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ABSTRACT. This paper is an introduction to recent research in generalized
transition state theory. We derive the theory by considering the equilibrium flux
through a surface dividing reactants from products, and we show its equivalence to
the quasi—thermodynamic formulation of transition state theory. We show that
conventional transition state theory is obtained from the generalized theory with a
specific choice of dividing surface, but we stress that in many cases the variational
identification of the transition state provides significant improvement. We discuss
methods for including quantum effects, with special attention to the semiclassical
treatment of tunneling. We briefly review tests of the theory and applications to
gas—phase, condensed—phase, and interface reactions. Finally we discuss the
importance of nonsubstantial contributions to quasi—thermodynamic quantities.

1. Introduction

Transition state theory (TST) has been the most widely used framework for the
interpretation of reaction rate constants for many years [1,2]. Transition state
theory is used in two quite different ways, which we will call the phenomenological
approach and the absolute rate theory approach. In the former, experimental data
are interpreted using transition state theory concepts, and — in favorable cases —
parameters characterizing the transition state or the barrier to tunneling are
extracted. In the latter, rate constants are calculated using semiempirical or ab
tnitio information either about the electronic forces on the nuclei or about the
Born—Oppenheimer potential energy hypersurface (which is usually just called the
"energy surface"). Recent research on the latter approach, including both
variational generalizations of the conventional theory and improved methods for
calculating tunneling contributions, has led to much better estimates of the
accuracy that can be achieved with this method than were previously available. It
has also led to a better understanding of dynamical bottlenecks and tunneling
paths, allowing us to interpret the phenomenological parameters obtained from
experiment, even in cases where full force fields or energy surfaces are unavailable,
and, consequently, full rate constant calculations cannot be performed. In the
present review we summarize the principal concepts and equations which have
emerged from this recent research and which provide us with a better framework
for understanding many types of reactions, including gas—phase bimolecular and
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unimolecular reactions, reactions on surfaces, and reactions in solution.

As mentioned above, the absolute rate approach requires information about
the potential energy as a function of nuclear coordinates; the amount of such
information required is dependent upon which generalization of TST is used, and
whether tunneling corrections are important. For a variational transition state
theory calculation with a fully optimized multidimensional tunneling correction,
the amount of information required is intermediate between a reaction—path
Hamiltonian and a full energy surface.

Although derivations of TST may be found in many textbooks, these
derivations are almost invariably based on a quasi—thermodynamic treatment of a
postulated equilibrium between the reactant and transition state species [1,3]. One
can obtain more insight into the validity of the theory, though, by deriving it from
a dynamical approach [4—8], which makes the nature of the equilibrium
assumption more transparent. This type of derivation, which we shall use here,
allows for an explicit statement of the dynamical assumptions required by TST. It
also provides a specific definition of the transition state "species", and — it will be
seen — this definition naturally allows for variational improvements of TST. We
will derive a result for generalized transition state theory (GTST), and we will
obtain conventional and variational TST as special cases.

Section 2 contains a pedagogically oriented dynamical derivation of TST.
We begin this section by defining a useful general coordinate system. Then we
consider the continuity equation for an ensemble of reactive systems in phase
space, and we present a simple derivation of an expression for the equilibrium flux
through a phase—space hypersurface that divides reactants from products. We
equate this hypersurface with the transition state species, and we make the TST
approximation, which equates this flux to the rate constant. We end Section 2 by
showing the equivalence of the dynamical result with the standard result derived
by postulating the transition state to be in equilibrium with reactants. All
considerations in Section 2 are entirely classical. In Section 3 we quantize all
modes except the reaction coordinate, and in Section 4 we describe several
methods for including quantum effects on the reaction coordinate.

Section 5 discusses tests and applications of the theory to various gas—phase
processes, and Section 6 discusses extensions to reactions at crystalline surfaces
and in condensed phases.

In Section 7 we discuss different ways to formulate GTST in terms of
quasi—thermodynamic parameters of the transition state species. We show that
nonconventional contributions to the enthalpy and entropy of the transition state
species may be required in order to use these quantities to accurately estimate rate
constants.

2. Classical Variational Transition State Theory

First we derive a classical generalized transition state theory rate constant
expression, following Refs. 4-8. We consider, as a general example, a system of
classical particles which interact according to a known energy surface V.
Specifically, we consider systems in which reaction occurs electronically
adiabatically in the ground electronic state with negligible vibronic coupling. The
reaction may then be treated as the motion of N atoms governed by a single
Born—Oppenheimer potential energy surface. We consider an N—atom system

- which can undergo chemical bond rearrangement. This system will be, at any
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given time, in the reactant region of phase space, in the product region, or in some
intermediate region. If the reaction is to be described unambiguously, the
probability of being in the intermediate region should be small.

We shall consider both bimolecular and unimolecular reactions. In the
former case we write

A+B—ABT P, (1)

where A and B represent the reactant species, which may be atoms, radicals,

molecules, or ions, AB+ represents an activated complex, and P represents the
products, which may be an associated product AB or two new subsystems, say C
and D. In the case of unimolecular reactions, we write :

A— AT - P. 2)

In both (1) and (2) we pay no explicit attention to inert collision partners or
solvents, although these may play an essential role in promoting equilibrium
among reactants, stabilizing nascent products, or both. If collision partners or
solvents have interactions with the reactants or with the activated complex that
alter the partition functions of these reacting species, they can be included by

letting A, B, and AB“‘= or A and A+ represent solvated species rather than isolated
ones.

Before deriving the classical transition state theory formalism for treating
such reactions, we present the coordinate system we use to describe N—atom
systems. For simplicity we formulate the description of such systems in terms of
3N isoinertial mass—scaled cartesian coordinates [9]. [These are essentially the
same as the mass—weighted cartesians widely used in vibrational spectroscopy [10].

. . . 1
The difference is that the spectroscopists' coordinates have units (mass)? length,

—1
but we introduce an extra factor 4 * so that the coordinates have units of length.]
Thus, if Ri7, for 7 = X, y, z, are the cartesian coordinates of atom i with respect to

the center of mass of the system, then the mass—scaled coordinates are defined by

s d
g5 = (7R, ;

m iy i=1,...,N; r=x,y,2; j=1,...,3N,

(3)

where mj is the mass of atom i, and x is a parameter with units of mass. A
convenient choice of x is the one used by spectroscopists, i.e., 1 atomic mass unit
(1 u =1 universal amu based on '2C). Another convenient choice, for gas—phase
bimolecular reactions at least, is the reduced mass of reactant relative
translational motion,

Urel = mAmB/(mA + mB)a (4)

where m A and mp are the masses of reactant A and B, respectively. In the
coordinate system of (3), the kinetic energy contains no cross terms, and the
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reduced mass p factors out, i.e.,

T=1u 5§02 | (5)

i=1

which means that the same mass p is associated with motion in any direction.
(This is why the coordinates are called "isoinertial.") Therefore, motion of the
N—atom system governed by the potential surface V({R,; 7}) is equivalent to the

motion of a single—particle of mass 4 in 3N dimensions governed by the energy
surface V({qi}). In other words, if we could construct the 3N—dimensional
potential surface, V({qi}), and slide a frictionless point of mass u along this
surface, the position and momentum, {ql(t)...q3N(t), pl(t)...p3N(t)}, of this mass

on the surface at any given time t would correlate to the actual configuration and
momentum of the many—atom system at time t. Thus the use of mass—scaled
coordinates reduces an N—body problem in three dimensions to a 1-body problem
in 3N dimensions.

The classical statistical mechanics of the reaction will be treated using an

ensemble of N—atom systems, each represented at a given time t by a point (B,a)

in 6N—dimensional phase space, where p = y dq/dt. The kinetic and potential
energies of the system are functions of the 3N—dimensional vectors defining the

-

phase points, i.e., T = T(p) and V = V(a). The Hamiltonian, which is needed
below, is given by

H(p,a) = T(p) + V(q)- (6)

We will derive the classical transition state theory rate constant in two
steps. First we will derive an expression for the equilibrium flux of systems
passing through a mathematical surface separating reactants from products. Then
we will identify this surface with the transition state to reaction and make the
fundamental assumption of transition state theory to relate the equilibrium value
of the flux through the transition state to the overall reaction rate.

2.1. FLUX THROUGH A SURFACE
Consider an ensemble of systems like the one described in the previous section,
each of which is described by a 6N—dimensional point in phase space. Defining the

density of classical phase space points as p(f),a) and the rate of change of this
density with time as (dp/dt), it is clear that conservation of the number of phase
space f)oints in the ensemble requires the satisfaction of the continuity equation
[11,12

-g%+§'p;=0, (7)

where ¥ is the 6N—dimensional divergence operator [11a] and v is the
6N—dimensional velocity of a point in phase space.
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Different regions of phase space are governed by different parts of the

potential surface V(q), and, consequently, may correspond to different chemical
species. Thus, by following the flow of points between specific regions of phase
space, we can study the course of chemical reaction in our ensemble of chemical
systems [4,5]. To this end we first consider a volume R in phase space
corresponding to the reactants. Rearranging eq. (7) and integrating over the phase
space volume R yields

gl o=t AN, (8)

where we have introduced the 6N—dimensional volume element,

3N

T= Hl dp;dq; (9)
1=

d6N

and we have used the fact that the volume R is not a function of time. Since the

integral on the left—hand—side of eq. (8) is just the number N of systems in our
ensemble that are in the region R, we define the quantity

NR = IR o, P, (10)

and rewrite eq. (8) as

R R
- jR dN- V. v, (11)

which clearly shows that the right—hand side counts the number of systems leaving
the reactant region of phase space as a function of time.

Next we define S to be a (6N—1)—dimensional surface in phase space which
bounds the volume R. We can use Gauss' theorem [11b] to rewrite eq. (11) as a
surface integral, i.e.,

R

-4 - J da ey (12)

where da is the differential element of area lying in the surface S, and n is a unit
vector normal to the surface S and pointing out of the volume R.

