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ABSTRACT. We discuss the computational steps in calculating quantum
mechanical reactive scattering amplitudes by the .£2 generalized Newton
variational principle with emphasis on computational strategies and recent
improvements that make the calculations more efficient. We place special
emphasis on quadrature techniques, storage management strategies, use of
symmetry, and boundary conditions. We conclude that an efficient
implementation of these procedures provides a powerful algorithm for the accurate
solution of the Schroedinger equation for rearrangements.

1. Introduction

Rearrangement scattering is certainly one of the most difficult problems in
few—body physics. The quantum mechanical theory of chemical reactions, as a
subfield of the larger topic of rearrangement scattering, is similarly one of the most
difficult subtopics in molecular collision theory. Successful and useful procedures
for rearrangement scattering problems have been advanced from many different
directions, including (references are perforce representative rather than exhaustive)

the theory of compound nuclei and resonances,1 formal many-body physics,2 and

multichannel inelastic scattering theory,3_5 and the theory will certainly continue
to benefit from further progress in those fields in which it has its roots.



The approach discussed here has its origins in both many—body theory and
multichannel scattering theory. From many-body theory it builds on the method
called “configuration interaction" or "superposition of configurations" (SOC)
especially as that method is viewed as a systematic way to enlarge
multiconfiguration Hartree-Fock basis sets until convergence is reached. This

approach has its roots in bound-state electronic structure t;heory,6
applications to dynamics may be found in electron-atom scattering,

electron—molecule scz;tttering,]‘0 and nuclear physics11 where it is sometimes called
the "resonating group method"). In the work discussed here the SOC approach is

used to expand the reactive amplitude density,'1 2-15 rather than the scattering

3,4,7-10,16-18

b}

and
3,79

wave function, and the coefficients in the expansion are obtained

variationally by a genera.lizationlg’20 of a variational principle due to Newton.2!
Since the reactive amplitude density is vector of .#2 (i.e., square integrable)
functions in arrangement channel space, the configurations in our SOC may also be
taken as .#2, and this simplification of the basis set is one of the desirable features
of this approach which motivates our work.

Another important element in our work is the use of a distortion potential
which defines a partially decoupled scattering problem whose solutions are
obtained as the first step of the dynamics calculation. Distortion potentials appear

as the first step of many inelastic and rearrangement scattering calcula.tions,22_24
often in conjunction with a variational principle, a combination which is motivated
by the expectation that as one increases the coupling in the distortion potential,
the level of theory required to treat the remaining channel coupling accurately will

be lower. We have recently20 shown this to be true in our formalism, in particular
as we increased the coupling in the distortion potential, the size of the basis set
required to solve the full problem decreased. Our approach allows for multichannel

single-arrangement distortion potentials, as applied previously%—30 to
rearrangement problems in various contexts. We have shown, however, that the
combination of this approach with the .#2 generalized Newton variational principle
(GNVP) is a particularly powerful method for treating chemical

19,20,31,32 514 it has allowed us to converge very large—scale problems,

involving (so far) up t035 1035 coupled channels.

Our previous work relevant to this approach has been published in several
papers. Our original calculations were based on an .#2 SOC expansion of the
reactive amplitude density with the coefficients obtained by the method of

moments. We have published several applications,13_15’34*36 full details of the
14 37

reactions,

numerical procedures,” ~ a discussion of storage management,”’ and three

derivationslll’w’38 of the final equations. In more recent work we have obtained
the coefficients of the expansion by the GNVP. We have carried out new

applications,19’20’31"33’39 and we have presented full details of the method and

its initial implementation.20 The present paper presents a discussion of improved
computational and storage management strategies for GNVP calculations,
including recent improvements in the quadratures. We also give an overview of



the method, including a reformulation in terms of the scattering matrix and a
discussion of symmetry decoupling, which subjects are also treated elsewhere.‘w’41

2. Generalized Newton Variational Formalism
2.1. BASIC EQUATIONS

The theoretical developments leading up to the equations presented below are

given in detail elsewhere,20 thus only an overview of the formalism will be given,
and the emphasis will be on selected details and improvements. Reference 20 plus
the current paper should be considered as a pair; together they express the current
state of our program.

Our methods are designed to be as efficient as possible for calculations at a
single total energy on vector pipeline supercomputers. Thus quantities which are
used only once or a few times for a single energy calculation are usually not saved
but rather calculated when they are required, even if they are independent of
energy. This strategy influences the choice of several computational details and
will be discussed in more detail in Sect. 4.

We consider reactive scattering between different arrangements of the atoms
A, B, and C. The label a specifies the asymptotic partitioning of the atoms: o = 1
for A + BC, =2 for B + CA, and a = 3 for C + AB. We mass scale the Jacobi
1(;oordina,tes for each of the three arrangements to the single reduced mass x defined

y

p= [mAmBmC/(mA +mp + mc)]% (1)

where m A 18 the mass of atom A, etc. For arrangement o = 1, R o is the

mass—scaled vector from the center of mass of BC to atom A, T o is the mass—scaled

vector from atom B to atom C, and cosvy o=T a'R o The coordinates of the other

arrangements are defined by cyclic permutation of the three atoms. It will be also
convenient to let X, denote the collection of all coordinates except the scalar

length R o

The Hamiltonian operator is partitioned into arrangement—dependent
components as

D . ,C
H=Hg+V{, 2)

where HE is the Hamiltonian for non-reactive scattering in arrangement channel o

2, and Vg is the coupling potential responsible for

connecting the various distortion potential blocks and various arrangements. We

with the distortion potential V



denote the Green's function corresponding to the potential HB as GE.

The index n is used to specify a particular a, v, j, £ channel where v, j, and ¢
are vibrational, rotational, and orbital quantum numbers; the index m is used to
specify a particular transitional basis function, and 3 denotes a particular pair of n
and m. Note that sometimes for clarity we will label quantities by both & and n
although the specification of ¢ is redundant. In addition we use | a,n> to denote a

product of an Arthurs-Dalgarno rotational-orbital function (depending on j, £, and
J) and a vibrational function (depending on v and j) in channel n. We use a, to

denote the value of o for channel n. Then we may write

D_ diat a int,a
Ha—T+Va +22’50 aAnnlla’n/n/>V ’ <annl (2&)
nn’ "n
where T is the total kinetic energy, Vgia‘t is the diatomic potential in channel o,
int,a _ y; _y,diat
\% =V-V a (2b)

V is the total potential, and Agn, is unity if channel n and channel n’ belong to

the same distortion potential block and zero otherwise.
The GNVP may be applied to calculate the reactance matrix K, the
scattering matrix S, or the transition matrix, T, from any of which one may

calculate all physical observables for the collision processes by standard*2:43
formulas. In this section, as well as Sects. 3 and 4, we consider the application to
the reactance matrix; in Sect. 5 we will consider the direct calculation of the
?cattering matrix. In all sections, we use a generalized reactance matrix with the
orm

K00 KOC
K= KCO gcC (3)

where o stands for open and c for closed. Although the physical results depend

only on K°°, we retain the other parts in the calculation bécause it simplifies the
code and adds negligibly to the computer time. (In addition we will use the closed
channel parts to simplify the arithmetic in Sect. 5). In practice the channels are
not actually stored in the order necessary to partition K as indicated in (3), but
they are re~ordered this way prior to calculating eq. (53) below.

