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CHAPTER 14

Localized Basis Functions and Other Computational
Improvements in Variational Nonorthogonal Basis
Function Methods for Quantum Mechanical Scattering
Problems Involving Chemical Reactions™

David W. Schwenket
Donald G. Truhlar**

Abstract. In this paper we very briefly review the Generalized Newton Vari-
ational Principle for 3-dimensional quantum mechanical reactive scattering. Then
three techniques are described which improve the efficiency of the computations.
First we use the fact that the Hamiltonian is Hermitian to reduce the number of
integrals computed, and then we exploit the properties of localized basis functions
in order to eliminate redundant work in the integral evaluation. In addition we
suggest a new type of localized basis function with desirable properties. Finally
we show how partitioned matrices can be used with localized basis functions to
reduce the amount of work required to handle the complex boundary conditions.
The new techniques do not introduce any approximations into the calculations,
so they may be used to obtain converged solutions of the Schrodinger equation.

1. Introduction.

There are many approaches to solving multidimensional quantum mechani-
cal scattering problems. The most widely studied practical methods in physical
chemistry are based on writing the solution of the time-independent Schrédinger
equation with nonhomogeneous boundary conditions as an expansion over products
of unknown non-square-integrable radial relative translational functions and known
square-integrable internal-orbital functions {1,2]. This leads in the case of nonre-
active collisions to coupled ordinary differential equations for the radial functions,
and these are usually solved by propagation along the radial scattering coordinate
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[3]. In atomic and chemical physics this is usually called the close coupling method.
Each internal-orbital state function is called a channel, and the number of coupled
equations equals the number of coupled channels. In 1979 a workshop [4] was held
comparing most of the available specialized techniques for solving these equations.
In addition they were compared to a widely used, state-of-the-art, general-purpose
variable-order, variable-stepsize predictor-corrector (PC) algorithm [5]. Interest-
ingly, adding the computer times to solve four test cases shows that the PC algo-
rithm rated 15% out of 15 schemes tested, with a computer time 19 times greater
than the best specialized scheme. This showed the great utility of special methods
and the great progress achieved in developing highly accurate specialized techniques
for atomic and molecular collisions. ‘

The four trial problems used to compare algorithms in the 1979 workshop in-
volved 15-22 coupled channels [4]. With supercomputers and efficient vectorization
[6] and storage management {7] strategies, much larger single-arrangement problems
have been treated successfully, e.g., a four-body-problem with a realistic potential
function and 1358 coupled channels has been solved [8] by the technique discussed
above of propagation along a scattering coordinate, and a model problem involving
the scattering of a diatom by a corrugated crystal surface with 18711 channels has
been treated successfully [9] by a time propagation algorithm [10]. ‘

Rearrangement collisions, however, pose special difficulties. For example, we
will consider a rearrangement collision consisting of the reaction of an atom A with
a diatom BC': A scatters onto BC, a rearrangement (chemical reaction) occurs, and
AB scatters away from C, or AC scatters away from B; the solution also contains
terms and boundary conditions corresponding to A scattering nonreactively off BC.
To define a single propagation coordinate, we must either introduce special coordi-
nates that complicate the differential operators and the boundary conditions [11-
19), or one must introduce nonlocal potential operators that convert the differential
equations into integrodifferential equations [20-22]. Alternatively one can propa-
gate nonreactive-type equations in coordinates of each of the arrangements and then
match the subsolutions on internal boundaries [23,24]. Non-propagative methods
for rearrangement scattering have been developed to avoid these problems(10,25-
36]. In physical chemistry these have been especially widely employed for electron
scattering (e.g., electron-helium scattering in which the incident electron may ex-
change with either bound electron of helium). - Because of the essentially infinite
ratio of nuclear and electronic masses and the simplicity of the coulomb potential,
the coordinates and nonlocal potential operators both become particularly simple
for electron scattering. A variety of basis set techniques—which may be viewed as
nonorthogonal spectral methods, although not having “exponential convergence”—
has been developed and successfully applied to such problems (26-28,30-32,35,36].