Now we define S as a (6N—1)—dimensional hyperplane which divides the
reactant region from the product region. We assume that the chemistry of the
situation allows us to find a hyperplane dividing reactants from products such that
all flux leaving R passes through it. There is then no error incurred in using this
hyperplane instead of an enclosing surface to divide reactants from products. In
this section, our goal is to calculate the local one—way flux F* through this
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dividing surface, i.e. the local flux of systems %oing from reactants to products.
Since eq. (12) gives the difference of the local forward flux and the local reverse
flux through the dividing surface, i.e. the net local flux, we can define F* by
analogy to eq. (12) as [5%

P+ = fs da pv-n, (13)

+

where S, is the portion of the dividing surface S for which

(v-n) > 0. (14)

When we substitute the equilibrium density for p, eq. (12) will of course give zero,
but eq. (13) will give the equilibrium one—way flux.

The most convenient way to evaluate F* for the specific case described
above is to define our coordinates such that a3N is a cartesian coordinate normal

to S. This special coordinate is the local reaction coordinate, and it will be called
z. The surface is then defined by setting z equal to a fixed value which we denote
as z,. With these definitions, the component of velocity orthogonal to the surface

S, in the direction reactants—to—products, is

> _dz_p,_MN
M P (15)

The condition (14) then becomes g—f— > 0 or p; > 0, and the surface element da
becomes

da = dql...dq3N__1dp1...dp3N_1de,
= dGN_Qpoz. (16)

Substitution of eq. (15) and eq. (16) into eq. (13) yields
Fr= ] a6N-2, /% dp, p Bz (17)
Z 0 H

=2,

%\Iotice that the limits on dp, are 0 to oo, rather than —o0 to 00, because of eq.
14). '

) In this section, we shall confine our attention to systems for which it is a
good assumption to consider the reactants to be in local equilibrium at a fixed
temperature. The validity of this assumption for different types of reactions will
be discussed in Section 2.4. In such systems, the density of states is given by a
Boltzmann distribution [13],
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_H/RT

p = poe (18)

where H is the classical Hamiltonian of eq. (6), po is a constant, k is Boltzmann's
constant, and T is the temperature. Substitution of this distribution into eq. (17)
yields the one—way flux as a function of temperature,

z=2,

r [° dp, e /KT By (19)
0 H
while substitution into eq. (10) yields
NR(T) = po I BN —H/RT (20)

In order to perform the integration over dp, in eq. (19), we separate the
Hamiltonian as

2 —
H= 15-2 + HGT(u,pu;z) (21)

where (p3/2p) is the kinetic energy associated with motion along z, orthogonal to
the surface, and HGT(u,pu;z) is the remaining part of the Hamiltonian; u denotes

the coordinates dy> Ggy -+ A3N_1> and Bu denotes the conjugate momenta P» Py

-+ PIN_1° (The superscript GT denotes the fact that the fixed—z hyperplane is a
generalized transition—state.) Substitution of the separated Hamiltonian, eq. (21),
into eq. (19).gives

. T ENREN
Fo(T) = po I dps B 6 PH2ET N2, —HOT(up ja=2 ) /KT
0

(22)

Notice that we set z=z, in HGT because the integral is only over the surface
S(z=z,). Integration over dp; yields the desired expression for the local one—way
flux through a dividing surface,

GT,~= o
F+(T) = pokT [ dON27 g H~ (wpy52=2,) /KT (23)

Since eq. (23) can also be considered to be the one—way flux through a generalized
transition state fixed at z=z,, we shall refer to F*(T) as FGT(T,z*) from here on.
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2.2. FUNDAMENTAL ASSUMPTION OF TRANSITION STATE THEORY

Since the rate of a reaction depends on the concentration of the reactants, it is
convenient to work not with the rate itself, as in eq. (12), but rather with the rate
coefficient, k(T), which is defined as the reaction rate per unit volume divided by
the product of the concentrations of the reactants. For simplicity we now consider
the ideal case where back reaction is negligible. Then by "reaction rate" we mean
net flux from reactants to products when the product concentration is negligible.
Having calculated the rate coefficient for this ideal case, we will assume, as is
standard in chemical kinetics, that it may also be used in more complicated
circumstances, such as when back reaction or side reactions are not negligible.

We shall consider only gas—phase reactions in this section. The results for
reactions in condensed phases, e.g., reactions in solution and reactions on surfaces,
will be similar, but in these cases the overall translation of the reactant(s) and the
overall translation of the transition state species are not free, i.e. they are hindered
by interactions with the bath molecules, and, consequently these degrees of
freedom cannot be separated from the rest of the problem, as they are in
gas—phase systems.

For a unimolecular reaction [eq. (2)], the rate constant is given by

k(T) = F(T) (24)
V[A]
where F(T) is the global net reactive flux through the surface bounding the
reactant region of phase space, in molecules per unit time and in the absence of

products; V is the volume; and [A] is the concentration of the reactant in
molecules per unit volume. By the definition of concentration,

[A] = NA/V’ (25)

where N A is the number of molecules of the reactant A. For a unimolecular

reaction, however, N, = NR(T) as defined. by eq. (20), and substitution of eq.
(25) into eq. (24) will therefore yield

k(T) = ELTL (26)

NR(T)

The local equilibrium one—way flux F*(T), as given by FGT(T,Z*) in eq.

(23), is not, however, necessarily equal to the global net equilibrium flux in the
absence of products, as required in eq. (26). In general, if reactants are at

equilibrium, FGT(T,Z*) will be greater than F(T), since although all systems

contributing to the flux out of the reactant region and into the product region
must cross S at least once, there is no guarantee that they will cross S only once.
Thus, a system which crosses S towards products and then recrosses S towards

reactants will make a positive contribution to the local one—way flux, FGT(T,z*),
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but will not contribute to the net flux, F(T). It is easy to see [14,15] that any
trajectory which crosses the dividing surface more than once will make a greater

contribution to FGT(T,z*) than to F(T); thus FGT(T,Z*) provides an upper bound

to F(T) if reactant equilibrium is maintained. It is also clear that FCL(T,z,)

will only be a good approximation to F(T) if the dividing surface is defined in such
a way that there is little or no recrossing of trajectories before they are thermalized
in the reactant or product region, i.e., if the dividing surface is placed at a good
bottleneck to reaction.

In order to further evaluate eq. (26), we employ the "last assumption"
[4,16] of classical transition state theory, namely that we can find a dividing

surface S(z) for which there is no recrossing and the local one~way flux FGT(T,Z*)

equals the global net flux, F(T). (By "no recrossing" we mean that all paths
crossing the surface toward products originate in R and cross S only once, ending
in the product region of intrest [4].) If we then substitute eq. (23) into eq. (26), we

obtain the classical generalized transition state theory rate constant k(C;T(T) as

— 375 ;Z:Z*)/ET
ST (1) = 2o KT | N2, ¢ u

NY(T)

(27)

where the superscript GT again denotes the fact that the fixed—z hyperplane is a
generalized transition state.

In order to further understand the expression for the GTST rate constant,
eq. (27), it is useful to consider the general classical partition function for a system
of N distinguishable particles which is given by [13]

Z(T) = h—;’N [ N7 e HP.Q)/KT, (28)

where H(B,a) is defined by eq. (6), a7 s defined by eq. (9), and h is Planck's
constant. The classical partition function, eq. (28), is effectively a weighted sum

of "single—quantum-—state cells" in phase space; each cell is a box with volume h3N
in 6N—dimensional phase space and is weighted by its probability of being

populated; the weighting factor is given by the Boltzmann factor ¢ H(P,a)/KT
We also define here the classical partition function per unit volume, <I>C(T), which

is related simply to ZC(T) by
q’c(T) = Zc(T)/V, (29)

where V is the volume of the system. By comparing eq. (20) to eq. (28), it is clear
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that NR(T) is related to the reactant classical partition function Z‘é(T) [given by

eq. (28), but with the integration restricted to the reactant region of phase space]
by

NR(T) = oo 3N Z(T). (30)
Comparison of eq. (29) with eq. (30) yields the relation between NR(T) and the
reactant partition function per unit volume, @é(T), as

NR(T) = oo 13N v 03(T). (31)

The integral in the numerator in eq. (27) can also be related to a classical
partition function. In particular, consider the partition function per unit volume,

GT (where the tilde implies a specific zero of energy as discussed below), for
systems which lie in the dividing surface, i.e., for systems which have a fixed value
of z=z,. Because ﬁigT encompasses only (3N—1) degrees of freedom, and is

therefore not a partition function for any real species, it may be called a
quasi—partition function [17,18]. Specifically, keeping 1 degree of freedom fixed in

egs. (28) and (29) leads to the defining relation for ﬁigT(T,z*),

GT o
d6N——2Te—H (u,pu;z:z*)/ET.

GT _ 1
‘30 (Toz,) = ﬁ(ﬁm /
(32)
Computationa.lly it is not convenient to define this quasi—partition function for the

transition state "species" from the reactant zero of energy as in eq. (32). Instead

we define a quasi—partition function @8 (T z,) which has as its zero of energy the

potential energy, VRP(z_ z,), of the reaction path at the point where the reaction

path intersects the generalized transition state surface. (If no reaction path has
been defined, we take the intersection point as the point of lowest energy in the

hyperplane.) Thus QgT(T,z*) is related to $8T(T,z*) by

Vop(z=2,)/kT
08714, = e RPN 46T,

C T.z,). (33)

Combining egs. (32) and (33) and rearranging gives
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T - -
fd6N_2-re_HG (u,pu;zzz*)/féT _

e—VRP(z=z*)/ET

n3rye 8T (1,4,) (34)

Finally, substitution of eq. (31} and eq. (34) into eq. (27) gives the transition state
theory rate constant in its quasi—equilibrium form,

GT kT ‘DgT (T,z,) —VRP(Zzz*)/iZT
kC (T,Z*) “h T A, € (35)
22 (T)

Equation (35) may be simplified by canceling out the partition function for
overall translation of the whole system in the numerator and denominator. To do
this we note that

gy = Xrans Qi (36)

where Q>C( 1s the internal partition function (including overall rotation) of X, and

@%,ans is the translational partition function per unit volume of X given by

‘)
q’)t(rans = (szRT/h2)3/~, (37)
where my is the mass of X. Since the mass of the transition state species is the

same as the mass of the reactant, ®¢rans will cancel in the numerator and
denominator of eq. (35), yielding

kGT(T z ) _ ET Q(C3T (T ’ Z*) _VRP(Z:Z*)/T\:T
C \"™ TR T A o °© (38)
Q3 (T)

We can derive a similar expression for bimolecular reactions by replacing
eq. (24) with its bimolecular counterpart,

K(T) = (1) (39)
V[A][B]
and noting that
Al[B] = “ATB (40)
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which gives, with eq. (39),

k(1) = E(T)V (41)
N,Ng .

