the calculation to converge it with respect to increasing the size of the close
oupling basis, decreasing the sector widths, and increasing the distance at large r
¢ which propagation is stopped, as well as with respect to any numerical parame-
ars associated with the interaction potential function.

+Tuch of the operation of the program and practical instructions for its use are
dven in an on-line manual which is distributed with the code. (By “on-line
nanual” we mean an ASCII documentation file.) The on-line manual also con-
-ains a test suite which may be used to check whether the program is performing
sorrectly in a new environment or on a new machine. The purpose of the present
Article is to summarize the theoretical and algorithmic background of the code.

2. Close Coupling Theory
Oy

This section provides an overview of the dynamical theory underlying the compu-
tational procedures. As described in the introduction, RMPROP may be used to
calculate scattering matrix elements or state-to-state transition probabilities for
atom-molecule or molecule-molecule collisions, and may be used for electron-
atom or electron-molecule collisions as well when the scattering electron has
nonzero orbital angular momentum. In all cases, the underlying athematics is the
same; the treatment of the problem involves the reduction of the time-independent
Schrodinger equation for the system to a set of coupled ordinary differential
equations, the close coupling equations, and the subsequent solution of these
equations.

2.1 Coupled channels equations

In the treatment which follows, we consider the collision of two molecules A and
B. for greatest generality. The program is atomic units, although the equations in
this chapter are valid in any (consistent) set of unit.

All physical information concerned with a collision of molecule A and molecule B
may be derived from the scattering wave function ¥, (r, x, E) which is a solution
of the Schrodinger equation

H¥p, = E¥n, M
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The vector r connects the center of mass of A and the center of mass of B,

represents all internal coordinates of the collision partners, E is the total energy8

n, denotes the collection of quantum numbers needed to uniquely identify adf}

initial channel, and H is the system Hamiltonian:
)

— 2
= _2—[1— Vi + Hip(x) + V(x, 1)

where u is the reduced mass of relative translational motion, V? is the Laplacian®
with respect to r, Hy, is the “internal Hamiltonian”, defined as the sum of the @
Hamiltonians of the isolated A and B molecules, and V(x, r) is the interactionj
potential function which vanishes in the large-r limit. It is convenient to separate §
V? into its radial_and angular parts and to partition Hj, into an “easily”§
diagonalized part Hlm (this may be just H;,) and the remainder AH,,. We the
combine the angular portion of — (A*/2u)VZ with Hml to form the pnmmve
Hamiltonian, H?, so that equation (1) becomes

2
Ho=h {L (7 i)} +H(x 1) + 9(x. 1)

2u |2 or or
where
0 2 1
H = r2 + Hip(x)
ur
and PO

3(x, 1) = V(x, r) + AH;;,,(x)

and where £2/2ur? is the quantum mechanical operator for the centrifugal poten-
tial of the relative translational motion of A with respect to B.

To determine W, we expand it in terms of simultaneous matrix eigenvectors of
H;,, and #? defined by

J d?f AxX5 (x, DHp X, (%, T) = 0,0En 6)
(23X, 1) = H2 (¢ 0 + DXy(x, T) )
and

f df\f AxX, (%, £)X, (%, F) = 6., , @®)
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are §_, is the Kronecker delta, and equation (8) is an orthonormality condition.
these equations, T is the unit vector which has the same direction as r, and n
i m are collective quantum numbers identifying channels. In terms of the above
;¢ coupling basis, the wave function expansion is

N
¥ (6,1, E) = O Xp(% D)fany(t, B) ©)

n=1
2re each term in this expansion is associated with a different channel. Substi-

ing equation (9) into equation (1), multiplying through by rX*(x, r), and inte-
iting over x and ¥ yields

N
2 W2~
{ Lt )+ Sm}fmno + D Vaun(©)foun,

2u g’ 2ur = (10)
= Efmn,(T, B), m=1,2,..N
iere
V() = J. dx J dr X, (x, HV(x, 1)X,(x, T). (11

“quations (10) are called the close coupling equations (or the coupled channels
equations), and they may be written in the form