Using n to label the channels and J to label the basis functions, coupling the
various arrangement components of the total system wave function by the Fock

coupling scheme,4"r”7’16’44 expanding the Fock reactive amplitude density14’15
for each arrangement in an .#2 basis set expressed in the coordinates of that
arrangement, and solving for the coefficients by the GNVP, yields the following

expression for the elements of the generalized full reactance matrix:20



Knno = 5aao 0Knno + jgnno’ (32)

where °K is the collection of all nonzero reactance matrix elements for the
decoupled distortion blocks, and

‘%n ne = <annE| J| apngE> = <annEl %| agnoE> +
+§ %l <o nE|%g|f><p| ¥ -
- y%g) L ><B’ | §| aonoE> (4)

where ap(= « 110) is the initial arrangement, | o RE> s a regular standing-wave

distorted—wave scattering state for the Hamiltonian HB ,
n

% = (2u/h?)(H-E), (5)

?ziGaPa, (53.)

gmY = (<2u/h?) 33 P>, (a-#D)alp (5b)

o o

-

P o is a projector on arrangemént @, and the basis set is taken to have the form

1> = '“ﬁ“ﬂmﬂ> |
1408
R 1o, "(x ). 6
"8 ﬁ mﬁ“ﬂ “s ©)
In Eq. (6), t m n , 18 & translational basis function, and ¢Zﬁ is a

vibrational-rotational-orbital function given by
. .

where y a_j is an asymptotic vibrational eigenfunction, Vo is a vibrational
n'n :
quantum number, j is a rotational quantum number, K is an orbital angular

momentum quantum number for relative translational motion, and ¥ .JII\(/I isa

laboratory—frame angular functlon7 coupled to total angular momentum quantum
numbers J and M. All equations are decoupled in J and in parity P, given by



P = (1)t (6b)

so we treat each JP block independently and set M = 0. In the rest of this article
it will be understood that all equations refer to a single JP block.
In what follows we write Eq. (4) as

%= %8 +BTc B (7)

where T denotes a matrix transpose, and % B is the distorted—wave Born

approxjmation22_30 to the reactance matrix. In practice, Eq. (7) is replaced by
¥=%2+BTB (7a)
where
CB=B. (7b)

We note that C is symmetric, which guarantees the symmetry of J%. The matrix
elements diagonal in the arrangement label (an = ap = @) are given by

B _ o (n .o a o
‘%nno = E’ Ann/ J dRa fn/n(Ra) 121:" Vn’n"(Ra)An”no X

(r) ‘
X fn"no(Ra), (8)

— Qg N a a
Bgny = E, Anﬁ“' [ dR gy g(Ry) En Vo (BB, x
(r)
X fg"no(Ra), (9)

and

"N
C/Bﬂ, = Alollﬂnﬂ, f dRagnﬂ/ﬂ(Ra)tr?lﬂ,nﬂ/(Ra) -
‘N
-z, A JdR g ?(Ra)g" .
X Un’n"(Ra)Ag"nIB/gII\II"ﬂ’(RCY)’ (10)

while those off-diagonal in arrangement are given by



B . n (r) an
Fomo =2, By ,dean JaR gy "y o(Ry )

a 4]
x Ev. Wn’n"(Ran’Rao)An"no fing(Rag) (1

B, =5 Agn,]dR [ AR, gN 4R, )zw ..(RﬁRao)x

ap (r) ao

and

ﬁﬂ,—E aA ‘n dea deaﬂ gn/ﬁ(R ﬂ)ﬂﬁﬂ (Raﬂ 'B,)x
x tmg,nﬁl(R )-Z, A gn JdR deaﬂ,gn, #R )
SWEBER R AB N ow o (13)

n ,3/ /S ,8 0!'81

n"nﬂ

(r) . . . . . .
where fgn, is a radial distorted wave function, Vgn, is an intra—arrangement

matrix element of the coupling potential given by

o Da
Vnn/ - Unn/ - Unn/, - (14)
where
Da _ Ao o
Upnr =45 US . (14a)
. 2 i t’
Upn = (20/1°) [ dx 87 (x JV 4R x )62, (x ), (15)

and V%% is the interaction potential for arrangement a. The function glz 3 is a

half-integrated Green's function; ngg is given by
oo o o Da
Wano = ungRarRag) =2, T RaRa) Uni,(Ray) (10

where if’aa, is —Qu/hz times the inter—arrangement matrix element of the



interaction potential; and .ﬂ;ﬁ‘? is an inter—arrangement overlap matrix element.
0

Further details of all these quantities are given in Ref. 20.
2.2. COMPUTATIONAL STEPS

The organization of the computational steps is as follows. First the parameters
which specify the calculation are initialized. These include masses, the total
energy, basis set parameters, and various other numerical parameters. Next,
commonly used quantities are pre-calculated and stored. These include vibrational
wavefunctions and weights and nodes for the various quadratures used. After that,
the radial distorted wave functions and the radial half-integrated Green's functions
are calculated and the values of these functions at the radial quadrature points are
stored, either in memory or on disk, depending on options. Then the integrations

. B . .
to obtain the J& nn’’ B B’ and C 38’ matrix elements are carried out. Next, the

correction J& to the reactance matrix is evaluated by means of Eqgs. (7a) and (7b).
Using this matrix, the full reactance matrix is calculated from Eq. (3), followed by
the evaluation of the scattering matrix and related quantities useful in the
interpretation of the outcome of the collisions.

All of these computational steps involve special considerations in order that
they and subsequent steps are performed as efficiently as possible. Thus we now
discuss the steps in more detail.

2.2.1. Asymptotic channel states. We first consider the calculation of the
vibrational functions and their associated eigenenergies. 'The vibrational functions
X i are expanded in terms of harmonic oscillator wave functions with coefficients
B?;VJ. The matrix elements of the diatomic Hamiltonian are evaluated by

Gauss—Hermite quadrature, and the Rayleigh—Ritz variational principle is used to
determine the expansion coefficients and eigenenergies. The harmonic basis for the
vibrational eigenstates is chosen for computational convenience of later steps,
namely the calculation of the inter—arrangement integrals. There the vibrational
functions will have to be evaluated at many different bond lengths, and it is
advantageous to avoid the necessity of interpolating a numerical wave function.

As it is, the vibrational functions are evaluated by first recursively calculating the
harmonic oscillator basis functions at many bond lengthsisimultaneously using
vector operations and then transforming to the y i by a call to the very efficient

Cray matrix multiply library routine MXM or a new fast matrix multiplication

routine®d utilizing local memory and Strassen's 0 algorithm. In addition to these
considerations, another reason for using analytic basis functions is that they
provide a more compact representation than a numerical:wave function, i.e., less
storage space is required to save the expansion coefficients then would be required
if one were to save the wave function on a grid.

One difficulty with using harmonic oscillator wave functions is that they
behave in a non—physical manner as the bond length goes to zero. These functions
go to zero in the limit as the bond length goes to minus infinity, rather than as the
bond length goes to zero. However this is not a problem in practice because
molecular potentials are very repulsive for small bond lengths, and so the



variational principle causes the wave function to be small in that region.?Tf is
sometimes necessary to modify the vibrational potentials near the origin 6f at’
negative r oS0 that the integrals involved in the Rayleigh-Ritz variational

principle are all finite; however the final results are not sensitive to the eicalét}
nature of this modification provided that the potential for small and noniphysical -
values of the bond length are sufficiently repulsive. These considerationsia}ﬁﬁly as

well to the centrifugal potential j(j + 1)h2/ 2ur§, which is singular at the &¥igin. -

We make this nonsingular by replacing ri with rg + r%, where 1 is a smaR:

distance we have taken to be 1.0 x 10"3 Qp.

The integrals Ugn, are computed by optimized quadratures47

with Weights
Wa/Vlj /vj.
2.2.2. Distorted waves and Green's functions for nonreactive scattering. Next we

(1)
turn to the evaluation of the functions fgn, and glr\lI where o, = @y =10 these

are respectively the scattering solution and half-integrated Green's functions
governed by the last term in Eq. (2a). The distorted wave radial functions $olve:
the homogeneous equations b

2 2 9. (r)
[d°/dR2 — £, (¢, +1)/R2 + k2] 7% (R ) +

Do (r) o _
+§,Unn’(Ra) fn’n"(Ra) =0 (17
subject to the boundary conditions

(n) o0
fnn' RN—>0 0 (18)
a
[ Ky t[8,,, sin(k R, — £ 7/2) +
0] @ 2.
+ Knn,Ann,cos(knRa—- t,7/2)] k >0;
o .
@1k ) {6 -exp 1k [ (R, — Rg)]+

0 a 2
+ I{nn/Ann/ exp [—Iknl (Ra - Rf)]},kn<0,
(19)
where k 1 is the wave vector for channel n, and Rf is a numerical parameter ‘chosen

to avoid overflow or underflow problems. In practice, we replace the sines and
cosines in (19) by Ricatti-Bessel functions; these behave the same as R o™ 00, but

they allow the boundary condition to be applied at a smaller value of R o The



/O

half-integrated Green's functions solve the inhomogeneous equations

2,02 2, 21°N Do ‘N
[d°/dRy, — £,(6, + 1)/Ry, + kilg, o(R ) + g Unn'(Rgl8y /(R ,)