To continue, we note that in the reactant region, the reactants are independent of
each other; consequently the reactant Hamiltonian may be written as

i.e., as the sum of the Hamiltonians of the reactants. We also note that H A isa
function of {ql,A""’q3nA,A; pl,A"”’P3nA,A} and that Hg is a function of

{q1 B3y B Py B""’p3nB B}’ where 3ny is the number of degrees of freedom
b Ba 9 b

for reactant X, and the union of these two sets of coordinates is equivalent to the
set {ql,...,q3N; pl""’p3N}‘ We can then write the denominator of eq. (41) as

NNy =p e dq, ,...dq dpy 4...dp X
A"B T Fo R 1,A 3nA,A 1,A 3n,,A
x [ e dq, n...dq dp, n-..dp ,
R 1,B 3nB,B 1,B 3nB,B

(43)

which is related to the product of the reactants' classical partition functions per

unit volume Qé and @g by

3n 3n
AyzA B v4B
Making the TST assumption, we replace F(T) with FGT(T,z*) in eq. (41). Using

eq. (34) to write FGT(T,Z*) in terms of partition functions and eq. (44) for N AN
eq. (41) yields

B7

@gT (T,z,) -—VRP(z=z*)/ET
x e

, 45
S (T)3(T) )

GT kT
kC (T,Z*) = h ®

where we used the fact that N =n, + ng. In order to use eq. (36) to separate out
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the overall translation from QgT(T,z*), @‘é(T), and @g(T), we note that the

mass for the transition state species is M = m A T Mg, where m A and mp are the

masses of reactant A and B, respectively. Using eq. (37), we find the ratio of
translational partition functions to be

T q)(t}?anISB(T) - } — [ h2 ]3/2
re 9
@trans (T)®trans(T) @ (T) 27rllre1ET

(46)

where pre) is defined in eq. (4), and ®™¢(T) denotes the reactants' relative
translational partition function per unit volume. We define a reactant partition

function per unit volume, QS(T) as

O(T) = 2" (T)QATIQE(D), (47)

and eq. (45) the rate for a bimolecular reaction becomes

GT

Qo (T,2,) —Vppu(z=z,)/kT

kgT(T’Z*) = ER‘T C(I)R (T) € RP . (48)
C

To this point, we have considered only systems having a single reaction
path. To account for reaction path multiplicity, we need only multiply eq. (48) [or
eq. (38) for a unimolecular reaction]) by a symmetry factor, o, which is determined
by the number of equivalent reaction paths [19]. For example, the reaction OH +
Hjy would have o = 2, since either atom of the Hy molecule could be abstracted.
Thus, the rate is given by [17]

T,2,) —Vgp(z=z,)/kT
G (ra = o F1 2C 772 el (159)

for a bimolecular reaction, and by

\GT tr Q3 (T,2) ~Vgpla=z)/kT

(T,2,) = ———x——e (49D)
¢ TR TR ()

for a unimolecular reaction. When reaction path multiplicity is included in

kgT(T,z*) as in eq. (49), the rotational partition functions in Q%T(T,z*), Qg(T),

and Q‘é(T) should not include any symmetry factors [19].
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2.3. CHOICE OF DIVIDING SURFACE

Because the degree to which the TST rate constant approximates the true rate
constant is determined by the amount of recrossing of the dividing surface, and
therefore, by the precise choice of dividing surface, we discuss here a practical
method [8,9] for choosing the dividing surface that has been used successfully in
many applications. This method defines the (6N—1)-dimensional phase space
dividing surface to be a (3N—1)—dimensional coordinate-space hyperplane
orthogonal to the path of lowest potential energy connecting the reactant
configuration to the product configuration. This path is loosely termed the
reaction coordinate; more specifically it is known as the minimum energy path
(MEP). The MEP is found from the potential energy surface by starting at the
saddle point configuration, which is a maximum along the reaction coordinate but
a minimum in the remaining 3N—1 dimensions, and following the path of steepest
descents through the mass—scaled coordinate system [20—24]. (One would get a
different path if one followed the same procedure in unscaled cartesians [22?.)
Computational details of the steepest descents procedure may be found elsewhere
[17,25,26). We now find it useful to characterize motion of the system along the
MEP by the parameter s; s=0 defines the saddle point, s is negative on the
reactant side of the saddle point, and it is positive on the product side. Now, at
any given point s, we can rotate and translate our coordinate system such that one
rotated coordinate, denoted z, is tangent to the MEP at s and is defined to have a
value of zero at the point of tangency. The remaining rotated and translated
coordinates {q; (s),.--,a3_;(s)} are orthogonal to the MEP (at s), and the set of

all rotated and translated coordinates are called the local natural collision
coordinates. We also define the momenta {p,,...,p3_;,p,} conjugate to the

coordinates {ql""’q3N—1’Z} at each value of s. Thus, although the MEP may

follow a curvilinear path in coordinate space, we have defined, at each value of s, a
cartesian coordinate system that has one coordinate tangent to the MEP, i.e.,

lying along the MEP at s [8,9,17]. Using this coordinate system, any surface in the
family of surfaces orthogonal to the MEP may be described by setting z, = 0. The

position of a particular surface along the MEP, however, will be determined by the
value of the parameter s at which the dividing surface intersects the MEP. The
classical TST rate constant of eq. (49) is thus a function of the parameter s, and,
for a bimolecular reaction

3

kT Q(C;T(T»S) e_VMEP(S)/ET

GT
k2 (Ts)=o0 : (50a)
while for a unimolecular reaction
GT
GT pr QC (T:8) —Vypp(s)/KT

I\C (T,S) = O'H—— —QK(—T_)—C y (50b)
C
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where VMEP(S) is the value of the energy surface on the MEP at s.

The classical conventional transition state theory rate constant kz(T) is

obtained from eq. (50) by setting s = 0, i.e., by placing the dividing surface at the
saddle point. Note that VMEP s=0) is just the barrier height for the reaction,

and Qé(T) = QgT(T,s=O) is just the quasi—partition function for the saddle
point species.

- Because the TST rate constant provides an upper bound to the true

FGT(T,S) > F(T)], a better approximation than ké(T)

may be achieved by variationally minimizing k(C;T(T,s) with respect to the surface
position, s. This method is called canonical variational transition state theory
(CVTST) or, for short, canonical variational theory (CVT). The optimized

surface position SQVT

equilibrium rate constant |

is defined by the implicit equation

KSVT(T) = K8T(7,sOVT) = min kGT(1y9), (51a)
C C inkg

or, equivalently, by the condition

g [kgT(T,s)] | = 0. (51b)

s=sG VT

The CVT rate constant is then [8,9,17]

CVT CVT

KEVT Ty = o KT Qg (T) —Vygp/KT

¢ (M=0p — g ¢ (522)
2 (T)

for a bimolecular reaction and

ACVT CVT
Qe " (T) —Vypp/kT
KGVT(1) = oL ZC ' o "MEP (52b)

QR (T)

: . CVT CVT
 for a unimolecular reaction, where Vyrap = Vyep(s =5y " 7) and

CVT GT CVT
QC (T) = QC (Tys=s5 " ).
By re—writing eq. (50) in a quasi—thermodynamic form, and applying the
CVT minimization criteria, eq. (51), we can shed light on the physical meaning of
the minimization process [8,17,18,27,28]. For this purpose, although eq. (50) has
been derived entirely from dynamical considerations, we re—analyze it in terms of
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quasi—~thermodynamic parameters. Recalling the statistical expression

T
98T ¢~OE/KT

N (53)

where ¢ is a symmetry factor, Q A(T)'and QB(T) are partition functions for

systems A and B, respectively, AE is the difference between the zeros of energy for
these two systems, and K is the equilibrium constant, allows us to equate the
terms

KGT 3 QgT(TaS) “‘VMEP(S)/ET
= U—T——— e (54&)
oR(T) |

or

ar QST ~Vaep)/KT

KCT = (54b)
T

where KGT is referred to as a quasi—equilibrium constant because QgT(T,S) is

not the partition function for a real species; rather, it is the partition function for a
fictitious species which excludes one degree of freedom. Thermodynamics allows
us to write

~AGETs)/RT

KOT — koe (55)

where KO0 is the reaction quotient evaluated at>the standard state concentration of
euhmmd%JeqMBﬁzgpwpz(MPﬂﬁn@)mLﬁWﬂM0=1MrQme
has the same units as K~ 7, R is the ideal gas constant, and AGFET’O is the
standard—state molar free energy change between the reactant and transition state
species. Like KGT, the free energy, Z_\.GTT’O, is a quasi—thermodynamic quantity,

since the transition state species excludes one degree of freedom; it will be called
the standard—state generalized free energy of activation. Finally, equating the
right—hand sides of eq. (54) and (55) allows us to re—write eq. (50) as [8]

ZGT,0

GTirs) =Ko (56)

Applying the CVT criteria, eq. (51), to eq. (56) yields
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GT
o=&% (T,s)

Js S=SCVT
YT o0 -Ac3T0)/RT
= H—— K % e S=SCVT- (57)

It is clear from eq. (57) that, since the only surface—dependent quantity on the
right—hand side is AG%T’O(S)A, the position of the surface along the reaction

coordinate which minimizes the canonical rate constant, defined by s = s(*}VT

’

occurs at the position of the maximum of the free energy of activation curve
AG%T’O(S). Thus, a major difference between conventional TST and CVT is that

in CVT a combination of entropic and energetic effects (AG%T’O) is considered
when choosing which dividing surface will best act as a dynamical bottleneck, i.e.,
which surface will best satisfy the condition that every system which crosses the
dividing surface does so only once; whereas, in conventional TST only energetic
effects fVMEP(s-——O)] are considered in making this choice.