2
_d7 f(r, E) = D(r, E){(r, E) (12)
dr

where a bold symbol denotes a matrix (except for x, which denotes a set of coor-
dinates, and r, which denotes a unit vector). The elements of f are the fang of
equation (9), where the rows of f (labelled by “n” there) refer to different channels
in which the radial translational wave function is represented, and the columns of
f (labelled by “n,” there) refer to different sets of initial quantum numbers. The
size of N, the number of terms in equation (9), is found by allowing one term for
each channel of interest, and including sufficient additional terms so that the
expansion (9) will be a mathematically accurate representation of the wave func-
tion. For the present treatment (diatom-diatom collisions) the quantum numbers
included in n or n, are v, and v,, which are the vibrational quantum numbers of
the two molecules, j, and j,, which are the internal rotational quantum numbers of
the two molecules, j,,, which is the quantum number associated with the vector
sum of the angular momenta associated with j, and j,, # (which may be different
for different n and is therefore called #, above), which is the orbital angular
momentum for relative motion of the collision partners, J and M, which are the
total angular momentum and its projection onto a laboratory-fixed Z-axis, parity,
¢, which is (= 1)t +i2+4, and #, which is the symmetry operator for interchange of
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the two indistinguishable molecules. The quantum number # is relevant only if the
colliding molecules are identical.ls E

The quantum numbers J, M, #, and { are “good” quantum numbers, so that the
matrix D is block diagonal in them. If we use simultaneous eigenfunctions of their
respective operators as our eigenfunctions, we partially uncouple the close cou-
pling equations into independent sub-blocks, and this can reduce the computa-
tional effort for solution. In the applications included in the test suite we do in
fact follow this procedure, and furthermore we only consider the blocks specified
by n ={ =+ 1 (the program does not have this restriction), while allowing J and
M to vary according to the problem.

The elements of D are given by

2u Loy +1) ~ f
Dyn(r, E) = ';lz_vmn(r) + 5mn|:_n_%_ N kg‘] (13) 4

r
where

K= h— (B - &) / (14)

where D is real and symmetric, and ]~(n is called the primitive wave number. The
channels are ordered so that k2 > k2 if and only if n > m.

2.2. Asymptotic boundary conditions N

In order to treat the large-r boundary conditions on equation (12) we must define
a transformation which diagonalizes D at large r. (This is similar to the
diagonalization at finite r used in the R matrix propagation technique, which we
discuss further in section 3.1.) At any r we may define functions

-:é
4
#

N
Zpn%1) = ) Upya (X, %, F) (15)
n=1
such that
N
" Uka@Diglts EYUjn(®) = 8pun[Aimar, )T (16)
k, 1=1

It is noteworthy that in equation (13), the total energy E appears only on the
diagonal of D, due to the Kronecker delta multiplying the term k2 which contains
E. Because the E appears only on the diagonal of D, the eigenvalues A2 depend
on E, but the eigenvectors (which are the columns of U) do not. (This property is
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i when performing calculations at multiple energies so that second and subse-
-t energies do not require as much work.) If we use the Z_, as new basis func-
s (which are called adiabatic basis functions!}16,17), the expansion of the wave
ction becomes

N
Poo, 1, B) = O Zn(%, mn(, E) (17)

m=1

cre the gma, are related to the fm,,o by the application of the umtary transforma-
1 U of equation (15). The terms in equation (17), like the ones in equation (9),
: called channels. At small r, the program requires regular boundary conditions
the origin:
Emn ~00 l<nm<N (18)
r—
't large r, there is more than one equivalent form of the boundary conditions to

¢ close coupling equations. The program allows the choice of sin€/cosine
sundary conditions:

¢
3oy SID [km(E)r - ‘;n :| 1 <m<P°

£
B + amn(E) Ccos l:km(E)r — r;’l! :l (19)

Fmn €xp [kn(E)r] + apa(E) exp [ — kp(E)r] P°+1<m<N

or of matching to Ricatti-Bessel functions:

Omole [ Km(E) 1] — amq(E)ny [1kp(E) 1] 1<m<P°
€mn r:oo (20)
0.0 exp [1kyn(B) 1] + apy(E)exp [ — |ky(E)lr] P°+1<m<N

where j, and h, are the Ricatti-Bessel functions:
jex) = _72r_ Jer12(x)

@
09 = (= 1 (Z5) 3_p 0

The coefficient b in (19) is arbitrary, k, is an asymptotic wave number defined by
k, =r§m | 40 (m E), (22)

and P is defined as the number of open channels in the basis, where an open
channel is defined as one with positive k2. Channels which are not “open” are said
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to be “closed”. If H;,, is the same as I?Iim, than k, equals |]z,,! and the boundary
conditions (19) and (20) apply to the f,, as well as to the g,,,.