Chemical reactions are harder to treat than electron scattering not only be-
cause the coordinate transformations and potential functions are more complicated
(potential functions for chemical reactions typically involve hundreds of lines of code
as contrasted to the simple coulomb potential that completely suffices for electron-
atom scattering in nonrelativistic problems), but also because the de Broglie wave-
lengths are smaller, i.e., there is more structure in the solutions. In the last few
years we and our collaborators have developed a variational nonorthogonal spectral
method for chemical reactions [37,38], and we have applied it to obtain converged
solutions to the time-independent Schrédinger equation with rearrangement scatter-
ing boundary conditions and up to 844 coupled channels [39]. Our method involves
a generalization of a variational principle [40-50] due originally to Newton, and
it involves expanding the reactive amplitude density [10,51,52] in a nonorthogonal
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basis set. Other basis set variational methods (38,53-60] based on the Schwinger
[35,38,53,61] or Kohn [27,30-32,54,58,62] variational principles and sharing many
attractive features in common with our approach have also been proposed recently.
All these approaches, as well as new nonvariational basis set techniques [10,63-66],
are very encouraging for improving the computational efficiency of nonorthogonal
spectral methods for the quantum dynamics of reactive scattering. The present
paper is concerned only with the approach based on the generalized Newton varia-
tional principle (GNVP). The theoretical formulation of the method [38] and some
computational improvements [67,68] are presented elsewhere. The present paper,
after a brief overview of the working equations, describes three additional compu-
tational improvements, including improved use of inherent symmetries and a new
more localized basis set.

The final variational equations in the method described here may be obtained
in several ways. They were originally derived by applying the GNVP to the problem
posed as a set of coupled Fredholm integral equations of the second kind [10,38,64].
(They can also be obtained from the formulation of the problem as coupled in-
tegrodifferential equations [20,21,65] or with a scattered wave or outgoing wave -
variational principle [69-72] based directly on the Schrédinger equation with non-
homogeneous boundary conditions.) There are many general techniques for solving
Fredholm integral equations of the second kind in a single variable {73]. Just as
the specialized techniques developed in physical chemistry for single-arrangement
scattering are much more efficient than general-purpose predictor-corrector algo-
rithms for coupled ordinary differential equations, we believe that the specialized
techniques developed for solving the coupled equations describing reactive scatter-
ing are also more efficient than general techniques developed previously for solving
coupled integral equations.

Spectral techniques are now widely employed for solutions of problems in fluid
dynamics [74-79]. The choice of basis functions in these applications is very critical,
and the same is true for treating reactive scattering. One possibility is to choose ba-
sis functions to minimize the number of nonzero weights in the quadratures leading
to a given matrix element; this kind of consideration leads to using, e.g., Lobatto
functions [58]. Another possibility is to choose the basis functions to allow more
efficient quadratures by using fast Fourier transforms or fast cosine transforms; the
latter can be accomplished, e.g., by using Chebyshev basis functions [79]. A third
possibility is to use basis functions that reduce the number of integrals and the time
to solve the final coupled linear equations; this has been our philosophy so far. In
the present work we discuss a new consideration, namely a choice of basis function
that minimizes the computational effort in obtaining the half-integrated Green’s
functions that enter the GNVP and in integrating over these functions.

2. Theory. '

First we outline the formalism of the basic calculations, and then the improve-
ments are described in detail.

2.1 General Equations.

We consider atom-diatom reactive scattering with three arrangements: a =1
denoting A + BC, a = 2 denoting B + AC, and a = 3 denoting C + AB. The
formalism and notation are the same as used previously [38,67]. The Schrédinger
equation is

(H - E)¥™ =0 1)

where H is the Hamiltonian, FE is the total energy, and ¥™ is the wave function
with complex nonhomogeneous boundary conditions corresponding to an incoming
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wave in channel n, and outgoing waves in all open channels. The wave function
determines the scattering matrix, a complex matrix of scattering amplitudes from
which all physical observables of the scattering process may be calculated. Although
the boundary conditions on the final solution are complex, to correspond to the
physical conditions, we form the solution to the problem in such a way that most
of the computations involve real quantities. The channel label n is a collective
index denoting arrangement o and internal quantum numbers specifying a channel
in that arrangement. The initial channel and initial arrangement (or—sometimes
below-—any special channel and its corresponding arrangement) are denoted n, and
a,, respectively. We use conservation of total angular momentum J, parity, and
arrangement symmetry, if present, to block diagonalize the problem, and all further
considerations refer to a single block of N coupled channels.
Equation (1) is rewritten in three different ways (o =1,2,3) as