=-6 t%¥ (R) (20)
subject to the boundary conditions
R,—0
— 2
‘N . k *cos(k R, - £ 7/2) k >0 -
g ~ d 1 9 22
DR o0 M| (21K 1) Fexpl-|k, | (R, — Rol, KE<O,
where the matrix element in the boundary condition matrix is defined by
a _ A« (0. a
dﬂn = Annﬂ JdR fnﬁn(Ra)tmﬁnﬁ(Ra). (23)

We solve equations (17) and (20) using the finite difference boundary value method

(FDBVM)M"HS’49 using a 9—point representation of the second derivative
operator, with lower order approximations near the large-R o edge of the grid in

order to convenjently14 impose the nonhomogeneous boundary condition. This
numerical method is not the most efficient method to solve such coupled ODEs,
but in the present context it offers many advantages over other methods. First of
all we are concerned in thjs step with calculating the radial functions at all
distances for use in integrals rather then just determining the asymptotic form of
the radial functions as is done in standard close coupling calculations; the FDBVM
yields the solutions at all R  in a stable manner without requiring complicated

reorthogonalization50 procedures. A second advantage is that there is no
restriction as to the uniformity of the stepsizes used for the finite difference grid.
We take advantage of this flexibility by evaluating the integrals over radial
functions with efficient quadrature rules which do not have evenly spaced nodes
while avoiding the interpolation of the radial functions by including the quadrature
points used in the radial integrals in the finite difference grid. In particular we use
repeated Gauss-Legendre quadrature to evaluate the R g nd R o integrals in Egs.
()

(8)-(13). This is important because in practice this allows the number, N%RS , of
radial quadrature points in the integration over R oo be much less than the

number, Ni, of points {RI; j} in the finite difference grid in arrangement . This
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saves both in storage, because it is only necessary to store the radial functions
which will be used later at the quadrature points (rather than saving all the values
for interpolation), and it saves in the time required for the radial integrals,
especially the inter—arrangement integrals which involve two R o type integrations,

as shown in Eqgs. (11)—(13). (The time savings result from avoiding the time for
interpolation and by keeping the number of points in the quadrature down because
the order is high.)

One aspect of the storage of the radial functions not yet addressed concerns
the order in which they will be accessed during the integration steps. In the
FDBVM, a given radial function is calculated at all grid points simultaneously
before any other radial function is calculated, thus it may seem most advantageous
to store them in the same manner. However when performing the integrations, it
is more convenient to access all radial functions together at a single integration
point. Since the inter-arrangement integrals require accessing the same radial
function at a given quadrature point many times, it is more efficient to originally
store the radial functions so that they are sequentially accessed in these later steps.
This is especially important if the radial functions are stored on disk rather than in
memory. When the radial functions are stored on disk, we accomplish this
ordering by storing the radial functions using standard FORTRAN-77 direct
access files with a fixed record length equal to the square of the maximum number
of channels per distortion potential block. Then record 1 contains the function

(1) .
' fllm, for the first distortion potential block at the first quadrature point, records

2 through N(G) + 1 contains the functions glr\lI 3 for the first distortion potential

block at the first quadrature point, where N(G) is the number of translational basis
. . . o . .

functions, record N(G) + 2 contains the function ’ fxlm , for the second distortion

potential block at the first quadrature point, etc. When the radial functions are
stored in memory, the same ordering is used except now a word rather than record
addressing scheme is used to avoid wasting any space in memory caused by
differing numbers of channels in the various distortion potential blocks.

The final advantage of the FDBVM is that once the distorted wave radial
functions 0 ff:n, have been calculated, the half-integrated Green's functions can

be cglculated relatively inexpensively. This is because the FDBVM equations take
the form

AX = 4, (24)
where A is a banded matrix of half band width 4N 8 where N 5 is the number of

channels in the distortion potential block, and X is the vector of radial functions

determined by the boundary condition/inhomogenity vector 8. It should be noted
that the matrix A contains only the term on the left hand sides of Egs. (17) and

(20) and is therefore the same whether calculating the ‘v fﬁn’ or the gII\lI g The

computational work required to solve Eq. (24) can be broken down into the two
steps of factoring the nonsymmetric matrix A into its LU form followed by back

substitution and forward elimination to obtain the solution.51 The time to form
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the LU decomposition is much larger than the time for the forward substitution
and backward elimination steps and so many different solution vectors can be
generated with relatively little extra effort once the LU decomposition is known.
A detailed analysis of the operation count require to solve Eq. (24) is complicated
by the possibility of pivoting; however, if we ignore this complication then the
relative work of factoring and solving can be assessed. From Ref. 51 we see that

the work to factor will be proportional to IGNEN(D)3 for large NE and N(D),

while the substitution and elimination time is proportional to 8N§N(D)2 to obtain

(n
a single solution or SNIC:;N(D)3 to obtain the entire fgn, matrix for this

distortion potential block. The time to solve for the gll\lI ; for a single translational

basis function will be SNEN(D)3 also, so one can obtain the half-integrated

Green's functions for three basis functions for about the same cost as is required to
(n

just calculate the ‘ fgn" In addition, if the time to evaluate the potential

coupling matrix Ugg, is significant, then the calculation of the glz 3 will be

relatively even less expensive because the potential coupling matrix only appears in
A. An additional point is that there exist efficient vectorized routines for the

solution of standard forms of equation like (24). We use the LINPACK®? routines
SGBFA to factor A and sGBSL to solve for the radial functions.

We now address some aspects of the calculation of the A matrix. First
consider the finite difference coefficients which must be generated for unevenly
spaced grid points. We generate these coefficients by requiring that

N
d%F/dR?| = T dF(R
—R, i=1

+im(N-1)/2-1)> (25)

where F is a polynomial of order N-1, Rj is the jth grid point, and the c} are the
finite difference coefficients. In particular, we write

N1 ) i
F(Ry) = F(R) + 5 FOR(R, - Ry,

k = j~(N-1)/2,...,j+(N+1)/2, (26)

where rli) = diF/dRi. We can write this in the form Ac = F, where A is the
matrix of [(Rk - Rj)1 /1Y), ¢ is the unknown vector of values of the derivatives pli)
and F is the vector of functions at the neighboring grid points. Multiplying
through by A"l, we then see that
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F(i)(Rj) =2 (A D1k PR (N-1)/24k-1) (27)

thus the elements (A"l)3k are the coefficients we seek.

Now consider the evaluation of the intra—arrangement potential Ugn” This
is evaluated by expanding the interaction potential as
A
Vint,a _ I;;la‘x

int
IR gP(eos ), (28)

where V/l\nt’a is an expansion coefficient, P A is a Legendre polynomial, and '\max

is a convergence parameter we take equal to the minimum of N%ﬁ and 2j x T 1,

where N%‘g is the number of points in the Gauss—Legendre quadrature used for
non—exchange angular integrals, and j_,_ is the maximum rotational quantum

number. The expansion coefficients are determined by projection of the Legendre
polynomials; the numerical quadrature involved in that process is written as a
matrix multiply and evaluated using a fast matrix multiplication routine. Note
that the potential expansion coefficients are independcent of channel indices,
although they do depend on the arrangement index. The matrix elements are then

assembled using Percival-Seaton coefﬁcients,53
A oan oyIM* o2 A JM . 4
frlm’ =/ dRa dran N Kn(ra’Ra)PA(cos7a)Yj nln(ra’Ra)’ (29)

for the angular integrals and optimized vibrational quadrature for the r o Integral.

Finally we consider the imposition of the boundary conditions of Eq. (22).
One way to impose these conditions is to calculate the d fn matrix elements and
include them times the proper matching functions in the vector 8 so that radial
functions with the proper boundary conditions are autoqlatically produced.
Another way is to use arbitrary boundary conditions in # to produce the function
EI;I g which is related to the desired functions by

NN _ \N (r) o
gnﬁ = gn,@(Ra) + g/ fnn/(Ra)Xn/ﬂ, . (30)

where the matrix element Xn 3 can be determined numerically from the asymptotic

form of glr\f g This equation can also be used when changing from real to complex
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boundary conditions as described in Sect. 5. In our calculations we use the ¢ 6n

matrix elements and the ﬂ vector to diréctly generate functions satisfying the
proper boundary conditions.