The final result of the calculation is the P° x P° unitary scattering matrix S
defined by

S =1 +iK(E)] [1 — iK(E)]™" (23a)

"or the transition matrix defined by

T=S-1 (23b)
where 1 is the unit matrix, i = — 1, and K is the real symmetric P° x P° reactance
matrix with elements

K,m =k, 2y k?  1<n,m<P° (24)

Note that a,, may be calculated using either (19) or (20), but if the calculation is
converged the results will be the same from either equation.

One may then calculate all desired physical observables from the scattering matrix
or transition matrix by standard formulas.

3. R Matrix Propagation Algorithm

The R matrix propagation algorithm was presented originally by Light and
Walker!! for colinear atom-diatom collisions, and it has been generalized éy
various workers, including those authors. Our own generalization,!2-14.16-19 a5 used
in RMPROP, is based directly on their original paper and is reviewed below.

3.1. Sector adiabatic basis functions

In R matrix propagation the close coupling equations expressed as in equation
(12) are solved by subdividing the coordinate r into some number N; of sectors,
with sector midpoints rf) and sector widths h® such that

. . (i+1) M
I'(l+l) =r£1) + [h +h'']

g 5 25)

In sector i, it is convenient to expand the wave function ¥, in terms of sector-
dependent functions defined by

N
9, 1) = Z T X, %8 1<m<p? (26)
n=|

SAL
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N x P® rectangular matrix T® is comprised of the first P® columns of the
N matrix U®, where U® diagonalizes D at the center of sector i:

N

> UPD 0, YU, = 60 20E®) ] @7
k,k'=1

wave function W, is expressed in terms of the new functions Z8 by
pl)
¥ox, 1, B) =4 Y 200 Ny, B), (28)

m=1

:re the g® solve the equation (see also section 3.2 below)

2 . . .
40, B) = L9, B)gr, B) 29)
dr
icre
N . . .
LB = ) TaDw@ BT, 1<nm<p? (30)
k, k'=1

o that the channels of equation (28) are uncoupled at the center of sector i. The
new radial functions g® are related to the functions f by

e (o, B) = Z TO 6.0 E) 1<mn<p? G1)

3.2. Sector propagation matrix

We consider first the small-r boundary conditions, equation (18). In principle we
should have rl — (h(/2) equal to zero. However for atom-molecule and molecule-
molecule collisions or for electron scattering when none of the 7, in eq. (13) is
zero, one finds that
Loty + 1
Vm,(r)+%>>5 all nr<<go (32)
ur

where ¢ is some (small) distance at which the collision partners begin to repel
strongly or have a high centrifugal potential. This implies that for decreasing r, all
fua(r), and therefore all g, (r), decrease rapidly and are negligible for r less than
some finite nonzero value of r. We choose such a nonzero value of r to be r{ and
therefore avoid the work involved in propagating the solution to the equations
over a region in which it is already known to be essentially zero. Equally impor-



758 Modern Techniques in Computational Chemistry: MOTECC-91

tant the homogeneous boundary condition at small r allows us to simplify the
propagation, as discussed below eq. (57).

We begin the propagation with N channels, that is, with P() = N. At large r,
because of equation (19), f,, for m > P° decays rapidly to zero. We can reduce the
computational expense of solution by allowing P® to decrease in this region
according to some given criterion.!9 In order to simplify the algorithm, we also
decrease the number of channels by no more than one per sector, that is P+
must equal PO or P& — 1. We also impose the constraint PO > Pe for all (i). We
define the 2P® x 2P® sector propagator P® by

GYE) = PYE)GY(E), (33)

where the 2P® x 2P® matrix G® is given by

. (@)
(g’(‘)(r, E)

where g’(r,E) denotes (dg®/dr), and the subscripts L and R denote a quantity
evaluated at the left and right hand sides of a sector, respectively:

‘ : @
R (35)
L ) L
= 2o (36)
We partition the PO(E) of equation (33) so that é
@) pd)
i P
piE) = (Tl 72 37)
pY pl

and so that the matrices P{)(E) are all square.