(HP + VE — E)¥™ =0 (2)

where HD is called the distortion Hamiltonian. It contains the kinetic energy and
a part of the potential that only couples channels in the same arrangement (with

subblocks called distortion blocks), and V.S contains the rest of the potential. First
we define the regular solutions ¥™ of

(HD - Eygp™ =0 (3)

for various possible initial channels n, and initial arrangements a,, and we define
the principal value Green’s functions by

G = -h'Plu(E - HD)™ (4)

for all three arrangements. These are called the distorted waves and the distorted
. wave Green’s functions, respectively. Then we apply the GNVP to solve for the
remaining coupling due to the V. potentials. This is accomplished by expanding
the reactive amplitude density [38,64] in a square-integrable (£?) basis of functions
®3, with 8 = 1,2,..., M. Each basis function is a product of a radial translational

function t7fyn,(Ray), Where Rq, is the radial translational coordinate in arrange-

ment ag, and an internal-orbital function ¢zg corresponding to channel ng in this
arrangement. The GNVP then leads to a matrix equation for the scattering matrix
in which the matrix elements are integrals over V.C, G2, and G2VSGE sandwiched
between the various %™ and $g.

An important computational aspect of the resulting equations is that every
Green’s function always appears in an integrand multiplied by a basis function in
the same arrangement. Thus we never compute the Green’s functions themselves,
but only a set of functions representing the effect of integrating the Green’s functions
with the various basis functions. These integrals are called half-integrated Green’s
functions (HIGF's). The radial distorted waves and radial HIGFs are computed by a
finite difference boundary value method (FDBVM) [64,80], using an irregular mesh
that contains Gauss-Legendre quadrature nodes for all further quadratures of these
quantities as a sub-mesh [38]. This avoids the difficulties [81,82(} of integrating over
functions with discontinuous slopes.

B —
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Then the scattering matrix is given by [67]
Snn., = 60:,.0:. osnn. + Snn., (5)

where °S is the scattering matrix for the distortion potential, S is the correction
produced by the remainder of the potential, and e, is the arrangement associated
with channel n. (We ignore the notational complications due to the presence of
closed channels, for these details play no important role in the subsequent discus-

sion.) The correction to the scattering matrix due to the coupling potential is given
by

S =8B +BTC'B, (6)

where the matrices in Eq. (6) are given by
§B — AT;BA’ (7)
B =(B+XTK")A, 8)

and . .
C=C-BX-XTB8+XTD - X7kPX. (9)

Note that matrices are denoted by bold for Roman letters and by double underlines
for calligraphic letters. SZ and K? are distorted-wave Born-type [83] contributions
of the coupling potential to the scattering and reactance matrices, respectively; A is
the transformation which takes the regular distorted waves from real standing wave
boundary conditions to complex scattering matrix boundary conditions; X is the
transformation required to form the outgoing wave HIGF given the real function;

e Kn, = / dRa, Y A, Foni(Ba,) i, (Ba ), (10)
Bgn, = / IR, Y A0 Gpn(Ra) Of (Ba), (1)
Dog, = [ dRa,Tang, (Be M5y oy, (R (12)
Bup. = [ dBa, Y- A% Fone(Ba) 18, (Res), (13)
and "

Cﬁﬁo = / dRao Tbnp, (Rao )t::‘o ng, (Rao )
(14)
- / dRa, Y A%, Gon(Ra,)is,(Ra,).

A three-body system involves three internal coordinates, and these equations in-
volve the final (third) integration of the three-dimensional quadrature over these
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coordinates. The matrix element AJ;,  is one if channel n and channel n, are both
members of the same distortion block of arrangement a, and are zero otherwise,
(")f,‘:’;;o is the regular radial function for the distortion potential defined by n and n,
and satisfying real boundary conditions (i.e., it is one of the radial relative trans-
lational functions obtained by solving a set of close coupling equations for ™), 8,

is a specific basis function associated with arrangement «,, and g% is the radial

part of the real HIGF associated with the distortion block containing n and basis
function 8. The HIGF can be expressed as [38]