2.2.3. Angular ezchange integrals. We next consider the evaluation of the

o aag
inter—arrangement integrals, ifa 0 and @ .- These take the form

aQp adp 3 1 -1
Con, = 274 )RR (26 +1)(24 + D21 +1)7 «

nng
X 2 2 (j 14 QOlj ZHJQ)(jnoanQ/OIjnoenoJQ/)

x f dcosAtm0 T a/vnjn(ra) anQ('ya,O) x
2 nt, o
x | o \Y (Rao’ ao)
1 J
— . Y. o/ ,0) dq /(A , 31
aqp
where A  is a mass factor, J is the total angular momentum, (---|---)is a
Clebsch-Gordan coefficient, A aaq is the angle which rotates the coordinate system
of one arrangement to the other, i.e., cos A = R o R a’ Y. i0 is a spherical

adp
harmonic, and dgm, is a reduced rotation matrix element. The equation for .59

int, @
is the same as Eq. (31) except the -2uV /h factor is replaced by unity. The

coordinates in the integrand are functions of R R and Aaa , i.e.,

(478 2 (178 2 (1787} 1
— 2
,=4 Ry +(& RY“+2A RR cosA  TF (32)

aQp 9 Qg 9 (474° 1
— 2
oo = ¥ R, + (A Rao) +2 A RaRaQCOSAaao] »(33)

P adp (1747 aQg

cos'yaz(—l) M (M R,+R, cosA )/ Ly (34)

P
Qo aqp

adp
€087 g0 = (-1) A (KA R o R cosA ao)/r o’ {35)



(4707
where /£ is another mass factor and P, o is the parity of the permutation

. (4707 aqg
from (12) to (aap). Both £  and A are symmetric with respect to o and
.

We first simplify Eq. (31) by writing it in terms of the body—frame matrix
elements which are labeled by the quantum numbers, v,j,02,J,P rather than the
laboratory—frame quantum numbers v,j,£,J. Here €2 is the projection of the total
angular momentum on the diatom bond axis, and P is the parity, defined as P =

(—1)j+[. Equation (31) then becomes

aap g . JjnTJjno aay JP (36)
14 = T ’ € . : /)y 36
nng 0>0 Q/>0 an Q Kno VanQVnanOQ
where the body—frame-to—space—frame transformation is
Jj 2 Hl2e+1 P
Tor= (jQ0]jAI0). {37)
1+ 5{20 2J +

We note that if P(-l)'] = -1, then the  and 2’ = 0 terms are not present in Eq.
(36), and the sum runs over > 1 and 2’ > 1. Also it should be noted that this
transformation is independent of the vibrational quantum numbers so that if
channel pairs which only differ by Vo and Voo are grouped together, they can be

transformed using vector instructions.
The body—irame matrix elements are written as

aaoJP a0 4 1
gvjﬂv’j’ﬂ’ =m(H ) RaRao / dCOSAaao?;Xavj(ra)YjQ("a’o) x
int,ap
=24 1
X 12 A% (Rao,xao) rao
JP
X Xaov’j’(rao)Yj’Q’(7ao’0)aQQ’(Aaao)’ (38)
and the modified rotation matrix elements are given by
JP ~314] Q+Q’ J
dqr =1+ 8q0)(1 + 6/ *ldnq - + (-1) Al - +
+P(-)" 0 o, + Py ) . (39)

The body—frame matrix is then evaluated using Gauss—Legendre quadrature.
In particular, we define the quantities
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b ovini = ﬁ{)’ X qilT DY 50 74(1):0]; (40)

th

where r a(i) ist o evaluated at thei'™ quadrature point, etc.,

PO’ _ 2, Bh0 . aao g o
7/'i] ===ty [Rao’xao(l)]RaRaoW(‘ﬂ ) Vi aQQ’[Aacro(I)]’

h2
(41)
where W, is the weight for the ith quadrature point, and
JPQQY PQQ’
Biavj a/VJQ 174 (42)
so that the final result is a matrix multiply:
ado JPQQ ’
ifvav'j'Q’ CWJQIBla/oV i’ (43)

All of the quantities in Egs. (39)—(42) are evaluated using vector instructions and
the matrix multiply is evaluated using a fast matrix multiply routine. It should be
noted that the coordinates specified by x ( ) and X, (1) all depend on R, R

and A aap so that b aviQi does also; however the HQQ, are independent of R o and

oy’ .
An additional subtlety exists concerning the evaluation of the rotation
matrix elements. This arises because the equations relating the x , tothe R o R

and A only involve cosA o ao.a,nd so we only store the cosine rather than the
%

angle [see eqgs. (32)—(35)]. The sign of the angle then is not specified and so it is
necessary to keep track of the sense of the rotation based upon @ and ap. In
particular, in Eq. (38), A, & will be a positive rotation if ap = a + 1 (modulo 3)

and a negative rotation if ap = a—1 (modulo 3). The rotation matrix elements at
negative angles are obtained by exchanging the subscripts, i.e. Hég, is replaced by

JP
aQ 9]
aop
The matrix elements 2 no are calculating in an analogous manner except

int,ap 9
that the —2uV /h” factor is not included in Eq. (41).
ad)p aQp Qg

& and &9 are

We note in passing that the matrix elements Wnn » €ingy
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independent of energy, and the matrix elements b aviQi used to calculate them are

independent of J. .

An alternative to the above procedure of evaluating the body—frame matrix
elements and then transforming them into the space frame is to note that the
entire calculation can be carried out in the body frame. This can lead to a sizeable
reduction in operations because the transformation of Eq. (36), which needs to be
performed inside of the integral over R o and Rao’ is eliminated if the body frame

is used throughout. To perform the calculations in the body frame, it is necessary
to apply the transformation TszJe to all quantities labeled by the £ quantum

. (r) ) . . .
number, namely the radial functions ' fgn, and glr\lI B the distortion potential
reactance matrix °K ,, and the intra—arrangement potential matrix elements

Vgn, and Ugg,. With these changes, one proceeds as before, except Eq. (36) is

now eliminated and it is necessary to back transform the final reactance or
scattering matrix before calculating physical observables.

The only limitation of using the body frame throughout the entire calculation
concerns the choice of the distortion potential. It is necessary that a given
distortion potential block include the channels with all values of £ allowed by total
angular momentum and parity constraints for a given v,j state. If this were not

the case, the transformation Tg% will mix different distortion potential blocks and

complicate the various computational steps. Two kinds of distortion potentials
which do not allow the use of the body frame throughout are a single channel
distortion potential and a distortion potential based on a centrifugal sudden

decoupling index.>4

2.2.4. Radial integrals. We next consider the radial integrals. For computational
purposes, it is convenient to rewrite these equations by defining the quantities

— a (). Qg = ao:

El Ann’ fn’n(Rao)Vn’no(Rao)’ &y = @o;

gnn0=< o (r) o aao .
/ dR , 121:' AL fn’n(Ra)Wn’no(Ra’Rao)’ otherwise,

(44)

5 A% N (R. VY, (R ) @, = a;

g 0’ nﬁn’gn’ﬁ ao’ 'n’ng ' “ap g~ “o
fro JdR % Aaﬂ ,éN, (R )Waéao(R ,R ), otherwise
g s Mg’ oD B e’ "n’ng ag ’

(49)

and
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(7)) ‘N

3 nﬁnogn’ﬂ(Rao)’ , ap = Qo;
%ﬂno - aﬁ \N aﬂao )
/ dRaﬁ E A ﬁn,gn, gRY) ﬁn,no(Raﬂ,Rao), otherwise.
(46)
With these definitions, Eqgs. (8)—(13) become
) _ Qo (r) 00 :
‘,zlr?no =/ dRao 121;’ An’no ‘%m’(Rao) ' fn/no(Ra,o), (47)
- ') (r) Qo : :
Bﬂno - j dRao E, An/no ﬁﬁn/(Rao) fn/no(R.ao), (48)
and
C JaR. & R F R
Qs = t -
ﬂﬁ aﬂ/ ﬂnﬁl aﬁ/ mﬂ/nﬁ/ aﬂ, »
R, T A Fa (R, JEN, p(R ) (49)
‘ aﬁ/ n’ n nﬂ/ ,Bn aﬁ, n ﬁ aﬁ/

Equations (47)—(49) take the form of a matrix multiply followed by integration,
and we carry out the matrix multiplications using a fast matrix multiply routine.
In order to efficiently evaluate the sums over n and n’ inside of the R a

integral in Eqs. (44)—(46), we proceed as follows. The basic operation to be

. ‘ _ . Qg

performed is the multiplication of a full matrix (with elements Wg 9130 or 2 , n0)
() ) - .