We use the first-order Magnus method!1,20-22 for O®(E). The g® are the 2P line-
arly independent solution vectors to equation (29). Since each column g® of G is
‘linearly independent, we can write a propagation equation similar to (33) for each
of the g, using the partitioned PY(E) of equation (37):

) _ (00 9 (o
A )T O pl) A1) (38)
gL Py Py / \g'r

Following the work of Pechukas and Light,? we use exponential operators to
translate the g¥(r) and g’®(r) across a sector of width h® centered at r = ri:
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@i (@
PO(B) = exp [ B ( O 20 %—)] (39)
r which, to third order in the stepsize, B is given by

: 0 N (92 /00 0
B=—h(‘)<L(i)(r£i), E) 0> - h12 < L (()rc,E) —0(:0, E)) (@)

+ Order[(h(i))s]

nere

W = — ) (1)

nd where

I, @i
00 E) = -——dgr - @)

vith the LO defined by equation (30). In the first Magnus approximation, the
:;econd and higher terms in (40) are neglected. This is tantamount to setting the
Jerivative in (42) equal to zero so that the matrix L® is approximated by the diag-
onal matrix [A®(E)]? throughout sector (i). Therefore the first Magnus
propagator would be the exact propagator when the interaction matrix is inde-
pendent of r in sector (i), and for this reason it converges to the exact result as the
sector width is decreased. Substituting equation (30) into equations (39) and (40)
and using equation (37), one obtains for the PY(E) using the first Magnus approx-
imation:

dymcosh [ ~n®19@)| ] 1 19°(E) > 0

P(i)(E) _ P(i)(E) _ ol @)
[PYE) Jom =[P ®) Jom o cos[—h(l)|1gL(E)|], 1@ 8) < 0
R R T RN
2" (B) Jom = , _
T )t )| sin [ 00| i0@)| ] lw ® <0
0’ gy (p0) M’
[PYE) |om = o E)(P ) Fan (B) >0 (45)

"2 . 2
—10E) (PY) s 1E) <0
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3.3. Stepsize determination

Examination of equation (40) reveals that the error of the first Magnus
propagator is proportional to the size of the (neglected) second term in the series,
which is

@3 dLY
(h®) -

so it is desirable to choose the stepsize to minimize the error. In order to do this
one should choose h® so that the effect of the second- and higher-order terms is
negligible. However, it is required to know h® before one may calculate L® for
the sector with r =%, so that strictly speaking, second-order terms in a sector
cannot be calculated before completing that sector. It is therefore necessary to
estimate an error in order to decide on a stepsize. The estimated error in sector
(i + 1) is given by

N 1/2

dp¥

a+1° | 1 i o\2

eiror oc h! N zl i (46)
J:

Since one has not yet evaluated DG+) when computing the stepsize at sector
(i+1), one must estimate the numerical derivative using D® and D¢, This trans-
lates into the algorithm

N : -1/6

el LS (p® _ pi-by2
0+ pJEZ -Df™)
j=1

) _ (=)

(° ¢ ) @né

max

where € and h,_,, are input parameters to the program.

Another approach may be used, and that is to use a constant stepsize throughout
the propagation. This technique, however, negates one of the most useful features
of the R matrix propagation algorithm, which is the ability to take large stepsizes
in regions where the interaction potential is not sensitive to the center-of-mass
separation of the collision partners, and which allows one to greatly reduce the
number of steps taken in the asymptotic region of a calculation. In addition, care
must be exercised that final results are converged with respect to the fixed
stepsize, so that the total time necessary to obtain converged results with a fixed
stepsize as compared to using variable stepsizes is much greater than just the ratio
of the variable and fixed stepsizes themselves.

The program also allows using fixed stepsizes and using one value of £ in one
interval and another in another. (See the on-line manual.) For many problems, a
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.ed stepsize at small r followed by one or two regions with E-controlled stepsizes
ihe most stable and efficient procedure.

L. Propagation across sector boundaries

e continuity of the functions g® of equation (29) across sector boundaries may
- expressed by

gbV(E) = (i — 1, gl (®) . (48)

gk VE) =1 - 1,0z PE) (49)
here the overlap matrix t(i — 1, 1) is defined by

N
famli = L) = Y T VTR, 1<n,m<P® (50)
k=1

“herefore, when P41 does not equal P® only the upper left P® x P® portion of
-1 is used to calculate gf). We now define the sector R matrix r) by

ek V) _(r‘f’(E) rS’(E)) (g'?{”(E)) .
(i) L0 ® gl
® ) e @) \-ed®
f(E) = DE) 'E) (52)
(®) ()

where the rl) matrices are PO x P&. The r{) are expressed in terms of the PO(E)
and the (i — 1, 1) as follows:

(€)= — LiPP®) [PP® |6 - 1,1 (53)
() =« - 1) [PYE) | (54)
PE) = [ PY®) | 'Te - 1,977 (55)
E = [PV® [P E) (56)

It should be noted that P{ is diagonal so that its inversion is not time-consuming.