N (Ra) = j AR, Gumg (Bos BL) 1210 (BL), (15)

where n and f are both associated with the same arrangement «, and the radial
Green’s function is defined as

O f o n(Ra) Of3inn(Ry) Ra < R,

' Yy — a A%, Innt\{la n'nt'\{lg o

Inn (Ra’ch) ;Ann An n { (z)f::n”(Ra)(r)f:'n”(Rla) R, > R; ’ (16)
where (9f2 , is the irregular analog of (Vf ,. In addition the integrals Fnyn,,
G8n.s Tnn,, and T, are given by the expressions

f = En' Az:;’ ("') :’:t(Rao )e”'no(Rao)’ a= Qo; (17)
"o f dRa an zﬂ.' (r)fg'n(Rd)W,«?l?:o (Ra’ Rao ), Othel‘Wise,
g _ Zn' Az;n’gﬁﬂ(Rao)en'no(Rao% a = Qo (18)
Br. = JdR. Y, nanInig(Ra)Woie (Ras Ra, ), otherwise,
7.' = A;xt:l-g (r) ::n(Rao)’ a = ao; (19)
nn, f dRa En, A:n’ (r)f,?ln(Ra)B.:lan: (Ra, Rao), OtherWise,
and
To = Ag;no_(‘]ﬁ:ﬁ(Raa), a = Qo; 20
Pre =) [dR, T, A2 - 32 5(Ra)Bii: (Ray Ra,), otherwise. (20)

The integrals (17-20) contain the inner two quadratures of the three-dimensional
integration mentioned above. For integrations over functions defined in two different
arrangements, say « and a,, the quadratures are carried out in a coordinate system
consisting of Ry, Ra,, and the angle A,q, between the vector from the atom to
the diatom in arrangement o and the analogous vector in a,. The inner loop
involves integration over Aqq, and yields B> or C.i7° , from which we calculate
W [38]. The various middle loops are given in Egs. (17-20), and the various
outer loops are indicated in Egs. (10-14). Similarly enin,(Rs,) is defined as a two-
dimensional integral over internal coordinates orthogonal to R, when all functions
in the integrand are associated with the same arrangement a,. Further details of

o o AN Kl A RO B . R s
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the quantities in Eqs. (1-20) are not necessary for the discussion in this paper—see
Refs. [38,67] for full details. :

2.2 Hermitian Property of the Hamiltonian Operator.

Let us consider the integrals given by Egs. (17-20) for a triatomic system

where all arrangements are different. Now the matrices QB and C are symmetric

while B, B, and D are rectangular. For the symmetric matrices it is necessary to

just compute the lower triangle, i.e., we can restrict o < a,; thus only 3 of the
6 possible reactive arrangement pairs are required. However at first glance it may
seem that for the rectangular matrices it will be necessary to use all 6 of the reactive
arrangement pairs, but we now show that this is not so. That is, the rectangular
matrices can also be assembled from only the 3 reactive arrangement pairs required
for the symmetric matrices.

To derive the relation we require, it is useful to express the matrix elements of
the rectangular matrices in Dirac notation [38]:

Bgn, =< 83|GPUsc, Y™ >=< 85|GRU Y™ >, (21)
B, =< " U G2 |®g, >, (22)
and
Danp, =< ¥"|®p, >, (23)
where -
Uaa, = —(2u/B*) [ H — E + baa,(E — HD)), (24)
U = —(2u/h*)H - HY ], (25)

and g is the reduced mass. Now for inter-arrangement integrals, Unqo, is just

—(2u/K*)(H ~ E), which is Hermitian in Eq. (21) since the surface terms van-
ish; thus since Bgn, is real it can be written as

Bpn, =< "™ |Ua,aGg |85 > . (26)
Now we also know that [38]
Ua,oGE =UCD —1 4 64,0, (27)
thus for inter-arrangement matrix elements,
Bpn, =< ™ [UGE|®p > — < ™ |85 >, (28)

or

Bﬁnq = g'/'lcﬂ - Dnoﬁ' (29)

This has two consequences. First of all Eq. (9) can be rewritten as

& =C-BX - XB7 + X7D - X"KPX, (30)
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where 2_ is zero unless an intra-arrangement integral is involved, in which case it
is equal to D (see also Ref. [68]). Thus-there is no need to compute and store the

additional matrices B and D. This means that there are no integrals required for
the complex scattering matrix boundary conditions which are not also needed for
calculations which employ real reactance matrix boundary conditions. However this
is not the only advantage. If in calculating the integrals given by Eqs. (17-20), the
restriction a < ¢, is made, then there is enough information to calculate Bg,, for

a < a, and the matrix elements Bnﬁo and Dpg, for @ < a,. Then by using Eq.
(29), one can obtain Bg,, for a > ao.