and a block diagonal matrix ( ' fg rp OT gl;f, ,8)’ and it is most efficient to organize

these steps so that multiplication from the right is by the block diagonal matrix.
This maximizes the vector lengths involved in the multiplication process. This
ordering is easily accomplished by transposing the matrix equations. For
illustration, we consider an example where there are two distortion potential
blocks, then the product we wish to form is

A B
CD

G H
I1J

5 , (50)

0
F

where 0 is the null matrix, and this is evaluated as

NERCE
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and

B

H
D J

7)-

Equations (51)—(52) are each evaluated by a call to a fast matrix multiply routine.
The amount of work involved in the double radial integrals is substantial, so
it is desirable to minimize it. We do this by two means. First of all, we use
efficient Gaussian quadrature rules to evalute the integrals; this minimizes the
number of terms in the quadrature sums. Secondly we note that many values of
R o R ay’ and A g lead to geometries which have no physical importance so that

oo (8757 .
the €, - and 3 1o matrices will be negligible and not make any significant
contributions to the quadrature sums. By detecting these geometries prior to the
o aap
calculation of the & nng and 3nn0 matrices, we can save a considerable amount of

work. We do this by noting that the primary cause of the small values of these
matrices are the non—classical values of the bond lengths r o and r @ where the

vibrational wavefunctions y i are exponentially decaying to zero. Thus we

: (52)

specify limits on the bond lengths and if a particular combination of R o R ay’ and
A acp produces values of r Q0T & which lie outside of these limits, this point is
omitted from the inner quadrature over cosAa o In practice, the limits are

determined by comparing the vibrational wavefunctions to an input parameter and
determining the distances where the absolute values of the x avj ¥ less than this

parameter. We always check that the results are converged with respect to
decreasing this parameter. ) .
The choice of which integration is carried out first, i.e., R ot R o’ is

important in determining the efficiency of the calculation of matrix elements
between different arrangements. This is because Eq. (16) involves three parts, two
of which depend explicitly on the two arrangements and one which depends only on
the ag arrangement. Thus by performing the R o integral first we avoid the

inefficiency of repeatedly calculating the Ug o Or the storage problem of having to
save them. Instead each matrix element is calculated as it is needed and then
discarded. This is discussed in more detail in Sect. 4.

2.2.5. Final steps. Once all of the integrals have been evaluated, we solve for the
reactance matrix by means of Egs. (3), (3a), and (7). Then the scattering matrix
is determined from

S = (1-iK%)71 1 + iK%), (53)

where 1 is the unit matrix, and i = y=I. For computational purposes, this is
rewritten as
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S =[1+ K1 - (K%)?2 + 2ik*) (54)

so that the real and imaginary parts of the scattering matrix are each determined
using only real arithmetic.

3. Symmetry Decoupling

For systems with identical atoms, some numerical simplifications of the above
equations are possible. First of all, some quantities, such as the vibrational
wavefunctions and the radial functions, are common to more than one
arrangement. Thus it is advantageous to calculate only the unique quantities.
This applies to the integrals needed to construct the various matrices as well;
because of the symmetry of the system, many matrix elements are either equal or
related by a phase factor. Thus one can take advantage of this and only calculate
the matrix elements that are unique by symmetry.

A second type of simplification present in systems having symmetry is that
the diatom in at least one arrangement will be homonuclear. This can be exploited
in several places. First of all, the work in the quadratures to determine the
potential expansion coefficients of Eq. (28) can be cut in half because the
interaction potential is an even function. This also means that only even values of
A occur in the Legendre expansion. Thus even and odd rotational quantum
numbers are not coupled by the distortion potential and so the size of the
distortion potential blocks decreases as does also the time to solve for the radial
functions and the resources required to save them.

The final use of symmetry concerns the solution of Eq. (7) for the correction
to the reactance matrix. So far in the discussion we have emphasized aspects of
the calculation prior to this step, but when the basis set is large enough, most of

the run time for a calculation will be spent in forming B. We can use symmetry
here also to save on computational resources. Thus we seek to exploit the

symmetry of the Jg .ZfB , B, and C matricies by introducing simple unitary
transformations Uy, and U into Eq. (7), i.e.

uf vy = uf Bu + uiBlu uicuytulsu, ()

where 1 denotes Hermitian conjugate and Uk and U are chosen such that Jg

B , B, and C are block diagonalized. (In B the blocks are rectangular.) Then
each block can be solved separately at much reduced cost.
To discuss the transformations in detail we consider a generic matrix M,

which may be 5, B, or C. Let the dimensions of M be N, x N,. When M
represents Jg B, it has elements <anE|M|a’n’E> so N =N = N, the number

of channels. When M represents B, it has elements <ﬂ|M | nE> so N o= Nand
Nr = M, the number of basis functions. When M represents C, it has elements
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<BIM|F’> so Nr = Nc = M. The order of the rows in B and of the rows and

columns in C is such that all basis functions for a given distortion block occur
consecutively.

In order to specify the transformations we now have to discuss in detail the
form of the matrices for specific cases. We first consider the case where two atoms
are the same and arrangement 1 is A + B2; arrangements 2 and 3 both correspond

to AB + B in this case, but differ in which B atom is bound. In arrangement 1,
the channels are ordered such that the Neven channels with even j appear before
the Nodd channels having odd j. Arrangements 2 and 3 are indistinguishable and
have Nother channels each, thus the total number of channels is N = Neven 4 Nodd
+ 2Nother, A generic matrix will have the form

Ae 0 Ce CeP’
0 Ao Co —CoP’ 6
Be Bo D EP’ | (56)
PBe -PBo PE PDP’

where Ae is the submatrix containing elements between channels of arrangement 1
with even j, Be is the submatrix containing elements between channels of
arrangements 2 and channels of arrangement 1 with even j, etc. The phase
matrices P (of dimension N . Nr) and P’ (of dimension N c*N c) are diagonal

J
with elements equal to (-1) N where jp is the rotational quantum number for the

appropriate channel of arrangement 3. If the matrix M is symmetric, e.g., J# B or
C, then E is symmetric also, and Ce and Ce are transposes of Be and Be,
respectively. '

We now discuss the reasons for this structure. First consider the matrix
elements which are diagonal in arrangement quantum number. In arrangement 1,
the diatom is homonuclear and the potential is an even function of the €osY,, thus

there will be nonzero coupling only between channels which are either both even or
both odd functions of €087, - As a result channels with even j will not be coupled

to channels with odd j. This is the reason for the null matricies in Eq. (56). Now
turn to arrangements 2 and 3. Even though they are physically indistinguishable,
they do not have identical radial functions, as we have defined them. This is
because the angles 7, and 73, defined below Eq. (1), are related such that a

geometry of arrangement 2 which is superimposable with a geometry of
arrangement 3 will have

To=T= 73 (57)

This causes a change in sign of the terms in the Legendre expansion of the
potential which correspond to odd angular functions [see Eq. (28)]. This is

equivalent to a phase change of (-1 in the radial functions because the

)Jn+Jn/ +A

Percival-Seaton coefficients are zero if (-1 + 1. Thus the lower right



22

submatrix in Eq. (56) is PDP’ rather than D.
Now consider the matrices connecting arrangement 3 and arrangement 1.
These are obtained from the <arrangement 2|arrangement 1> matrices as follows.

I

First the radial functions of arrangement 2 are multiplied by (1) "™ , where n
and n’ are arrangement 2 channel labels, to produce arrangement 3 radial
functions. The next change occurs in Eqgs. (34) and (35), where the sign on the
angles changes because the parity of the (ea’) = (13) [or (31)] permutation is
opposite of the (12) [or (21)5) permutation—this is equivalent to a phase change of

i+ | |
(—‘1),11 B where n’ is an arrangement 2 channel label, and n" is an

A

arrangement 1 channel label. The two (1) " phases cancel to give PBe and
—PBo. By the same argument, we see that the relation between <arrangement 1|
arrangement 3> matrix elements and <arrangement 1|arrangement 2> matrix
elements is similar, except now P’ appears on the right because the arrangement 2
radial functions multiply from the right. '

Finally consider <arrangement 3|arrangement 2> and <arrangement 2|
arrangement 3> matrix elements. For concreteness we consider elements of B A

but the argument is the same for the other matrices. These matrix elements are
written symbolically as

Tx32
B32 =[] ggw fz’ (58)
and
T23 :
Bys = /] 8o W™ 5. _ (59)
Introducing grg = PgrgP’ and f3 = P’f,P’ due to Eq. (57) and w2 = prw2p/
from Egs. (34) and (35), we have '

T /32
B32 =JJ szp W fz, (60)
and
T /7 32 ’
B23 = [/ g2P W f2P , (61)
or ‘
323 = PB32P'. (62)

Thus PE becomes EP’.
The final statement about Eq. (56) to be verified is that I is symmetric

when M is the C matrix or the .ZB matrix. Consider the Born matrix for which
Eq. (60) becomes



Koo =[] PELPWI2E,, (63)
thus we must show that PW32 is "symmetric", i.e.
.32 32 Iy
(1) "Win/ R Ry ) = Wi (R, R (1) o (64)

This follows from the sign change of the parity of the permutations in Egs. (34)
and (35). The same argument applies to the C matrix.