The global R matrix which spans from the left-hand side of the first sector to the
right-hand side of sector (i) is defined by
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e’ ®)) _(RP®) RO®) ([ el'®) .
®) \RY® RY®))\-gP®)
where the R matrices are all square. It can be shown that if

2uE
[P > > 22

for all n, then RY) and R{) are approximately zero and that all scattering informa-

tion (2, | <m,n<P° can be determined solely from R{M. (In the present

version of the program we impose this condition as a requirement, which may be
easily satisifed if the propagation is begun sufficiently far enough inside the
repulsive potential barrier. This poses no restriction for atom-atom, atom-
molecule, and molecule-molecule scattering, but it does mean that the code is
inapplicable, as already stated, to electron scattering problems in which one or
more channels has a zero value for . We note for completeness though that we

encountered no difficulty in treating such cases with earlier, more general versions

of the code.!6.18) The matrix R{ only depends on R§~" and the rf):

RYE) =@ - B [R{E® +®)]'PE) 6

and

RYV(E) = if(E) (9)
The program however has an option, chosen by setting the value of the input var-
iable NPROP equal to 2, which allows it to calculate the R{ treatingethe rf)
implicitly instead of explicitly. If this option is chosen, then one less matrix inver-
sion must be performed at each step, and for “later date second energy runs”
(Section 3.7) the [z(i —1,1)]~' need not be written to disk, which decreases
storage requirements.

3.5. Reduction of the number of closed channels propagated in the large-r
region

As explained in the derivation of the close coupling equations, the expansion of
the wave function often includes a number of terms which are energetically inac-
cessible to the system. These are needed for convergence at small r, but at large
separations, they do little more than slow down the computation. In this section
we consider the conditions under which the number of channels propagated can
be reduced' from P to P°, where P° is the number of open channels in the asymp-
totically large-r region, without introducing errors in the reactance matrix K or
scattering matrix S. In practice we only drop one channel per sector, and we only
attempt to drop channels in the large-r region. We consider the case where only
RY(E) is propagated, and we allow dropping channels only with the constraint

P s I TP
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¢t PO(E) > P°(E). Before proceeding, it will be convenient to introduce the fol-
_ing convention for partitioning a P x P matrix into quadrants according to
sther open and/or closed channels are linked there:

00 oc
Y= (zco ¥c<:> (60)

-re the superscript oo identifies the P° x P° submatrix containing Y,, for
“m < P° and 1 <n <P°, ie., the matrix elements linking open channels to
-n channels, the superscript oc identifies the P° x (P — P°) submatrix containing
. for 1 <m, P° and P° <n <P, i.e., the matrix elements linking open channels
closed channels, the superscript co identifies the (P — P°) x P° submatrix con-
aing the Y, for PP<m <P and 1 <n<P° and the superscript cc identifies
: (P — P?) x (P — P°) submatrix containing Y, for PP<m <P and P°<n<P,
. the matrix elements linking closed channels to closed channels. To justify
spping the P — P° closed channels from propagation in sector (i — 1), we must
ow that to accurately obtain R{°°(E) from R§-"V°°(E) does not require any infor-
ation involving the P — P° closed channels. (We only require the oo submatrix
RW(E) because the submatrices involving closed channels are not required in
e asymptotic analysis to obtain the reactance matrix). Using equation (58) and
ie notation for partitioned matrices, R{)*°(E) can be written as

“Doo(g) — f)°(E) — e{°°EB)[8°°6 — 1, 1, E)Y°°(B) + 8% — 1., Eyry*°]

. : ; (61)
— i) 86 — 1, i, E)rY°(E) + 876 — 1, i, E)ry*]
where
s - 1,1, B) = [R{TVE) + @) (62)

N

In our calculations both z(i — 1,1) and z7!'(i — 1, i) tend to a unit matrix in the
large-r limit, so equation (53) reduces to

lim o) = PPE)[PYE) | (63)

r; —oo

i.e.. it tends to a diagonal matrix. Additionally, it can be shown!? that R{'(E)
tends to a block-diagonal matrix in the large-r limit. Therefore, for large r,