The discussion in this section has considered only a one—parameter
sequence of hyperplanes perpendicular to s in mass—scaled coordinates. We close
this section by considering two aspects of this restriction. First we note that such
a hyperplane will not always divide reactants from products everywhere. Second

we note that QCT(T,S) is primarily sensitive to the shape of the potential near the

reaction path, especially at low and moderate temperatures. We can then see how
such a hyperplane could still provide a good estimate of the rate by imagining a
true dividing surface that coincides with the orthogonal hyperplane in the vicinity
of the reaction path but elsewhere, in regions that do not have a large effect on
Q(C;T(T,s), curves into a high—energy region that divides reactants from products

unlike the hyperplane) [29]. This is the basis for the "Morse I" approximation
8,9] in which a vibrational potential orthogonal to the MEP is treated as
increasing monotonically to a very high value on one side of the MEP and as
increasing monotonically to the bond dissociation limit on the other, even though
the true potential along the straight—line vibrational coordinate may not be so well
behaved. Of course if vibrational partition functions are calculated harmonically
one doesn't need to worry about these details.

Finally we consider the idea that more general dividing surfaces could be
used to improve calculated rate constants. If one considers arbitrary variations of
the dividing surface in phase space one should be able to obtain the exact classical
equilibrium rate constant }4,5]. However this would be practical only for very
simple systems, and even for systems with only three atoms it can be very
complicated (and has never been carried out completely). Instead, we consider the
simple one—parameter sequences of di viding surfaces discussed above, and we note,
quite happily, that, even when quantum effects are incorporated by the
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approximate methods discussed in Sections 3 and 4, one can obtain quite accurate
results in many cases by using such simple prescriptions for the set of trial dividing
surfaces over which minimization of the GTST rate coefficient is carried out
[29-35].

2.4. VALIDITY OF REACTANT EQUILIBRIUM ASSUMPTION

The validity of the assumption of reactant equilibrium depends upon the ability of
some energy transfer mechanism, such as collisions, to repopulate reactive
elements of phase space at a rate at least as fast as the rate at which these states
are depopulated by reaction. The conditions under which this assumption is valid
for unimolecular gas—phase reactions have been widely studied; these conditions
are usually called the high—pressure limit [36—38]. (This is a misnomer; actually it
is a high—pressure plateau since new effects arise at ultrahigh pressures and in
condensed media; see Section 6.) However, at typical pressures where gas—phase
unimolecular reactions are studied, thermalization of the reactant states is usually
incomplete and the rate is correspondingly lower than the value calculated under
the equlibrium assumption. This is called the fall-off regime. In order to
calculate accurate rate coefficients in this regime, one usually uses a mechanism
including activating collisions, such as the Lindemann mechanism, for which, of
course, the rate coefficients are no longer expressed in unimolecular form. For
gas—phase bimolecular reactions it is usual to assume that activating collisions are
efficient enough to maintain a thermal distribution of reactants, but the extent to
which the breakdown of this assumption affects measured rate constants is not well
understood. The most complete study available is that of Lim and one of the
authors [39]. In condensed phases thermalizing collisions with the solvent are very
frequent, but recent research shows that the thermalization of reactants is
nevertheless not always assured, and, in addition, in condensed phases and very
high—pressure gases one must consider frictional effects that may slow the rate
constant by preventing a spatial equilibrium of reactants or interrupting the
traversal of the transition state region [2,18,40]. If we refrain from treating
low—pressure unimolecular reactions, and we assume reactant equilibration is
perfect in other cases, then we may also assume without further error that
equilibrium is maintained for species in the transition state dividing surface that
originated in the reactant region of phase space. In classical mechanics, in the
absence of trajectories trapped in the interaction region, i.e., trajectories that
never emerge as reactants or products, this is a direct consequence [41] of
Liouville's theorem [12a,42]. Further discussion of the equilibrium assumption of
TST is given in Ref. 7. We note that once quantal effects are introduced it is not
possible to justify TST so clearly, and eventually our confidence in the theory
must be based on checking the computed rate constants against more accurate
dynamical calculations and/or experiments. Such tests are discussed further in
Refs. 2, 15, and 29-35 and in Section 5.

3. Semiclassical Canonical Rate Constants with Classical
Reaction—Coordinate Motion.

Our treatment, up to this point, of both "exact" and transition state theory rate
constants has been entirely classical. Yet for most systems quantum effects,
especially vibrational zero—point effects and tunneling effects, are quite important.
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Because the transition state theory formulation requires the simultaneous
knowledge of the reaction coordinate position, z(s), and the corresponding
momentum, p;, and because this simultaneous knowledge is forbidden by the
uncertainty principle of quantum mechanics, there is no unique way to rigorously
quantize the classical TST result [43]. Instead it is common to use a semiclassical
treatment which includes adiabatic quantization of all modes except the reaction
coordinate [30,44,45]. In this context, "adiabatic" means that, at each value of s,
energy levels are computed for degrees of freedom orthogonal to the reaction
coordinate by deleting the kinetic energy in s and fixing s in the potential energy.
In addition, in some cases one adds a separate correction for tunneling, which is
the dominant nonclassical effect on the reaction coordinate, or at least the
dominant one that is conveniently included in TST [15,29-31]. Thus, we separate
the quantized generalized transition state rate constant into two factors as

kGT/G(T,s) = AGT/G(T,s)kGT(T,s), (58a)

where kGT(T,s) is the semiclassical rate constant which includes quantization of

all modes except the reaction coordinate, and KGT/ G'(T,s) is a correction factor
used to incorporate quantal effects on the reaction coordinate. The /G in the
superscript denotes that a ground—state transmission coefficient method is used to

evaluate this correction factor. In this section we will discuss kGT}T,s) and show
how to use it to calculate the canonical variational theory rate coefticient

kCVT(T). The evaluation of nGT/ G'(T,s) will be discussed in Section 4 for the

special case-where CVT is used, and it becomes K,CVT/ G(T).
Because we invoke a nonrigorous quantization in determining kGT(T,s),
and because this quantization is applied only to selected modes, the semiclassical

TST rate constant, kGT(T,s), does not provide a rigorous upper bound to the
exact quantum rate constant the way the classical TST rate constant kgT(T,S)

provides an upper bound to the exact classical rate constant. Nevertheless, we
have found that variationally optimizing rate constants which have been quantized
using this semiclassical scheme yields better numerical results than simply placing
the dividing surface at s = 0 [2,15,29-35).

The modes which are quantized in the semiclassical treatment appear in eq.

(50) only in the ratio QgT(T,s) / @%(T) for a bimolecular reaction and

QgT(T,s) / Q‘é‘(T) for a unimolecular one. Thus, eq. (50) can be converted to its

semiclassical analog simply by replacing the classical canonical partition functions
with their quantum mechanical analogs, i.e.,

GT AN S8
kGT(T,s) = a%l (T;S e MEP (bimolecular),
o (T
(59a)
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GT ~BVyEp©)
kGT(T,s)= UIE—T— T,s), " MEP (unimolecular),

Q™ (T)
(59b)

where QGT(T,S) and QA(T) are quantum partition functions, <I>R(T) is a

quantum partition function per unit volume and 8 = 1/kT. We make two major
assumptions in this semiclassical treatment. First, our method of quantization
assumes that the reaction coordinate is separable from the other degrees of
freedom (i.e., that there is no coupling between the reaction coordinate and any of
the other modes). Second, in evaluating the quantum partition functions,

QGT(T,S), QA(T), and QR(T), we ignore the coupling between the electronic,
vibrational, and rotational degrees ot freedom so that we can write

GT GTAGT AGT
Q ZQeIQvierot’ (60)
A A A LA
Q" = QeIQvierot’ (61)
and R A A AA
_ BB AB ;rel
= Qe 1QuinQrote1QvibQrot? (62)

Note that, because translational partition functions are the same in quantum as in
classical mechanics, the cancellations leading to egs. (38) and (48) involving the
separation of partition functions for overall translation remain valid in the
semiclassical treatment. It has been shown numerically that quantization of the
rotational degrees of freedom is generally unimportant, e.g., using classical
rotational partition functions instead of quantum ones to evaluate CVT rate
constants causes errors of less than 1% for most atom—diatom reactions [27]. For a
nonlinear molecule, the classical rotational partition function is given by

4

Qroe = | XD 15BN G(0)] (63)

where h is Planck's constant divided by 2, and I A’ IB, and IC are the three

principal moments of inertia. For Q(ﬁ%}, the moments of inertia depend on the
position of the generalized transition state along the reaction coordinate s;

numerical methods for calculating I A(s)IB(s)IC(s) have been described elsewhere
[17]. For Qéot or Ql?ot, the moments of inertia are those for the specified reactant

species, A or B, i.e., at s = — 0o. For linear molecules, the classical rotational
partition function is given by

Qrot = &I%gl@, (64)
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where again, for Q(E?,}, the moment of intertia is a function of s, while for Qéot

and Q}?ot, I is the moment of inertia for the specified linear reactant. Note that
none of the rotational partition functions contain symmetry factors, as these are
already accounted for in the inclusion of reaction path multiplicity [cf. eq. (49)].