Thus it is not necessary to evaluate the integrals (17-20) for @ > a,. This
is an important simplification because the calculation of these integrals of Egs.
(11-14) usually requires a substantial fraction of the whole time taken up by the
integral calculation. Thus for systems having no symmetry, this amounts to almost
a factor of 2 decrease in the work involved, since only 3 out of the 6 possible reactive
arrangement pairs are required. For systems having identical atoms this factor is
smaller; for systems of the type A + B, i.e., where B is the same kind of atom as
C, it is necessary only to perform 2 of the possible 3 unique reactive arrangement
pairs, while for A + A4, collisions, no savings above those already achieved by using
arrangement symmetry [67] are possible from this technique.

2.3 Localized Basis Functions.

In this section we show how the calculations simplify if t%,,,(Rq) is a localized
function. Although it is convenient numerically to bypass the calculation of the
irregular function in Eq. (16) and solve for the HIGFs directly, it is necessary to
consider the expressions (15-16) for the HIGF in terms of the regular and irregular
distorted waves and the basis functions in order to see the effect of localization.

In particular suppose that the basis function 17, .., is zero for R, < Rg and
R, > Rf,’ . Then the limits on the integral in Eq. (15) reduce from original 0 to oo
to the computationally more attractive Rg to Rfa’ . Thus if Ry < Rg , then in the
integral of Eq. (15) we will have R, < R!, for all R,,, and the HIGF will be equal to
a linear combination of the columns of the regular function. Similarly if R, > Rf,!,
the HIGF will be equal to a linear combination of the columns of the irregular
function. Now because of numerical difficulties, we wish to avoid calculating the
irregular function; however this is not difficult since we only need to know the form
of this function at large distances. Since the large R, boundary conditions of the
irregular function are known [38], one could generate this information by inward

integration, stopping before the solution becomes unreliable, or alternatively one
could use any other function which has the same large R, boundary conditions and

solves the same differential equations for Ry > ng' for all 8. Such an alternative

function can be constructed from the HIGFs for one basis function, and that is
what we do. We will order the basis functions so that 8 = 1,..., N correspond to

the basis functions which have the smallest values of RE for each ng. Note: N, the
nu;ilber of channels, is less than M, the number of basis functions. Thus we can
write
Zn' (r)f:n’(Ra)dz'sﬂa g’npo Ra < Rg,
Inpo(Ba) = § X dm(Ra)dils, A, Ra > RE (31)
9. (Ra) otherwise,
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where d2: 5, and dak 5. are proportiona.lity constants, §IV, is the HIGF having the

smallest value for R and g 9nﬂ., is the numerically generated function. The propor-
tionality constants for small R, can be evaluated via

nﬁ - npn/dR @ r?pn a)tmpﬂp(Ra) - (32)

if the irregular function is known, or more practically by forming the ratio of the
numerically determined HIGF and the regular distorted wave. We form the average

of the radial functions over several distances immediately prior to Rﬂ and then form

the ratio to obtain dgg . One difficulty with this procedure arises when distortion
potential blocks contain both open and closed channels. In this case, some of
the columns of (Mf are so small near the origin that it is not possible to obtain
an accurate inverse; then the procedure fails. This problem can be avoided by.
decoupling the open and closed channels in the distortion potential.

The proportionality constant for large R, can be determined by a numerical
ratio in a similar manner to the procedure for dgg or by solving

Z d nﬁ ’ (33)

where
e = A%y [ dRa O3Bty (R, (54)

and dZ,, corresponds to the integral for the basis function having the smallest value
for Ré’ . The integrals in Eq. (34) are also required for the large-R, boundary
conditions for the HIGFs [38].