Jlim S~ 1% =[RETE) + rfoE) | (64)
I'L — 00

lim S —1,i)° =0 (65)
’(L” —o0 N

lim  SG—1,i)°=0° (66)

D e
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lim 86— 1,0)% = [REVS(E) + rloee) ]! 6n °

i’ —oo

Substituting these into (61) yields
im  RYC®E) = rP°E) - rP°E)S( — 1, i, E){°°(E)
— r{)°°B)S°Gi — 1, i, By (E)

Since, at asymptotically large r, T(i —1, i) approaches a unit matrix, equations (54)
and (55) show that

lim €)= PE)T (69)
1) 500
Therefore, if
Jim rY)°(E) = 0, ) (70)
rﬁ —00

then equations (68) and (69) show that the calculation of R{°(E) is independent
of information about the P — P° closed channels. Consequently, if all of the ele-
ments of r{(E) which involve a particular closed channel are sufficiently small,
that channel can be dropped from propagation and the R§+V°°(E), and therefore
the reactance matrix will still be accurately calculated.

The way the program implements the consequences of the above argument is as
follows. If r is less than some input value read in by the program, or if P9 has
already been reduced to P°, Pi+ js set to P, Otherwise the program checks to
see whether

|(rg))np(i)| < EPSRED and l(rg))l,(i)nl < EPSRED, ¢

where EPSRED is a variable set by the user (a typical value would be 1.0 x 10-3).
If both inequalities are satisfied, than PG+ is set to Pt — 1; otherwise, P+ = P,

3.6. Asymptotic reordering of channels

Before applying the boundary conditions of equations (19) or (20) to g® it is
sometimes convenient to reorder the channels in g®, and sometimes it becomes
necessary to make linear combinations of the channels in g®. It is convenient to
reorder the channels if Voua(r) falls off faster than r-2. This occurs because for
large r it is approximately true that
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Lla+ 1)~
Dnm(rs E) = 5nml:—'r'l—_n3'_ - kﬁ(E):l (71

i. depending on r and r’, it may be possible that D,(r, E) > D_,(r, E) and
(", E) < D_,(r", E). Since the subprogram which calculates T(i) and [A9]?
iers the eigenvalues from lowest to highest, the relative positions of channels n
i m may change in g when going from r to r’.

is necessary to make new linear combinations of the channels if there exist
renerate channels, i.e., channels with [18 71> = [49 1> and n # m. This is because
: matrix diagonalization routine will mix those states. Degenerate channels can
cur in the calculations at very large r where the term [£(¢ + 1)]/(2ur?) is negli-
sle since there are channels with the same k, but different values of £,. (Addi-
snat accidental degeneracies would occur if one used the harmonic oscillator and
rid-rotor approximations to calculate asymptotic energies, but the use of these is
st recommended.) In order to sort out these effects, we make the transformation
» new radial functions h® defined by

P(l)
¢ (1, B) = Zz T 0o, B), 1<sm<PY 1<n<pP? (12
=lk=1

vhere U° diagonalizes H;,, in the X, basis, and has the channels in some fixed
order that does not mix degenerate channels. This equation can be written in

matrix notation as

eV, By = rin"un, B) (73)
We then define a new global R matrix satisfying
(hﬁ’) _(RORY (h"L".> -
) "\ &) v
where
R = (1Ope)-IRO[TO[ Ty (75)
= (10g°)~'RO[TO T (76)
= (T0u) - 'RO[TOTye (77)
R(‘) (T(‘)U) 1R(l [T(l ]T (78)

The matrix a whose elements appear in equation (19) is determined by
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a(E) = lim a"(E) (19)
1—0c0
where

a%E) =[ - FE) + ﬁi{’(E)H(‘)(E)]“[B(”(E) +RYE®GY® ] @0

and
_ N
: cos | k(E)rl) — —2 I<m<P°
Fg)n(E) = Omn - " . 2 . (81)
exp [ - km(E)rg) P° <m < P?
0 sin _km(E)r{{) 2
BY (E) = 6,0 i A 2 ] A (82)
exp [k ()l P°<m <P?
B . £om |
, sin | ky(E)rl) — —2— 1<m<P°
HonE) =Kpdpeq L~ 2 ] A (83)
exp [k (E)rl P°<m<p?
_ -
. cos | ky,(B)r) — —m— 1<m<P°
GI(‘:))II(E) = Kkndmn | . 2 _ (84)
exp [ - km(E)rg)] P° <m < p¥
A s 1 1<m<P° 85
nm — nmb POSmSP(i) ( )

&
If it is true that for a given M > P, (R¥),., = (R{),,, = 0 for all n < P°, channel
m is not required in the calculation of al),, 1 <n, m < P°. This program deter-
mines the smallest m > P°, called P, such that

| (RE)om

where EPSDR is some small number (a typical value is 1.0 x 10-3), and then uses
the upper left P9 x P9 subblock of R{(E) to calculate a®.