When evaluating Qvib, we make the independent—normal—mode
approximation, which assumes no mode—mode coupling between vibrational
modes. This approximation allows the vibrational partition function to be written
as

2y ib

Qvib = TI Quibyj, (65)
=1

where Qyib,j is the vibrational partition function of mode (normal coordinate) j
and #yjp is the total number of vibrational modes. Making the simplest
vibrational approximation, assuming that the potential along each normal
coordinate is harmonic, yields

o emihel 66
Qv1b71 —O———GBW-)- ( )

where wj is the frequency for mode ;. For Q(\,;’Ii‘b, the normal coordinates, and
thus, wj and Qg?b,j, depend upon the position of the dividing surface, s. Note
that the zero of energy for each Q(v;?b,j must be VMEP(S) for eq. (66) to be

correct. This definition is consistent with the exponential in eq. (59). Numerical
methods for determining these quantities as a function of s are given elsewhere

[17]. For Q‘e‘ib or Q%ib, a standard normal mode analysis of the specified reactant
yields the quantities necessary to evaluate eqgs. (65) and (66). Although we do not
discuss them here, more complex treatments of the vibrations which allow for the
anharmonicity of the potential along a given mode in the expression for Qvibsj
have been used quite successfully [17]; however, the approximation inherent to eq.
(65) is almost always retained.

An important case where anharmonicity effects are essential occurs when
there are two low—energy reaction paths separated by a low—energy ridge. This
may occur when two first—order saddle points are separated by a second—order
saddle point slightly higher in energy [46] or when the minimum—energy path from
a first—order saddle point encounters a valley—ridge inflection [47,48]. In such a
case one may measure the reaction coordinate along a reference path riding the
ridge rather than along the true MEP, and it is necessary to treat at least one
vibration orthogonal to the reference path as an anharmonic double—minimum
potential. If the valley—ridge inflection point occurs on the reactant side of the
saddle point so that the MEP from the transition—state saddle point leads to a
saddle point between two "reactant" minima, it may also be necessary to use the
double—minimum treatment for reactants. When, however, the ridge separating
the reaction paths is high enough and the paths are related by symmetry, one can
treat only one of them explicitly and include the other in o.
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Finally, to calculate the reactant electronic partition function, we evaluate
the sum over electronic states directly, i.e.

_aA
ohy=zae el (67)
o

since it often converges after only 1 or 2 terms. In eq. (67) c‘gl(a) is the energy of

electronic state a and d‘g is the degeneracy factor of this electronic state. For

many reactions of interest higher order electronic states tend to increase
dramatically in energy with motion along the reaction coordinate, and we usually
consider reactions for which this is so. For this type of reaction, we need only

consider the lowest lying electronic state to calculate Q(grf. Because we define
VMEep(8) as the zero of energy for all GT partition functions, the lowest lying

electronic state has energy egrf =0 and Q(e;’{ reduces to the ground

electronic—state degeneracy factor, d?T. Although this simplification is usually
applicable [49], a few reactions have been treated for which it is not [50,51].

In the present section we contructed the hybrid rate constants [eq. (59)] by
starting with an expression derived from the fundamental assumption of classical
transition state theory and simply quantizing the partition functions. Another
approach, which may be carried out without first neglecting quantization effects
and then re—inserting them, is based on the adiabatic theory of reactions
[8,17,30,52—56]. Although the adiabatic theory yields considerable insight, it is
ess general than TST because the flux—through—a—dividing—surface derivation of
TST does not require for its validity that modes orthogonal to the reaction path be
adiabatic, as required for the adiabatic derivation to be valid.

When there is more than one maximum in the free energy of activation
curve, it is usually sufficient to base the calculated rate constant only on the
highest one. However, if desired, one may attempt to include more than one
maximum by a unified statistical model [>1'7,57,58 .

4. Quantum Effects on the Reaction—Coordinate Motion

In the previous section we introduced a semiclassical formalism for incorporating
quantum effects into all modes except the reaction coordinate. This yielded a
hybrid rate constant, eq. (59). Quantum effects on reaction coordinate motion are
also quite important in many reactions [15,22,29—31}; here we introduce several
methods for calculating a correction factor which accounts for these effects. The
general form of the corrected rate constant will be written as

kCVT/G(T) — KCVT/G(T)kCVT(T), (58b)

CVT/G

where & , the correction factor, or transmission coefficient, depends on the
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method (here CVT) used to calculate the hybrid rate constant, as well as on the
method used to incorporate the reaction—coordinate quantum effects. The /G in
the superscripts denotes that the correction factor is based on the reaction
probability of the ground (G) state of reactants.

First consider the artificial case in which the reaction coordinate is
separable; then reaction—coordinate motion is one—dimensional motion over a
potential barrier. Classically, only those reactants with energy E > VB’ where V

is the barrier height, will cross the barrier to products, thus the classical
transmission probability P C is given by

B

PC = O[E —VB], | (68)
where the Heaviside step function © is defined as

0, y<0
O(y) = (69)
1; y 2 0.

In quantum mechanics, however, there is a finite probability that reactants with
energy less than Vg will proceed to products (tunneling) and also a finite

probability that reactants with energy greater than VB will not react
(non—classical reflection [59]). If we could find the quantum transmission
probability P~ (E), we could calculate the correction factor as

/° PO(E)e B4

/

k (1) =

o0
0
- BB

) P C(E)e dE

which is the ratio of the thermal averages of the quantum and classical
transmission probabilities for the ground state of reactants (if the
reaction—coordinate were separable these probabilities would be independent of the

state of the reactants). If eq. (70) is to provide a reasonable model for the
correction factor to CVT, the barrier height used to evaluate PC(E), eq. (68),

must be consistent with the hybrid semiclassical scheme used in Section 3 [eq.
(58)]; thus P C(E) is also dependent on the form of GTST being used, and, for

clarity we re—write eq. (70) as

o G -
CVT/Gpy _ J7 P¥(E)e PEqr

. (71)
I PSVT/G(E)ePEqE

When the reaction coordinate is not separable it is not strictly correct to
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base the correction factor solely on ground—state transmission probabilities.
Nevertheless we will still do so, based on the following arguments. Tunneling
effects are primarily important at low temperatures. At these temperatures, the
reactant system will be found almost entirely in its ground state or in a state
energetically similar to the ground state. For thermoneutral or nearly
thermoneutral reactions, this may be true along the entire reaction coordinate;
however, for highly exothermic reactions, higher order product states may be
energetically accessible even at the low temperatures where tunneling is important,
and we should expect that they will often be populated significantly. Although we
shall later discuss methods which will be applicable to exothermic reactions
involving tunneling directly into an excited state, we shall for now consider only
cases where it is reasonable to assume that the system is in the ground state both
at the beginning and the end of the tunneling process. (This does not preclude
high product vibrational excitation if tunneling occurs early along the MEP, and
vibrational nonadiabaticity occurs later.) In this case we replace the quantum

transmission probability PG(E) to be evaluated by our best approximation to the
ground state—to—ground—state tunneling probability. For systems with small
reaction—path curvature the simplest approximation uses, as the effective potential
for the one—dimensional tunneling motion, the adiabatic ground—state

one—dimensional potential, V(a;(s), i.e., we assume that the system remains

adiabatically in its ground state along the entire tunneling path [17,22,29,31].
This potential curve is defined as

VE(s) = Vypp®) + Sarls) (72)

where VMEP(S) is the value of the potential energy surface at point s on the MEP

and e(_; t(s) is the sum of zero point energies for the orthogonal modes at a given s,

ie., o
S (=3 & (9, (73)

where ¢° . (s) is the ground—state vibrational energy of the j*? vibrational mode
int,])

frotationaf modes have no zero—point energy). We also note that to be consistent
~ith CVT, the classical probability must be found using a barrier height of
VE(S(EVT), where s?VT is the value of s at which the dividing surface is placed to

alculate KV T(T). Thus

PGV /G = 0lE - V(s =TV T (74)

ee Fig. 1. Note that the maximum, AG%VT’O

, of the free energy of activation
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curve AG%T’O occurs at s = S(EVT [see eq. (56)], which does not usually equal

s‘:}G, the point where the maximum of Vg’(s) occurs, since states other than the

ground state are included in determining the free energy of activation curve at a
nonzero temperature.

Finally, we find that a good compromise between accuracy and efficiency is
to use the WKB semiclassical approximation [60,61] to evaluate the approximate

ground—state transmission probability, PG(E . The uniform WKB result for a
general, smoothly varying potential barrier, if E < Vp. is given by (55,62—64]

P(E) = 1/[1 + exp(20)], (75)

where #, which governs the degree to which the wave function is damped, i.e., the
degree to which the transmission probability is decreased by the presence of the
barrier, is given by the following imaginary—action integral:

.
V8(sSVD

Vuep(s=0)

ENERGY

Fig. 1. Potential energy curves as a function of the reaction coordinate parameter
s. The solid line represents the potential VMEP(S) along the minimum energy

path, and the dashed line represents the adiabatic ground—state potential curve
V(j(s). The reactant region is at s = —00, the product region is at s = +o00, the
saddle point position is s = 0, and a typical generalized transition state position
(which is only at the maximum of VO(s) for T = 0K) is s = s$" 1. The x's

denote the classical turning points, s_ and S5 for energy E.

<
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€
0E) =11 74 2u(V(6) - E)de, (76)
<

where £ < & are the classical turning points along the tunneling path for energy

E, and the integrand is the imaginary part of the tunneling momentum as a
function of position. The tunneling momentum can be understood in terms of the
following considerations. First, the total energy E is a sum of the local kinetic
energy along the tunneling path Troc(€), and the potential energy, V(£). This
gives

Tioc(£) = E = V(§), (77)
where £ denotes the position along the tunneling path. Since tunneling occurs
when E < V(¢), a condition which is satisfied for all §. < €< &, the right—hand

side of eq. (77) is less than zero, yielding a negative kinetic energy. Converting to
momentum, gives

P(EE) =1 2u(—| Tioe(E:6) )
=i{ 24| Tioe(E,€)]
=i 2u(V(€) - E ), (78)

showing that the integrand in eq. (76) is indeed the imaginary part of the
momentum. It should also be clear from eq. (76) that §(E) is a measure of the
effective height and width of the barrier. For energies appreciably below the
Fame]r top, @ will be large and eq. (75) will be equivalent to the primitive form
60,61

P(E) ~ exp[~26(E)], (79)

which clearly demonstrates the exponential decay in tunneling probability as a
function of barrier height and width.