;/Ve are now ready to introduce the transformation U which we write as (see
Ref. 4

1 00 O
_10 01 O
U=lop o | (65)
0 f1 0 -f1
where fis 1/42. Then we have
Ae gCeP 0 0
0 0 Ao~ gCoP
0 0 gPBo PDP-PEP

where g is 4/2. Thus if the transformation of Eq. (65) is applied to C, it decouples
Eq. (7b) into two independent marix equations of order Neven 4 Nother and Nodd
+ Nother rather than one set of equations of order Neven + Nodd + 2Niher. If

Neven = Nodd, then this results in a CPU time savings of 23/ (13 + 13) = 4 for
large enough N.
Now consider the case when all atoms are the same, A + Az. Here all

arrangements are indistinguishable. The diatoms are all homonuclear, so again we
will order the channels in a given arrangement so the Neven basijs functions with j
even occur before the Nodd basis vunctions with odd j. The total number of
channels is then N = 3Neven + 3Nodd, Then, if we group the channels in a given
arrangement with even j before those with odd j, the generic matrix is
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( Ae 0 Bee PBeo PBee -Beo
0 Ao —-Boe PDBoo PBoe PRBoo
M = Bee —Beo Ae 0 Bee Beo
Boe PBoo Ao —Boe PBoo
Bee Beo PBee —Beo Ae 0

~._Boe Boo PBoe PBoo Ao ]

; (67)

where A represents intra—arrangement coupling and B inter—arrangement coupling.
When M is symmetric, then Bee and Beo are also symmetric and Beo and Boe are
transposes. The signs in Eq. g67 ) follow from the discussion above, except here the
radial functions are the same for all arrangements since the potential is an even
function of cos~y o However, the pattern of P matrices remains because the P

which arises from Eqs. (34)—(35) commutes with the radial functions. In writing
Eq. (67) we have explicitly replaced the P matrix with =+ signs.

In this case, the transformation matrix is complex, albeit unitary. In
particular we have (see Ref. 4)

101 O 1 0
010 i1 0 -il
U= 10e¢10 el 0 , (68)
010 iex1 0 -iel
10el O e*1 0

(010 iel 0 —ie*l)

where i is y=1, € is exp 2i7/3, and * denotes complex conjugation. Applying this
transformation we have

Ae4-2Bee 0 0 0 0 0
0 Ao42Boo 0 -0 0
U]LMU _ 0 0 Ae—Bee hBeo 0 0 ’
0 0 hBoe Ao—Boo 0 0
0 0 0 0 Ae—Bee hBeo
0 0 0 0 hBoe Ao—Boo,
' (69)

where h is y/3. This transformation block diagonalizes the matrices into four
blocks, two of which are the same. Thus, applying the transformation to C in (7b),
rather than solving one set of matrix equations of order N = 3Neven 4 3Nodd, we
can solve three smaller sets of matrix equations of order Neven Nodd and Neven 4+
Nodd, If Neven = Nodd then the CPU time savings for large enough N will be
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63/(1% + 13 + 23) = 21.6.

Further discussion of symmetry decoupling will be provided in a later
publication.41

In addition to the CPU time savings discussed above, these block

diagonalization procedures reduce the storage requirements for the calculations
since the null blocks need not be stored.

4. Storage Manangement Strategies
4.1. GENERAL CONSIDERATIONS

It is a general principle of conventional programming practice that recalculation of
quantities appearing more than once in an algorithm should be minimized.
However this goal often comes into conflict with the physical limitations of the
available computational resources. One is then faced with the choice of using more
CPU resources and calculating the same quantity more than once or saving every
quantity of potential later use and limiting the size of possible calculations because
of finite memory or disk or slow input/output. Our strategy in the newest version
of our code is to minimize the storage requirements subject to the constraint that
excessive amounts of CPU resources will not be spent in recalculating expensive
steps. We now discuss the choices we have made and give examples of the
penalties incurred by not storing all quantities used two or more times. It should
be emphasized that we are designing the present methodology for very large—scale
calculations and to the extent that various parts of the calculation scale differently
with the size of the problem, our methods will not be optimum for simple problems
like the reaction of H with H2 at low total energy and angular momentum.

One reusable set of quantities in our calculations are the intra—arrangement,
intra—distortion—block potential matrix elements ‘Ugg, defined by Eq. (14a). The

intra—arrangement, inter—distortion-block matrix elements Vgn, defined by Eq.

(14) are required only in the nonreactive radial integrals of Eqs. (44) and (45), and
hence they may be calculated, used once, and discarded without penalty, but the

matrix elements Ugg , appear at two steps of the calculations and require further

consideration. The Ugg , matrix elements are needed at every finite difference
oint to construct the FDBVM matrix in order to calculate the radial functions
Egs. (17) and (20)], and they are used in the construction of the

ac
inter-arrangement matrix W no [Eq. (16)]. Thus it would seem advantageous to
0

store them. However they occupy considerable space and so we consider
recalculating them.

There are three considerations which make the recalculation of the
nonreactive potential matrix elements feasible. The first is that in the limit of a
large number N of channels, the time required for the calculation of this matrix
will scale as the square of the number of channels while the solution of Eq. (7b)
will scale as the cube of the number of channels. Thus comparatively little time
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will be spent calculating the matrix elements when N is large (see, however, Sect.
5). The second consideration concerns the calculation of the potential matrix itself
— it is possible to calculate the matrix at a single distance independently of all -
other distances and still do it using vector instructions. The final point concerns
the strategic way in which we have organized our calculations. On average each

Ugg » matrix element is used at most about 4/3 times. Most of this factor of 4/3

comes from Egs. (17) and (20) where each matrix element is required once at every
finite difference grid point. The remaining part comes from the integrations of
Eqs. (44) and (45) [see also Eq. (16)]. By performing the integration over R 0 8

indicated in the inter-arrangement parts of Eqs. (44) and (45), each matrix
element is required once at each R o quadrature point and by using repeated

Gauss—Legendre quadrature, there are typically only about a third as many

quadrature points as finite difference grid points. In addition, these quadratures
aoy am

are only calculated provided the ignno and/or B o matricies are non—negligible.

Thus recalculating the matrix elements will not incur a large increase in
computation time. We see then that an important consideration making the
recalculation of the potential matrix elements feasible is our use of an efficient

quadrature scheme. (It also should be noted that the matrix elements Vﬁ’n,

coupling different distortion potential blocks of the same arrangement are also
required only at the quadrature points rather than at all of the finite difference
grid points.)

The analysis of timings for calculations we have made using simple potentials
indicates that only a very small fraction of the overall run time is spent calculating
the intra—arrangement potential coupling matrix elements. However,
calculations3}~33 using complicated potentials such as the accurate H3 DMBE55
potential spend a nontrivial amount of time on this task. In this case one can

consider the slightly different strategy of recalculating the Ugn,, but saving the

potential expansion coefficients u/l\nt’a. These potential expansion coefficients are

independent of the number of channels, so that eventually their evaluation will
become negligible; however this is complicated by the fact that we need to retrieve
or re—calculate each expansion coefficient for each distortion block, and as the
number of channels increases, the number of distortion blocks usually increases
also.

We now turn to the question of performing calculations at several energies.

The quantities Ugg, and ngg are independent of energy while the radial
functions are not and must be calculated at each new energy. Thus it might seem
desirable to save the Ug‘n, and Wg‘gg. However these matrices would require

considerable storage, especially ngg, which is a function of two radial distances.

On the other hand, timing analyses indicate that only a small fraction of the
overall run time is spent evaluating these matrices. Thus in our formulation of
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reactive scattering, there is no significant advantage in saving energy—independent
quantities.