< EPSDR for all n < P°,

<EPSDR and  |(RY),

S
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7. Single/multiple energy runs

westigation of equation (13) shows that the total energy E appears only as a
:ultiple of the unit matrix, so that the matrices T® are independent of the total
aergy, and the eigenvalues A0’(E) at a new energy are easily related to those at
1¢ old energy:
2 2en], 24E —E)
[ ®] =[]+ L (86)

hZ

“his fact may be used to save computer time for multiple-energy runs by reusing
he A9 and 1(i — 1,1). Saving these variables makes the calculation of the
" (), T®, and (i — 1,i) unnecessary for second and subsequent energies and
.ffords significant reductions in computer time. The possibility of these savings is
e of the many attractive characteristics of the present algorithm. The drawback,
aowever, is a corresponding increase in storage requirements to save the tempo-
-ary values in these arrays. There are two ways in which the present program
‘mplements the second-energy calculations. In the first, which is associated with
the logical variable LTYPE2 = .FALSE. in the program, the calculations for a
siven energy are taken to completion before the calculation for the second energy
begins, and to do this as efficiently as possible requires the storage of the PO x P®
matrices 7(i — 1, 1) and [t(i — 1, 1)} for each sector over which the solutions are
propagated, and storage of information about the original total energy, angular
momentum, and basis set. Since the total number of sectors can number in the
hundreds, this method requires a great deal of storage when P® is large; we there-
fore do not recommend the first method for routine usage. Because the propa-
gation at the first energy must be taken to completion before the propagation at
the second energy may be begun, the second energy runs performed in this fashion
are referred to as “later date” second-energy runs. These runs are governed by the
value of the input variable IROWS read in from FORTRAN unit 5. As it is gen-
erally more efficient to do LTYPE2 = .TRUE. (simultaneous) second-energy
runs, only a brief description of the later-date second-energy-run option will be
given. In order to prepare for a later-date second-energy run one must set IROWS
= 1. Information needed for a restart run will be written to FORTRAN units 8
and 14. In order to do a later-date run using this information, one sets the vari-
able IROWS = —1 and the variable NE (also found in FORTRAN UNIT 5) =
—2 [later-date second energy runs can only do one second energy]. The energies
are read in from FORTRAN unit 5; if IROWS = —1 the first energy read in will
be ignored.

The second method, which is associated with the logical variable LTYPE2 =
.TRUE. in the program, is to propagate all energies together, that is, the global R
matrix for sector (i) is calculated for all of the energies before the global R matrix
for sector (i + 1) is calculated for any of the energies. If there are fewer energies
than sectors (which is almost always the case) this will decrease the storage
requirements, since in this case the P® x P0 matrices (i — 1, i) and [z(i — 1,7
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must only be stored for the sector currently being propagated. The second method
is also the one used to enable simultaneous propagation of solutions for different
size basis sets. In order to do this type of multiple energy run, all of the energy
values for which computations are to be performed must be known in advance.
The input parameter NE in FORTRAN unit 5 should be set to the negative of the
number of different energies at which solutions are to be propagated, and the
input array E(NE) should contain these energy values. For example, if it were
desired to run three energies simultaneously, then NE should be set to —3, and
there should be three different energies supplied. It should also be noted that the
value of E required in the input file is in the total energy, which includes the
translational energy of the initial state and the internal energies, including zero
point energy, of the collision partners in that initial state. Further details on
values of input parameters required by the two types of multiple energy runs are
given in the discussion of multiple energy runs and INPUT/OUTPUT in the
on-line manual.

4. Program Structure

This section of the chapter gives an overview of the program structure and
describes program flow in a typical run. In addition, it explains some of the
options allowing “multiple runs” during a single execution.