Returning to the specific problem at hand, the simplest approximation we
will consider is called the minimum—energy—path semiclassical adiabatic ground-
state tunneling approximation. In this approximation the ground—state tunneling
probability is %31 64]

PMEPSAG ={1+ exp[ﬁf  [2u(V ( ) —E))? ds]} 1.

<
E < VoY), (80)

where we have combined eqs. (75) and (76) and substituted the appropriate values
for V and ¢ for tunneling through the adiabatic ground state curve, eq. (72). Note
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that s_ and s_ are the reaction—coordinate turning points for energy E (see Fig.

1). The probability of equation (80) has the acronym MEPSAG because we have
implicitly assumed [22] that the tunneling path passes through the same points in
configuration space as does the MEP. Belore considering this assumption further,
we point out that nonclassical reflection can be treated sufficiently accurately by
using a simple relation that is strictly valid only for a parabolic barrier. For a
parabolic barrier the probability of reflection at an energy 6E above the barrier top
is equal to the probability of tunneling at an energy 6E below it [62]. Using this to
extend eq. (80) we get [17,31]

S
>
= {1 +explf ] 26(V3(5) — B)fds]}
S
<
V(s=—00) <E < VI(sVT)
. PMEPSAG(zv(;: $CVT) _ gy,

PMEPSAG(E)

]

VOV < E < ovO(TV T vC (5= o)
= 1;
G (sCVT) — vG(s=—c0) < E. (81)

The replacement of eq. (79) by (81) is called "parabolic uniformization".
Returning to eq. (71), and making use of the Heaviside step function in eq.
(74), we have, for the transmission coefficient,

© LMEPSAG g —fE
CvT/MEPSAG _ 1, P (E)e” " dE

p , (82)
” PE4E
VG (sovr)©

or

(CVT/MEPSAG = § exp[6v (S 1))/ pMEPSAG gy ~AEp
(83)

where we have performed the integral in the dominator of eq. (82). To correct a
CVT rate constant we would use

kCVT/MEPSAG 1y _ (CVT/MEPSAG 1y, CVT ). (84)

As mentioned previously, the MEPSAG transmission coefficient is
calculated under the assumption that the tunneling path follows the MEP. This is
a good approximation only for systems having little or no coupling between the
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reaction coordinate motion and any of the other degrees of freedom — a situation
that seldom occurs. One form of coupling is provided by the curvature of the

MEP in mass—scaled coordinates; the vector z(s), which is tangent to the MEP at
each value of s, will have a different orientation at each value of s. We can
illustrate this pictorally for a system having two degrees of freedom — the
reaction—coordinate motion plus an additional vibration. Figure 2 depicts such a
curved reaction path for a metathesis reaction

A +BC — AB +C, (85)

where A, B, and C may be atoms or groups of atoms. If, for visual purposes, we

Y (BOHR)

1.0+

3.0 4.0
X (BOHR)

Fig. 2. The potential energy surface of Stern et al. [66] for the C1 + DH — CID +
H reaction. The abscissa is the distance from CI to the center—of—mass of the DH
diatom, and the ordinate is the mass—scaled H-D distance. The solid lines
represent fixed—energy contours, the dashed line represents the minimum energy
path (MEP), the + represents the saddle point, and the dotted line represents the
path of classical vibrational turning points when the vibrational motion has zero
point energy all along the reaction path.
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force this reaction to occur at a fixed A—B—C angle and ignore any internal
vibrations in the groups A, B, and/or C, we can plot the potential energy as a
function of two coordinates in the mass—scaled system defined by eq. (3). If A, B,
and C are all atoms, and we set x in eq. (3) equal to ure1 of eq. (4), this is
equivalent to using two coordinates x and y, where x is the distance from A to the
center—of—mass of the BC molecule, and y is a scaled distance from B to C [30]
(similar pictures are obtained if one chooses u = 1 [65]).

Figure 2 is specifically for the medium—curvature system Cl + DH — CID
+H Sand the potential energy surface is the GSW surface of Stern et al. [66]). The
solid lines are potential energy contours, and the dashed line is the MEP. It is
known both from analytical semiclassical mechanics [67] and analysis of
multidimensional tunneling calculations [68,69] that most of the tunneling flux
passes the saddle point on the concave side of the MEP. The dotted curve in Fig.
2 is the path of concave-side classical turning points for the zero point vibrational
motion orthogonal to the MEP. For the collinear H + Hj reaction, Marcus and
Coltrin show that this path of turning points is an approximately optimal
tunneling path [70]. In the adiabatic ground—state approximation, it is
particularly easy to characterize tunneling along this type of shortened path.
Because we assume the system is in the ground vibrational state all along the

MEP, the classical turning points may be calculated for the vibrational energy

c(_; t(s) [eq. (73)]. From this assumption it also follows that the effective potential
1n

for tunneling along this path is given by the ground state adiabatic potential
curve, Vg(s). Thus, the transmission probability for tunneling along this path can

be found from eq. (81), as was PMEPSAG(E), except that the coordinate of the
tunneling path in the imaginary—action integral of eq. (80) is determined by this
shorter path. This is called [31] the Marcus—Coltrin [70] approximation. A
generalization of this approach, applicable for any number of atoms and for both
collinear and noncollinear MEPs, is accomplished by evaluating the
imaginary—action integral along the MEP but replacing the reduced mass x with

an effective reduced mass u§?f(8), which is determined [in the small—curvature
(SC) approximation] by the local curvature of the MEP [17,71). Using this
reduced mass is mathematically equivalent to shortening the tunneling path. The
" transmission probability calculated with this effective reduced mass is called is

called PSCSAG(E). This method has been found to give better results than using

'PMEPSAG(E) for systems with small (but not negligible) amounts of reaction
path curvature [29,32]. The small—curvature semiclassical adiabatic ground—state
transmission coefficient is given, by analogy to eq. (83), as

(86)

We note that for a nonlinear system with 3N degrees of freedom, the reaction-path
curvature becomes a vector with as many as 3N—7 nonzero components [72].

These components may be used to define ﬂ%?f(S) in the general case [17,71].
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For systems with a large amount of reaction path curvature (see Fig. 3),
such as group— or atom—transfer reactions for which the exchanged group or atom
is much lighter than both the donor and acceptor groups, the small—curvature
approximation breaks down [28,46,73,74], and we need another approximation to
treat this type of system. This problem has been treated using both
hyperspherical [73] and mass—scaled cartesian [17,46,75] coordinates. Here we use
the latter approach. In particular we will discuss a scheme which is called the
large—curvature ground-state approximation, version 3 (LCG3); this
approximation {17,76] is of special interest because it has been defined in such a
way as to be particularly easy to apply to general systems with an arbitrary
number of degrees of freedom.

Before discussing the LCG3 method, we first consider Fig. 3, which is a
potential energy contour diagram in mass—scaled cartesian coordinates for the
heavy—light—heavy system 37Cl + D35Cl — 37CID + 35CI [46]. The solid lines are

y (ap)

| | [
0'65.0 5.3 56 59 6.2
x (ag)

Fig. 3. Potential energy contour diagram for the large curvature system 37Cl +
D35Cl [46]. The dashed line represents the minimum energy path, + marks the
saddle point, and * marks a canonical variational transition state. The points
marked s < and s, are the classical turning points for reaction—coordinate motion
governed by the adiabatic ground—state potential curve Vg(s) for energy E, and s

and sy represent classical turning points for a lower energy and also serve as

additional tunneling path termini for energy E. The lines between s < and S, and

between so and s; are typical large—curvature tunneling paths.




321

the potential contours, the dashed line is the collinear MEP, + represents the
saddle point, and * represents the maximum of the adiabatic ground state curve.
The fact that the potential contours along a cut perpendicular to the MEP through
the saddle point are extremely widely spaced indicates that the vibrational zero
point energy is very low at the conventional transition state; this explains why the

maximum of VS(S), positioned at a point of higher vibrational zero point energy,

is so far removed from the conventional transition state. The saddle point
vibrational frequency is low because a symmetric stretch in the heavy—light—heavy
case involves only motion of the heavy donor and acceptor atoms. Now consider
the reaction-coordinate turning points for some total energy below the maximum

of Vg(s); these are called s _ for the reactant channel and s_ for the product
channel. Due to the curvature of the MEP, the shortest path connecting s _ and
5, has a large component in the direction representing the high—frequency motion .
of the central light atom, making tunneling from s < Viasuch a path a highly
‘probable event. We note that the positions of s < and 5, along the MEP are

determined by the total energy of the system and Vg(s) (see Fig. 1). For systems

with large reaction—path curvature, one finds [46,73—77] that there are also
significant tunneling contributions along paths from sg to s; where sp <'s < and

51 >5,,1e, the system tunnels before it reaches the entrance—valley reaction-
coordinate turning point s _, and the final terminus of the tunneling path is at a

point where the reaction—coordinate component of the kinetic energy is greater
than zero. The LCG3 approximation includes contributions from all straight—line
tunneling paths with equal pre— and post—tunneling reaction—coordinate
components of the kinetic energy by using a quasiclassical distribution function to
average over tunneling paths with various termini.

Since the degree of exponential damping of the tunneling wave function
decreases for lower barriers and for shorter paths, the tunneling amplitude will be
largest on the path which provides the best compromise between barrier height
- and path length. For large—curvature systems, the straight—line paths discussed
above, each between a point s in the reactant channel and a point s; in the
product channel, are so much shorter than the MEP between these points that
they yield the dominant tunneling contributions, even though the barriers along
these paths are higher than the barrier along the MEP. These paths are shorter,
in mass—scaled coordinates, because they involve mostly the motion of the very
light central atom. Thus, in this type of system, we calculate the transmission
probability by considering only the tunneling along this type of straight—line path.
Calculation of the imaginary—action integral, 8 [eq. (76)], is more difficult for this

type of path, since the effective potential along this path is only given by Vg(s) in

the regions between the MEP and the classical turning points or between the MEP
and the place where vibrational coordinates referenced to the MEP become
multivalued. The potential along the rest of this type of path must be calculated
from the actual value of the potential energy surface, and it also involves an
interpolated value of the zero point energies of modes which are not
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curvature—coupled to the reaction coordinate [17,46,75]. In this method,
nonclassical reflection is treated by a parabolic uniformization of the MEPSAG
action integral.