Equa.tmn (31) has several consequences. First of all, it is clear that once ("f2 '

and Y, are known, it is only necessary to calculate and store the remaining HIGF's
in the ranges Rg to Rf,‘. In practice since we determine the bfyﬁo by solving an inho-
mogeneous form of the finite difference boundary value method (38,67] (FDBVM),
we can reduce the finite difference grid used for the regular function and the first
HIGF, which goes from RL ; to RS,N( ) to a grid which goes from Rf,l to just

beyond the maximum value of Rg. Because Rﬁ" N(F) is determined by the distance

where the potential becomes negligible, whereas the maximum value of Rg is deter-

mined by the distance where the difference between the potential and the distortion
potential becomes negligible, this can result in a considerable savings. The most
important consequence of Eq. (31) however, arises from applying it to the integrals
in Sect. 2.1.

There are two classes of integrals to consider. First of all there are the radial
integrals with one HIGF and no basis functions, which we will approximate by a
quadrature sum:

NEQ

I =Y M3,0), @)
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where
Mg, = wf 3 A%, Inte(Reai) MR, (36)
nl

w§ being a quadrature weight and M,,,,» some matrix function. The integrals falling
in this case are Ggn,, Tgn,, Bn,g (for which the transpose of Eq. (35) and following
are used), the intra-arrangement parts of Bgy,,, and the inter-arrangement parts
of Cgg,. It is useful to define a quantity analogous to M} gn called My f ot Which

differs by replacing the HIGF with the regular function. Then applymg Eq (31),
the integral becomes

;L

s
I(l) ZAn'nﬂ n’,BZ n.(z + Z Mgn(z)
i=i§+1 37
ne (37)

+zAn'nﬂ n’ﬁ Z 1’)]7

— ;L
!—-:ﬂ+1

where R, i is the largest quadrature point less than RS and ng is the largest

quadrature point less than RL (For the HIGF with the sma.llest Rﬁ , weset s zﬁ equal
to N®@.) It should be noted tha.t the quantities in the first sum must be calculated
anyway—for the list of integrals mentioned after Eq. (36), these correspond to Fpy,,-
Tonas ICf n Kfn , and Bgn,, respectively. Thus we see that the radial quadrature
points fall into three regions: those less than all ig where only quantities involving

the regular function need be accumulated, those greater than all Rf,’ where only
quantities involving the regular function and the HIGFs with the smallest value of
z'f,’ need to be accumulated, and points in the intermediate region where the sums
will include some number of HIGFs less than the full set.

Now consider the case when there are two HIGFs. Here the integral can be

written
NR9
2
I = 2 Mg (i), (38)
where
Mgg = 'LU Z Anlnﬁ nunp gn'ﬁ(Raz)Mn'n" (Rm)gnnp,(Rai)- (39)

The integrals falling in this case are the intra-arrangement parts of C. The presence
of two HIGF's greatly complicates this case compared to Eq. (37). There are now
six cases to consider: nonoverlapping basis functions, one basis function contained
within the other, and other overlapping basis functions, with the bra or ket starting

D—————————————————————
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first. However it can be shown that the result of using Eq. (31) is

Mg, (9)
i=ma .s .s .
i=m z( o) (40)
{2:,,, impo U (NB9) = I (maz(ik i35, )ldafs, 5 > if,
2) oI .
En’ n'np 'n.'ﬁ Ifx‘ﬁ(NRQ I(’ﬁ(maz(zﬁilﬂ’zﬁ,)) zé‘o > ‘g

. .5 .5
, D65 yaes, iS5 5 ™leie)
I(2) ={ Zn np Bn ( ﬁ d; Bo  “Bo B + Z

BB. 1 . .
Dot B, n'pI;g,L'("ﬁ) 15 > zg.

In this equation, I/(sln) corresponds to B, and an argument of ¢ is interpreted as the

sum up to the :** quadrature point. It should be noted that for nonoverlapping
basis functions, the middle sum will have no contribution. In addition, this formula
applies as well to matrix elements con51st1ng of one HIGF and one translational basis
function. In this case, d°‘S and d2% 5 for the translational basis function are zero and

L 2 corresponds to 2 Smce the number of terms in the middle sum is much less

than the number of radial quadrature points, N*? using Eq. (40) greatly reduces
the work required for evaluating the integrals. It should be noted that care needs
be taken to avoid excessive roundoff error when evaluating the last subtraction in
Eq. (40). Optimally one would separately store the contributions from the various
intervals between min(i3, 13 ) and maz(if ,i3,13 ) or maz(if, i3, i3, ), since in this
way no explicit subtraction is required.