4.1. Segmentation of program and flow chart

Roughly speaking, the calculations may be separated into six components. These
are listed in Table I below. It should be noted that components 5 (subroutine
GNSCAT) and 6 (“everything else™) take up the least time during a typical run:
subroutine GNSCAT is called at most several times during a run, andgthe
sundries in component 6 contain few large matrix operations. The two most com-
putationally costly tasks are usually component I, the calculation of the potential
function matrix elements, and component 2, the assembly and diagonalization of
the D matrix. Component 1 involves the computation of approximately N2 /2
multi-dimensional integrals, and component 2 contains matrix operations which
become proportional to N* as N grows large. Components 3 and 4 also contain
some N’ matrix operations, but are still not as expensive as 2.

Due to the computational expense of performing runs with large N, it is advisable
to take advantage of the feature of the R matrix propagation method which
allows one to perform runs at a second energy by re-using some of the matrices
from the first energy. The justification for this is discussed in Section 3.7, where
we describe how we do this in the program.

Figure 1 is a flow chart of the program. The roman numerals I-V in the flow
chart correspond to the components in the Table. The multiple-potential loop in
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‘able I. Components of the Program.

Component
Number Subroutine name(s) Purpose

I POT Calculation V), at r®

11 RMPROP, RS Assembly and diagonalization of D® to
obtain A0) and 70

I TAUMTS Calculation of (i — 1, i) and/or
[Td— 1,1

v RPROP Calculation R§) and Pé+V

A% GNSCAT Calculation of S from RY

VI Everything else

the flow chart encompasses the large loop from component I to the final check for
more sectors, but was excluded for clarity.

4.2. Restart options

The program contains a restart option: depending on the values of the input vari-
ables described below, the program can write restart information to disk after
every ISAVE sectors, where ISAVE is a variable read in by the program, and in a
subsequent execution read in this restart information to continue the propagation
from the point at which the restart file was written.

The restart option serves a twofold purpose. It is useful in case of a system crash
or shutdown in the middle of a run, because if the restart file is intact, the run can
be continued from the point of the last restart file and so less computer time will
have been lost. It is also handy in case of batch queue limits for CPU time, in
which case a run may be performed in blocks of ISAVE sectors (or a multiple
thereof).

In order to use the restart option, one must modify the input variables IREST
and [SAVE in FORTRAN unit 5. One should initially perform a run with IREST
= () and with ISAVE = 10 (for example). IREST tells the program that this run
is NOT itself a restart run, and so it should not look for the restart files. ISAVE
= 10 means that at sectors 10, 20, 30, etc., restart information will be written to
disk alternating between FORTRAN units 17 and 18. The reason that restart
information is written to two disk files is so that there will always be one set of
“good” restart information available: if a system crash occurs while restart infor-
mation is being written to one disk file then the program may still be restarted
(once the system is back up) from the other disk file. It should also be noted that
for runs with large numbers of channels that these files may be quite large: the
user should beware of excessive [/O charges or of filling up a disk with these files.

.
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Figure 1. Flow Chart of the RMPROP computer program.
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In order to restart a run from an existing disk restart file, there are two things to
be done. First, the value of IREST in the FORTRAN unit 5 for the run to be
restarted should be set to 17 or to 18. A nonzero value of IREST on input tells
the program that it should look for restart information, and the value of 17 or 18
tells the program which FORTRAN unit the restart information should be read
from (if IREST is nonzero and yet not 17 or 18, the program will seek for restart
information of FORTRAN unit 17 by default). Secondly, one should be sure that
the restart run is actually a continuation of the one which wrote the disk file. If
the current job is smaller (less channels, or smaller basis set) than the original,
then the final results will be meaningless; if the current job is larger, the program
will terminate with an END-OF-RECORD error message.

5. Vectorization

RMPROP is a very efficient program on a vector pipeline computer. Most of the
work is in vectorizable loops. Further discussion of this point is found in previous
papers. 14,23,24

Because of this high efficiency, RMPROP can be used to solve very large prob-
lems. For example, we have reported calculations with up to 1358 channels?5 for a
diatom-diatom scattering problem with long-range dipole-dipole coupling. In
unpublished work?¢ we have completed calculations on the same problem with up
to 1897 channels.

6. Concluding Remarks

RMPROP is a very general and efficient R matrix propagation code for solution
of the close coupling equations for molecular collisions. Over the years, various
earlier versions have been run successfully on a wide variety of computers. For the
present, first distributed version (version 1), we have made a formal test suite and
have successfully run it on an IBM 3090 600J computer under the AIX operating
system and on a Cray-2 computer under UNICOS, version 5.1.
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