Since the LCG3 method does not assume adiabaticity throughout the
tunneling region, it may be extended to high—barrier or exothermic reactions for
which higher product vibrational states are directly populated by the tunneling
event (endothermic reactions should be treated in reverse). The contribution to
reaction due to tunneling into the various accessible vibrational product states
(defined by the quantum number n’) is calculated by separately evaluating the
contribution for each product vibrational state, and then summing over all of these
accessible states. The contributions to the ground vibrational product state are

calculated as discussed above, using Vg(s) to determine the reaction—coordinate

component of the kinetic energy and the quasiclassical distribution function. For
each additional available product state, n’ > 0, we find the tunneling—path

terminus 81" in the product region, by the relation

where ESO is the adiabatic ground—state energy of the system at so. We then
calculate the tunneling along the straight—line path between sy and S1 The

effective potential used for the calculation along this path is the same as in the
general LCG3 method, except in the exit valley, where V_(s,n”) = Vy pp(s) +

€int(s,n”) is used instead of V(;’(s). Summation over the individual contributions

of the final product states yields the total tunneling probability for this type of
reaction [76,77].

Finally, another method has been developed for calculating quantum
transmission probabilities which gives results which are similar to SCSAG in the
small—curvature limit, similar to LCG3 in the large curvature limit, and of
reasonable accuracy for intermediate—curvature systems [32,34,75]. This method,
which is called the least—action ground—state approximation (LAG), considers for
each pair of tunneling termini a series of tunneling paths ranging from the MEP at
one extreme to the LCG3 path at the other. For each energy less than

vE(sSVT), the contribution to the LAG transmission probability, PPAC(E),

from each set of termini is given by the tunneling contribution from the path
having the largest tunneling probability, i.e., the path giving the smallest
imaginary—action integral, @ [eq. (76)]. The contributions from the various pairs
of termini are averaged as in the LCG3 method. For the part of any path that is
not between the MEP and the classical vibrational turning points or between the
MEP and the location on the tunneling path where vibrational coordinates
referenced to the MEP become multivalued, the ground—state potential along the
path is determined as in the LCG3 method; for the part or parts of any path which
are between the MEP and either the path of classical vibrational turning points or

the point where local natural collision coordinates break down,.V(;’(s) is used.
Thus for each pair of tunneling—path termini the LAG method chooses the best
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tunneling path, so that the integral over the quasiclassical distribution function of
termini as well as the integral over energy in the expression for the transmission
coefficient,

KOVIILAG _ g expipvG(sSVTy) 57 PLAG(E) 6= g,
(59)

encompasses a series of different paths. Again, we incorporate nonclassical

reflection into PLAG(E) by making a parabolic uniformization of the MEPSAG
tunneling probabilities.

The ability to treat tunneling in high—barrier or exothermic reactions is
- incorporated into the LAG formalism in the same fashion as described above for
the LCG3 formalism. In the LAG method, a best tunneling path is chosen for each
pair of termini for each final vibrational product state, n”, with the contributions
to the various final states being summed at each energy. Again, the only
difference in the calculation of the effective tunneling potential along the chosen
path is that, in the region between § - and the MEP, Va(s,n’) is used instead of

vS(s).

We note that both the LCG3 and the LAG approximations require more
information about the potential energy surface than is required for VTST,
MEPSAG, or SCSAG calculations. VIST, MEPSAG, and SCSAG calculations
require knowledge of the MEP, the potential along the MEP, and the vibrational
energies of modes orthogonal to the MEP, but LCG3 and LAG calculations
require, in addition, the potential surface in wider swaths on the concave side of
the MEP in tunneling regions.

5. Gas—Phase Applications

Sections 2—4 have presented the theoretical formulation of generalized transition
state theory and semiclassical tunneling approximations. In order to illustrate the
validity and usefulness of this theory for absolute rate calculations we now
consider applications to reactions in the gas phase. Although conventional and
eneralized transition state theory have been applied to many gas—phase systems
33,35], we shall consider only a few examples. Except where stated otherwise, all
GTST calculations include anharmonicity by methods discussed elsewhere
(8,9,17,31,32,78].

Several studies on collinear atom—diatom reactions have been carried out in
which accurate classical mechanical rate constants were calculated for a given
energy surface, and these were used to test classical conventional and variational
transition state theory. Table I gives some of these results (8,79] for two reactions.
For the first reaction, Cl + HD, we see that at 300 K, both the conventional
transition state (at s = 0) and the canonical variational transition state (at s =
SQVT) provide reasonable bottlenecks, and very little recrossing occurs at either

transition state; both kL (300 K) and kCVT 300 K) overestimate the accurate
C

rate by only ~10%. At 2400 K, however, recrossing has increased much more




324
rapidly at the conventional transition state than at the variational one, and ké}

(2400 K) is nearly twice as large as kg\/T (2400 K). For the model of an organic

hydrogen exchange reaction, R + HR” — RH + R’, where the alkyl chains R and
R’ are represented by carbon atoms having a mass equivalent to that of a butyl
radical, the conventional transition state is a poor bottleneck even at as low a

temperature as 300 K, while recrossing is so extreme at 2400 K that ké

overestimates the accurate classical rate constant by over an order of magnitude.
The canonical variational dividing surface, while not providing a perfect
bottleneck, yields a rate constant which is high by only a factor of two or less over
the whole temperature range. These examples clearly illustrate that the TST

approximation — that the local net flux through the transition state, FGT T,s)
[eq- (23)], may be used instead of the global net flux F(T) {egs. (24) and (39)], to
calculate the rate — can be much improved by locating the transition state

variationally (s = SS’VT) instead of defining it to be at the saddle point (s = 0).

TABLE 1.  Ratios of classical transition state theory rate
constants to exact classical dynamical ones for two
collinear reactions.

Reaction Temperature, K+ CVT
(R1) Cl + HD — CIH + D? 300 1.1 1.1
2400 5.0 2.8
(R2) 57C+H57C’ — 57TCH+57C’P 300 4.3 2.0
2400 114 2.0

aRef. 8.

bRef. 79; three—body model of C4Hg+H—C4Hg — C4Hg—H+C4Hy.

In order to show that variational optimization of the transition state can
also be important when calculating semiclassical TST rate constants, which no
longer provide rigorous upper bounds to the accurate quantum mechanical rate
constants, we consider two collinear reactions [29,80—82] for which tunneling
effects are negligible; in particular, we consider I + Hy — IH + H, and I + HI’ —

IH + I, which are called (R3) and (R4), respectively. For (R3) kCVT(T) agrees
..+ ,.CVT/SCSAG o ) CVT
with k (T) to three significant figures, and for (R4) k (T) agrees

with kCVT/ LAG(T) to two figures. In these cases we consider the ratios of the
semiclassical rate constants to accurate quantal ones for collinear reaction on the
same energy surface. As discussed in Section 4, we expect variational effects to be
especially important for the heavy—light—heavy mass combination of (R4) because
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of the low value of the symmetric stretch frequency at the saddle point for a
symmetric reaction with this mass combination. From Table II it is clear that the
canonical variational transition state provides a good bottleneck at all

temperatures considered for both reactions; kCVT(T) is within 10% of the
accurate quantal results at 300—1500 K for the I + Hj case and within 42% of the
accurate results at 100—1000 K for the large—curvature case. The conventional

TST results, however, are much worse — k+(T) overestimates the accurate
quantal results for I + Hy by a factor of 12 at 300 K, while for the more difficult

heavy—light—heavy system, k+(T) overestimates the accurate results by over 4
orders of magnitude at 100 K and by a factor of 57 at 300 K. In general,
variational effects (by which we mean the difference of VTST rates from
conventional TST ones) may either increase or decrease in importance as the
temperature is raised. Increasing importance with increasing temperature is the
most common trend in classical calculations, because classical recrossing is more
predominant at higher temperatures. This classical trend is typically retained in
semiclassical calculations when variational effects are controlled by low—frequency
modes. When high—frequency modes are important though, the effects are
dominated by zero point energies, and zero point effects decrease with increasing
temperature. The reactions in Table IT are both examples where high—frequency
stretches control the variational effect. The I + HI” reaction is particularly
interesting in this regard. Because the symmetric stretch frequency is so low at
the saddle point, the value of the adiabatic ground state curve at the reactants,

TABLE II.  Ratios of semiclassical generalized transition state
theory rate constants to the accurate quantal ones for
two collinear reactions.

Temperature, K + CVT

(R3) I+ Hy — IH + H?

300 12.1 1.09
600 3.7 1.05
1500 2.1 1.03

(R4) I+ HI' - IH+1'P

100 1.75x10¢ 0.77
300 57.0 1.07
600 21.3 1.22
1000 19.3 1.42

aGTST results, Refs. 29 and 30; accurate quantal results, Ref. 80.
bGTST results, Ref. 82; accurate quantal results calculated (see Ref.
82) from Ref. 81.
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where this mode correlates to a high—frequency hydride vibration, is actually
higher than the value of this curve at the saddle point, and the conventional TST
rate constant increases with decreasing temperature at temperatures below about
600 K [82). Consequently, variational effects are most important at low
temperatures for this system. -

Next we consider rate constants for which tunneling corrections are
important. We compare semiclassical CVT rate constants with various
transmission coefficients to accurate quantal rate constants, in each case calculated
on the same potential energy surface, for 3—dimensional atom—diatom reactions.
Table I1I shows results [34,83—85] for four reactions for which tunneling is quite

TABLE III. Ratios of semiclassical canonical variational
transition state theory rate constants (with various
transmission coefficients) to accurate quantal rate
constants for 3—dimensional atom—diatom reactions.

CVT/ CVT/ CVT/ CVT/
TK CVT MEPSAG SCSAG LCG3 LAG

(R5) H+ BrH’ — HBr + H’?