Another way to exploit Eq. (31) is to take linear combinations of the HIGF's
and use these as basis functions. Consider the HIGF labeled by 3. We can form
the combination

355(Ra) = §N5(Ra) — ng,(Ra)dn,ﬂAn.,,,, (41)

in which case the analog of Eq. (31) for 55 becomes

E () iy (Ru)dﬁ%‘: ﬁ'n, R, < RS
955(Ra) =<0 R, > R} (42)
955(Ra) otherwise,
where RS is the smallest value of RS,, and d“sc is the new small R, proportionality
constant. There are two advantages of this formula.tlon First of all, when using the
_c‘],fﬁ, Eqgs. (37) and (40) simplify, because now only the first two terms are present.
This is especially important for Eq. (40), because one now avoids the final subtrac-
tion, which is complicated to implement in a manner which avoids roundoff error.
The second advantage arises when transforming to complex boundary cond.ltxons
This will be discussed in the next sectlon
One disadvantage of using the g gnﬁ is that while previously the first sum in Egs.

(37) and (40) went from 1 to i3 or mm(zﬁ,zﬁo), it now goes from 1 to i, where
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Rg;s is the largest quadrature point less than RS. Since i5 will be smaller than

z'g or min(ig , iga), the overall efficiency is not as great. However, one can diminish

this effect by not using in Eq. (41) the g%, which are the HIGFs based on the basis
functions with the smallest values for Ré’, but rather using HIGFs which are based

on basis functions having as large Rg as possible subject to the constraint that their
RII; is not larger than the Rg for the B in Eq. (41). This will maximize i°.

We now consider the effect on the matrix elements when the 55 are substituted
for the 5‘7% in Eqgs. (10-14) and (17-20). Since Eq. (41) can be written as

gc = gNIH (43)

where the matrix elements of I are the constant factors in Eq. (41), we see that

provided we combine the t5, ... in Eq. (14) using the same rule as was used to

produce the g,fﬂ, then we obtain

B =LTB (44)

and -
ct =LTCL (45)

when using the §%,. Provided that L~ exists, it is easy to see that
g ng
B<"C£T'BL = BTC™ B, (46)

thus it is not necessary to transform back to the gf;’ﬁ,. In order to ensure that L™?
exists, it is necessary to retain at least one gf:'ﬁ per channel.

Now consider the transformation from real to complex boundary conditions,
Egs. (7), (8), and (30). Since the gfﬁ are strictly zero beyond the distance where
the associated localized basis functions are zero, they will be independent of the
boundary conditions. That is, the subblock of X associated with g5; will be the

unit matrix, the subblock of 2 will be the zero matrix, and the portions of C*
which are associated with two of the _(‘]fﬂ will be real and the same as C*. In the
next section, we will show how this can be exploited to save work in evaluating Eq.

6).

©) Thus we see that substantial work can be saved in evaluating the integrals
when localized basis functions are used. We now consider the choice of such func-
tions. In our previous work using variational methods, we have used distributed
Gaussian functions [37-39,53,63-65,67,68,84-98), linear combinations of distributed
Gaussians[99], or sine-type functions [,38] as a basis. Strictly speaking, the Gaus-
sian functions are not local, since they are zero only asymptotically; however for
practical purposes they differ significantly from zero only in a narrow région. Thus
one procedure to use would be to set the Gaussian to zero whenever it falls below
some fraction of its maximum, say 10~!4. However this procedure introduces dis-
continuities into the integrands which can cause slow convergence of the numerical

-
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integrals. Thus we seek a localized function which is continuous and has continuous
derivatives. The function we will use is inspired by the cutoff function of Ref. [100],
and is given by
_ [expl- =] lel<b
it o5y 2

We call this function a “cut off Gaussian” (COG). It has the property that for

small /b, it behaves like exp[—a(z/b)?], so can be made similar to our previous
basis functions, yet it is localized within b of its center. It should be noted that as
a — oo with fixed a/b%, the COG becomes a Gaussian.