4.2. ARRAY REQUIREMENTS

The program is organized into eleven links performing the various steps of the
calculation. When arrays are needed in only one link, they are stored in blank
COMMON, which thereby becomes a scratch space overwritten by each link. The size
of blank commoN is therefore determined by the link with the largest temporary
storage needs; this is link 10 which forms the C and B matrices. Arrays needed by
more than one link are stored in labeled coMMON blocks.

The major array storage requirements for the GNVP calculations are listed
below along with their sizes. The arrays are listed in the order they occur in the
calculation, as discussed in Sect. 2.2. Only arrays in blank COMMON in link 10 or in
labeled comMmon affect the memory requirements, and only these are considered.
For simplicity the list has been prepared for a case with no symmetry; we will
discuss the savings possible when symmetry is used at the end of this section. In
addition, we assume for simplicity in tabulation that all the following parameters
are independent of arrangement:

NEO the number of haramonic oscillator functions used to expand the
diatomic wave functions for arrangement a.
N o the number of channels in arrangement a.

N%X the number of nodes in the optimized vibrational quadratures for
computing Ugn,.
N%IZ‘Y the number of nodes in the angular quadratures for computing U%

nn
NRS i defined below Eq. (23).

0 nax o Dumber of distortion potential blocks in arrangement a.
Nrot 5 number of channels per distortion potential block.

b
N E number of finite difference grid points in arrangement a.
m number of translational basis functions per distortion block.

The largest arrays requiring storage and the leading terms in their

dimensions are given in Table I. The quantity fNZ is a user input parameter,
which equals the fraction of Percival-Seaton coefficients that are nonzero. (Since
this is not known, we use an estimate which must be greater than or equal to the
true fra,():tion. Even a cautious estimate though can save a significant amount of
storage.

gFor typical runs the last three arrays in the Table I account for about 90% of
the storage. Thus the memory requirement scales approximately as the second
power of the number of channels.

When symmetry is included, the storage needed for these N i arrays is
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TABLE I
Storage requirements for largest arrays (case of no symmetry)

array defined in Sect. storage required
avj HO
B y 2.2.1 3N N,

2..QV
WCYV,j/Vj 2.2.1 SNQNOZCY

JAa . . QA 2,NZ
fnn’ and associated packed indices 2.2.2 6 N o a’Naf

b (R ) 21,222 3N‘mg
a oF QRS
O Ry, ) 222 NG ON N

‘N oF QRS
&ms(Ra ’13;) 2.2.2 31\;‘12 TN o N g
Z 10oRa,) 224 N2

F 2
7 pn,(R . ) 224  myN o

o 2.1 N2
B | 2.1 INZm
- 2 9

decreased by a factor of 1/2 for the A + B, case and by a factor of 1 /6 for the A
case.

3

5. Scattering Matrix Formulation
5.1. THEORY

We now discuss using complex rather than real boundary conditions to directly
calculate the scattering matrix. This can have several advantages. First of all, the
use of complex boundary conditions eliminates the possibility of spurious
singularities in the final inversion step. Second, if iterative methods are used to
solve the complex analog of Eq. (7b), it is possible to solve for a column of the
scattering matrix corresponding to a particular initial state without having to solve

for the other initial states; this can convert the final N 3 step to an N2 one. An
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additional possible advantage is that fewer channels and gaussians may be required
to converge an individual column of the transition matrix than to converge the
whole reactance matrix. ‘

A re—derivation of the GNVP equations in terms of scattering matrix
boundary conditions shows that few of the equations presented in Sect. 2 are
modified. The ones that change are Eq. (3), which becomes

. 0
Snno - 6aao Snno + Gy,nno’ (70)

and Eqgs. (4) and (7), which become
o= o5 + BTOIE, (1)

where OSnno is the scattering matrix due to the distortion potential, and the

quantities 9)3 , B, and € are given by the same equations as those for J& B, B, and
) .
C in Sect. 2 except that the radial functions o fgno and glz B with o = ap=q,
() " . .
are replaced by the complex functions f Tgn and gll\lI 3 which satisfy the large-R o

()
boundary conditions

,(%_f)%k;‘%{énn, exp[-i(k R, — ¢ 7/2)] -
Tgn’ Ra:* oo4 - (?'Snn/lAgn,exp[i(knRa — ¢ 7/2)]}, k;?1>0;
i(2]k )72 {6, exp[lk, | (R, — Ry)] -
= °Sp Anysexpl-Ik | (R —Rp)1}, kﬁ<0,
(72)
and
Ny -, 37 k;‘jxp[i(knaa— £ 7/2)], k§>0 s
o> i(2]k )7 exp[-k | (R, — Rg)l, k<0,

where the new boundary condition matrix agn is given by Eq. (23) with the
complex radial function 0 Tg substituted for the real one. It should be noted

that the form of the matching functions in Eqs. (72) and (73) is required for the
simple form of Eqgs. (70) and (71) to be valid.

The matrices required for Eq. (71) can be calculated in two ways. First of all
one can modify the boundary conditions used when solving the FDBVM equations
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to directly yield the complex radial functions and then proceed as with the real
case. The second way of calculating the required matrices is to note that they can
be constructed from the corresponding real matrices. This should be the more
efficient method since the increased work of complex arithmetic is avoided until
the end. In addition, the storage requirements should be less since real quantities
require half the storage of complex ones. Thus we adopted this strategy.

In order to give the relations between the real and complex quantities, it is
desirable to partition matrices into parts corresponding to open (i.e., energetically
allowed) and closed (i.e., classically forbidden) channels. This is because of the
different boundary conditions for these cases. Thus distortion potential block 6 has
a reactance matrix which we write, similarly to Eq. (3), as

oK%o oK((;C
OK = y 74
) oK%o oK%c (74)
where 0 again stands for open and ¢ stands for closed. Then the distortion
potential scattering matrices ©S 5 are given by
. 00\ . 00
085 = (1 - 1°K6 ) 1(1 + IOK(S ). (75)

We will transform the distorted wave radial functions for distortion blocked § by
(D (D
15=""13A, . (76)
where the transformation matrix A 5 is given by
3y s 000 : o900 oc
—(2i)2(1 —i°oK¢" )1 —1-io0K;")1oK
Ag= s 67 8| (77)
0 il

This also means that the boundary condition matrix for distortion block 4 is given
by

4% = dTA, (78)

Finally we use Eq. (30) to generate the half integrated Green's functions which
satisfy Eq. (73), and for distortion block §, the transformation matrix X s s given

by
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—4(1 + i)agO T —4(1 + i)?i%c T

X.=
6 0 0

(79)

For the following equations, we define A and X to be the block diagonal matrices
with diagonal blocks equal to A 5 and X & respectively.

With these definitions, the matrices we require are

B
sB=aTx 04 (80)
8= (B+XxI#B)a, (81)
and
8=C+X'9-BX-X'8-xTxBx, (82)

where the elements of Dare given by

Zagy =] Moy ing Rty ng Fon) (83)
nﬂo Gp nn Bo ap’ 'm ﬂon Bo o
with
ao (r) ao _ '
Anno fnon(’Ra’O)’ an = Qp;
np o (n o ‘o ag
n n n .
[aRy Z A TRy (R Ry othervise,
(84)
and
—_ (07 ‘N
%ﬂo = dRaO E’ An/n‘?;m’(ROlo)gﬂ’ﬂo(Rozo)' (85)

Thus it is necessary to compute the additional two matrices & and & when
complex boundary conditions are used. However, by virtue of their smaller
dimensions, the extra work required will be small compared to the work required
to generate the C matrix.

The symmetry decoupling procedures of the previous section apply here as
well without change.

Another treatment of complex boundary conditions is provided in Ref. 40.
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Equation (71) may be solved iteratively by extending iterative techniques

developed already56 for solving eq. (7). - With iterative methods the computational
effort for these steps scales with the number of channels as M2, as compared to M3
for direct methods. Thus it becomes more imperative to Optlmlze the other M2
steps in the calculation, as discussed in detail in Sect. 2.