2.4 Partitioned Matrices.

We will partition the matrices into blocks consisting either of functions which
are localized (the gfﬂ) or those which are delocalized. Thus we write

B = (gﬁ) , (48)

L _ Cec C%‘c
c = (Ccc Ccc)’ : (49)

where the subscript £ means localized and ¢ delocalized. If we solve the matrix
equation

K = KB +B* C*7'B4, (50)
by blocks, we obtain '

K =Kk8 + B/ c/TB, (51)
where the folded matrices are given by

kB’ = kP -BIC;};By, (52)

B/ =B. - CZ.C;:By, (53)
and S

¢/ =c.. - cl.CczicCe.. (54)

Now consider solving Eq. (6) by the same procedure. The result is
S =58+ B G/ B, (55)

where the complex folded matrices are obtained from Egs. (7), (8), and (30) using
the real folded matrices of Eqs. (52-54). Similar procedures have been employed in
the context of the Kohn variational principle [54,56,60].

Several things should be noted concerning the above procedure as it affects the
GNVP calculations. First of all, if the number of localized functions is considerably
larger than the number of delocalized functions, as may often be the case, the work
to produce the folded matrices will be greater than the work to evaluate Eq. (55).
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This means that the computational effort involved in a calculation with complex
boundary conditions will be very similar to what would have been required if real
boundary conditions had been used. Also the memory requirements will be similar,
because it will not be necessary to store the imaginary part of C.

3 Applications and Directions for Future Work.

The techniques presented here and previously provide an efficient method for
large-scale quantum mechanical calculations of chemical reaction dynamics based
on the generalized Newton variational principle. Some applications that have been
made include the calculation of converged cross sections for the H + H, [89] and
D + H, [39,97] reactions and converged state-selected reactive transition proba-
bilities for these reactions (37,38,67,68,87,88,91,92,95] and for the O + H; {68,98]
and O + HD [68,93] reactions. We have also presented converged reactive transi-
tion probabilities for the F' + H; reaction with total angular momentum J = 0-2
[90,94,96,99]. We have calculated converged collisional delay times, which require
very stable (numerically differentiable) solutions as a function of energy, for H + H,
with J = 0, 1, and 4 [95], for D + H, with J = 0 [91}, and for F + H, with J =0
and 1 [94,96]. An earlier nonvariational version of the method was used to obtain
converged transition probabilities for the H + H, [64], D + H, [63,64], O + H:
(65,84], H + OH [65], and H + HBr [85] reactions.

For O + H; we have obtained very well converged results with an average of as
few as three Gaussians per channel [98]. A recent study of basis set requirements for
F + H, showed that excellent convergence can be achieved with 10 Gaussians per
channel in the F' + H; arrangement and 18 Gaussians per channel in the H + HF
arrangement (99]. Further efficiencies can be achieved by using better basis sets, e.g.,
by basis set contraction [38,99,101,102] or the use of localized basis sets as described
in the present paper. Another promising approach is based on the reinterpretation
of the GNVP using a scattered wave variational principle [69-72]. This allows for
hybrid basis sets which effectively convert some of the integrals over G % Ggo , s
in Cgg,, into simpler energy-independent integrals. All these approaches are being
explored for further applications.

4 Summary.

We have introduced new techniques to reduce the work required in applying
the generalized Newton variational principle to three-dimensional reactive scatter-
ing calculations. The underlying idea behind these developments is to minimize
redundant work as much as possible. This is accomplished in two ways. First of all
the fact that the Hamiltonian is Hermitian is used to decrease the number of inter-
arrangement integrals which must be calculated. Even for a system with no symme-
try, e.g., O+ HD, this reduces by half the number of two dimensional integrals which
are performed before the final integration of the three-dimensional exchange inte-
grals. Secondly we introduce a localized translational basis set which need not differ
significantly from our previous basis functions and then exploit the effect this has
on the half-integrated Green’s functions to reduce the amount of work required to
calculate these functions, the amount of storage required to save these functions, the
amount of work required for the integrals over these functions, and the work required
for the final linear-equations step when complex boundary conditions are used.
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