5.2. EXAMPLES
As an example of the convergence properties for runs with employing symmetry

decoupling and real and complex boundary conditions we consider the reaction D

+ Hs — HD + H on the DMBE55 potential energy surface. The A + Bs
symmetry was used in the same way for both sets of boundary conditions. We
considered a total energy E of 0.98337 eV. For both of the arrangements, D +
Ho(a = 1) and H + HD(a = 2), the number of harmonic functions used to expand
the vibrational eigenstates is 78. The number of nodes in the optimized vibrational

quamdra}cures47 employed for U o is 14. The number of nodes NQ‘Q in the angular
quadratures for non—exchange 1ntegrals is 30. The finite difference grid extends
fromR = 0.80 ag to 20.0 ag for D + Hs and from 0.40 ag to 15.0 ag for HD + H;
in both cases the number NF o of grid points is 596.

For the exchange integrals the number NQA, of angular quadrature points is
60, and the radial integrals are carried out w1th 16 repetitions of 12—point
Gauss-Legendre quadrature (NQGL 16, NQR 12, NQRS NQGLNQR)
The maximum and minimum bond distances for which any v1brat10nal wave

TABLE II i
Parameters of the gaussian basis sets

-3 m=5 =7 m=16
a=1(D + Hy)
3 | (20) 2.50 2.20 2.20 2.20
A&G) (20) 0.50 0.40 0.31 0.30
- (a0) 3.50 3.80 4.06 6.70
= 2,3 (HD + H)
| (20) 2.50 2.20 2.20 2.20
A((;G (20) 0.50 0.40 0.33 0.30

o (20) 3.50 3.80 4.18 6.70
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function exceeds 10-9 were determined, and angles corresponding to distances
outside this range were excluded from the inner (angular) quadrature loop in all
exchange integrals. '

We will compare four gaussian basis sets with complex boundary conditions
and three with real boundary conditions. In all cases the gaussian width

pa,rameter57 ¢, which determines the overlap of neighboring gaussians, was set

equal to 1.4. The other parameters of the runs are given in Table II. The notation

is as follows: m is the number of gaussians per channel, R(g 1
’

innermost gaussian, A(G) is the spacing between gaussians, and R(j [ 18 the

is the center of the

center of the outermost gaussian.

Five vibrational levels with maximum rotational quantum numbers of 16, 15,
14, 13, and 12 were used in each arrangement. Thus the total number of channels
for J = 0 is 225, and 55 of these are open. For J = 1, this vibrational-rotational
basis yields 210 channels with 49 open for parity P = 1, and it yields 435 channels
with 104 open for parity P = —1.

Reaction probabilities for D + Hy(v,j,{) — H + HD are defined by

3
ieT 2y Pivitmavye 9
where
a V. .Z—»a v i, ISnn’|2’ ntn’. (87)
n'nInn " % Vn’dn’n :

In separate runs we determined that the values ij ), in the run with complex

boundary conditions and m = 16 are well converged with respect to changing all
numerical and basis parameters. (In fact, some of the parameters are overly
cautious. For example, except for the very small probabilities, very good
convergence is achieved for both real and complex boundary conditions by m =
11.) Thus we define the percentage deviation for other runs by

|P -e(m, Ror(C) - P . p(n=16, C)|
per. dev. = —YJ ijg(mzlﬁ,v(J)) — x 100% (88)

where R and C denote real and complex boundary conditions, respectively.
Selected results for J = 0 are given in Table III, and Tables IV and V give selected
results for the two parity blocks of J = 1. We see that real and complex boundary
conditions converge to the same reaction probabilities. Furthermore, we see that
many reaction probabilities are converged to better than 1% with m = 3, and
almost all the reaction probabilities are converged to better than 1% with m = 7.
For the reaction probabilities shown, the average deviation of the m = 7, C run
from the m = 16, C run is 0.2%.

A few of the results for m = 5 show surprisingly large deviations. Additional
calculations with all m in the range m = 3-11 and with both real and complex
boundary conditions showed such instabilities only for m = 5 and—to a lesser



3t

TABLE III
Convergence checks for D + Hy — HD + H,J =0
,ijé percentage deviation

vj £ m=16,C m=3,R m=5R m=7R m=3,C m=5C m=7,C

000 6.14(—1 0.30 1.0 0.03¢ 1.1 0.29 0.0073
011 9.05(-1 1.3 0.71 0.21 1.3 0.34 0.0053
022 5.57-1 0.19 0.18  0.081 1.3 0.0067 0.093
033 6.77(-1 0.56 0.44 0.0015 0.67 0.29 0.043
044 7.08(-1 0.073 0.16 - 0.036 0.66 0.30 0.014
055 4.62(-1 0.90 1.1 0.11 0.85 0.85 0.12
066 221(-1 0.79 012  0.22 1.2 0.44 0.22
077 5.39(-2 3.9 0.51 0.077 1.5 0.10 0.059
100 296(-1 7.8  22. 0.64 1.3 1.6 1.0
111 4.08-1 7.4 0.26 0.42 2.2 1.0 0.89
122 1.20(-1 17. 36. 0.0095 5.8 0.89 0.40
133 8.65(-3 13. 5.8 1.0 14. 6.4 1.4
TABLE IV

Convergence checks for D + Ho— HD + H,J =1,P = +1

P

vijlt percentage deviation
vj{ m=16,C m=3,R m=5R m=7,R m=3,C m=5_C m=7,C
011 4.70(-1 0.43 1.8 0.17 0.14  0.023 0.11
022 8.61(-1 0.26 0.18 0.089 0.085 0.076 0.051
033 6.23(-1 0.17 2.9 0.039 1.1 0.0096 0.062
044 5.79(-1 0.16 0.16 0.0065 0.22 0.24 0.021
055 6.06(-1 0.022 0.61 0.040 0.040 0.31 0.046
066 3.24(-1 14 0.12 0.22 1.3 0.23 0.21
077 6.54(-2 3.3 12. 0.045 2.7 0.27 0.047
111 5.50(-3) 16. 3.4 0.089 7.4 0.73 0.11
122 6.70(-3) 25. 3.2 0.41 7.8 0.86 0.29
133 1.49(-3) 19. 592. 0.23 11. 2.2 0.93
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TABLE V
Convergence checks for D + Hy, HD + H,J =1,P = -1

ijl percentage deviation

vj { m=16,C m=3,R m=5R m=7,R m=3,C m=5,C m=7,C
001 6.14(-1 2.3 0.15 0.15 0.99 0.29  0.046
012 7.62(-1 0.024 0.016 0.086 0.85 0.24  0.0063
023 6.74-1 1.2 0.31 0.16 0.60 0.082 0.0000088
034 6.50(-1 0.083 0.24 0.017 0.45 0.15  0.050
045 6.40(-1 048 0.20 0.10 0.27 033 0.031
056 4.89-1 025 0.41 0.044 045 0.59 0.061
067 2.25-1 1.2 0.22 0.17 1.2 0.32 0.18
078 4.33(-2 3.1 0.19 0.047 2.2 0.15 0.031
098 4.56(-5 1.5 1.5 0.54 2.4 14 0.43
110 1.55(-1 5.2 0.52 0.26 3.1 0.99 0.66
121 6.27(-2 1.1 1.1 0.16 6.0 0.67 0.41
132 6.07(-3) 15. 4.7 1.2 14. 5.0 0.42

extent—for m = 10 and only for the real boundary conditions. No such
instabilities have been observed in calculations with complex boundary conditions.

6. Concluding Remarks

With sufficient attention to algorithmic efficiency, it has become possible to solve
very large-scale problems in quantum mechanical reaction dynamics. Section 5.2
discusses calculations on the reaction D + Hp(v=0,1) — HD + H both for J = 0
(see also Refs. 13, 14, and 36) and J # 0, and, in previous work using the
techniques described here, as well as earlier nonvariational and variational
algorithms for .#2 expansions of the reactive amplitude density, we and coworkers
have performed converged calculations of several other reactive processes,

including, for J = 0, H + Hy(v=0-2) — Hy(v’=0-2) + 11920313339 ¢
Ha(v=0,1) — OH(v’=0,1) + H,'%3430 § 4 HBr(v=0) — Ha(v'=0,1,2) +
Br,3%39 and Cl + Ha(v=0) — HCl(v’=0) + H.%% We have also obtained accurate

results for H + Hy(v=0,1) — Hy(v’=0,1) + Hfor J = 0—20,33 and accurate results
have been obtained for O + HD(v=0) — OH(v’=0) + D and OD(v’=0) + H for J

= 0—2.39 We anticipate further improvements in several areas, e.g., more efficient
strategies for the Green's functions, better basis sets, and physical or decoupling
approximations as initial guesses for iterative techniques. These improvements
should allow even more progress in the future.
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