200 0.042 0.59 2.4 1.1 1.5
250  0.14 0.70 1.8 0.98 1.1
300 0.26 0.79 1.6 0.95 0.99
(R6) H' + Hp —» H'H + HP
200 0.0018 0.031 0.38 0.59 0.74
250 0.014 0.079 0.51 0.88 0.87
300 0.044 0.15 0.61 1.0 0.92
400 ... 0.15 0.30 0.73 1.1 0.99
(R7) O + DH — OD + HP
300 0.14 0.39 1.5 0.84 0.91
400 0.36 0.63 1.4 0.90 0.92
500  0.61 0.89 1.4 1.0 1.1
(R8) O + Hy — OH + HP
300 0.052 0.16 0.87 1.1 1.3
400  0.16 0.31 0.89 1.1 1.1
500 0.29 0.45 0.93 1.0 1.1

aGTST results, Ref. 83; accurate results, Ref. 84
bCVT, CVT/LAG, and accurate results, Refs. 34 and 85;
CVT/MEPSAG, CVT/SCSAG, and CVT/LCGS3 results, Ref. 85.
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important, even at temperatures above room temperature. This point is
illustrated by the fact that the CVT rate constant with no tunneling correction
grossly underestimates the accurate rate constant values for all four reactions.

The reactions in Table III are arranged in order of increasing reaction—path
curvature. Considering all four reactions as a group the LAG method provides the
best overall agreement with the accurate quantal results. In three cases it provides
a significant improvement over the SCSAG results at all temperatures considered,
and in one case these methods are of comparable accuracy. Notice that the LAG
results sometimes predict larger tunneling effects than the SCSAG results and
sometimes predict smaller tunneling effects, because the approximations in the two
methods are quite different. The LAG result for a given pair of tunneling path
termini is always larger than the LCG3 one because the LCG3 tunneling path is a
special (un—optimized) case of the LAG one. Thus when the methods differ
appreciably the LAG result is always larger. When the results are similar, though,
either one may be larger because of the semiclassical approach used in averaging

over paths with various termini. In all cases shown, the kCVT/ LAG'(T) rate
constants are in excellent agreement with the accurate quantal rate constants for
3—dimensional atom—diatom reactions.

TABLE IV. Ratios of 1—dimensional rate coefficients calculated
with various tunneling approximations2 to accurate
quantal results.b -

CVT/ CVT/ CVT/ CVT/ CVT/
T,K CVT MEPSAG SCSAG LCG LCG3 LAG

(R9) 37C] + H35C] — 37CIH + 35Cl

200 0.13 0.15 0.15 061 061  0.55
300  0.33 0.35 0.35 0.81  0.82  0.76
600  0.82 0.83 0.83 1.2 1.2 1.2
1500 1.4 1.4 1.4 1.5 1.6 1.5
(R10) 37C1 + D35Cl — 37CID + 35Cl
200  0.14 0.19 0.22 0.68 068  0.66
300 0.37 0.42 0.45 087 087  0.85
600  0.90 0.76 0.77 1.0 1.0 1.0
1500 1.4 1.3 1.3 1.4 1.4 1.4

aPrevious GTST calculations on this system are reported in Refs. 32,
74, and 75. The present results (Ref. 86) all include anharmonicity
by the WKB method.

bCalculated in Ref. 74 from data in Ref. 87.
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There are no converged 3—D rate constants available tor large—curvature
systems, so we again return to the collinear world to compare to accurate quantal
results; in particular, we consider the large curvature collinear reaction,
37Cl + H35C] — 37CIH + 35Cl, and its isotopic analog, 37Cl + D35Cl — 37CID +
35C1 [46,74,85—90] The large ratios of the CVT/LAG rate coefficients to the CVT
ones in Table IV indicate that tunneling is important; for example, LAG increases
the rate for the H transfer case by about 30% for a temperature of 600 K and by a
factor of ~4 at 200 K. The CVT/MEPSAG method provides little improvement
over CVT, indicating that almost no tunneling occurs along the MEP path. The
SCSAG method also fails badly in this case, but the LCG, LCG3, and LAG
methods provide reasonable estimates of the tunneling contributions for both
reactions, even though they do appear to consistently underestimate the tunneling
effects at very low temperatures. (The LCG method is the original version of
LCG3, and it gives very similar results.) Although accurate quantal results are
not available for these reactions in the 3—dimensional case, it is interesting to
compare to experiment, even though we are unable to separate the uncertainties in
the potential surface from the uncertainties in the dynamical methods. From
Table V, we see that tunneling is predicted to be important for both reactions in
three dimensions; in reaction (R9) the calculated reaction rate increases by nearly
an order of magnitude when tunneling is included at 368 K; in reaction (R10) this
increase is smaller, at a factor of two and a half. In both cases the best calculated
rate is in good agreement with experiment. The experimental results indicate that
this system has only a moderate kinetic isotope effect, i.e., k(R9)/k(R10) = 5.0,
yet from the theoretical results it is clear that tunneling contributions are
important. In fact, the theoretical CVT kinetic isotope effect without tunneling
contributions is less than 5%, indicating that there is almost no kinetic isotope
effect at all in the absence of tunneling. Inclusion of tunneling in the theoretical
calculations, however, brings the kinetic isotope effect much closer to the
experimental value. Hence, moderate kinetic isotope effects do not necessarily
mean that tunneling is unimportant for a reaction. This example provides a very
significant caution about a common procedure for interpreting experimental data,
by which tunneling effects are invoked only if the kinetic isotope effects are large.
This example is particularly striking since the dominant tunneling paths are very

TABLE V. Comparison of 3—dimensional transition state theory
rate constants (cm3 molecule! s'1) and kinetic isotope
effects with experiment at 368.2 K.2

CVT CVT/LCG Expt.

k(R9) 3.85—16 3.3(-15 5.1 —15;
k(R10) 3.7(~16 9.8(—16 1.0(-15
k(R9)/k(R10) 1.0 3.3 5.0

aTheoretical results for the scaled surface of Garrett et al., Ref. 46.
Experimental results, Refs. 88—90.
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far from the saddle point. Thus a conventional KIE interpretation based on saddle
point force constants would be qualitatively misleading about what region of the
energy surface is most critical in controlling the rate. ‘

In some cases (e.g., [91]) neither the large—curvature nor the
small—curvature limit is quantitatively reliable. In such cases the LAG method
should be used for quantitative interpretation of kinetic isotope effects.

TABLE VI. Theoretical and experimental rate constants (cm3
molecule™! s°1) for the 3—dimensional reaction OH +

Hy — Hy0 + H.
CVT/SCSAG?
T,K Harmonic Anharmonic Experimentb
298 2.37(—14 1.04(—14 6.1+0.4(—15
400 7.26(—14 4.03(—14 3.7x1.1(—14
600 3.35(—13 2.23(—13 2.930.9(—13
1000 1.91(—-12 1.42(-12 2.440.7(—12

aRef. 9; the potential surface is described in Ref. 92.
bRef. 93.

Finally we discuss two gas—phase reactions involving larger molecules.
Table VI shows 3—dimensional CVT/SCSAG and experimental rate constants for
the reaction OH + Hy — H20 + H [9,92,93]. The second column gives the

KCVT/ SCSAG'(T) rate constant calculated as described above, with the
independent—normal—mode harmonic approximation used to evaluate the partition
functions for vibrational modes orthogonal to the reaction coordinate. The third

column gives the kCVT/ SCSAG'(T) rate constant calculated with principal
anharmonicity included in the independent—normal—mode representation of these
vibrations. The agreement with experiment is good for both calculations, though
it is generally better with the inclusion of anharmonicity. This agreement with
experiment is quite impressive, since the potential energy surface used for these
calculations is entirely ab initio [92,94,95], i.e., it was not calibrated to reproduce
any experimental results. In general one would often be satisfied if good
agreement could be obtained over a range of temperatures by adjusting only the
barrier height.

We also consider the gas—phase reaction CHz + Hy — CHy4 + H [48,96,97]
for which the CVT /SCSAG results (only the lowest—frequency vibrational mode
includes anharmonicity, the rest are treated harmonically) are tabulated and
compared with an exemplary set of experimental results (two other sets are
tabulated in Ref. 48) in Table VII. These calculated results, which are for the best
semiempirical surface of Joseph et al. [48], are quite good; they differ from the
experimental results by less than 20% for all temperatures at which the
experimental results are available. We also compare calculated kinetic isotope
effects with experiment. These results are tabulated in Table VIII and are also
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TABLE VII.  Calculated and experimental rate constants (cm3
molecule! s71) for the 3—dimensional reaction CHz +
Hy — CH4 + H.

T,K CVT/SCSAGa Experimentb

372 3.2(-18 2.7(—18
400 7.4(—-18 6.5(—18
424 1.4(—17 1.3(—17
500 7.6(—17 7.3(—17
600 3.9(—16 3.8(—16
667 9.1(-16 9.0(—16

aRef. 48, surface J3.
bComputed from reverse rate constants of Ref. 97 and JANAF
equilibrium constants. See Ref. 48.

TABLE VIIIL. Kinetic isotope effects for the reactions
CH3 + H2 — CH4 + H (R12) and
CH3 + Dy — CH3D + D (R13).

k(R12)/k(R13)
T,K CVT/SCSAGa Experimentb
400 4.5 . .
500 3.5 3.540.2
600 3.0 2.8+0.2
667 2.7 2.510.1

aRef. 48; surface J3.
bRef. 96.

quite good. Because the potential energy surface used to calculate the CHz + Hj
results is semiempirical, and the CVT/%CSAG method has already been shown to
be reasonably reliable, the comparisons with experiment in Tables VII and VIII
are really tests of the shape and calibration of the potential energy surface used.
This then provides an example of how CVT/SCSAG rate constants and kinetic
isotope effects are used to elucidate information regarding potential energy surfaces
[48]. We note that the variational transition state for the CHz + Hy reaction
occurs slightly (~0.1 a,) earlier than the saddle point, a result which agrees well
with an earlier 3-body model [27] of this reaction based on a rotated-Morse-bond-
energy-bond-order approximation to the energy surface. In both the full surface
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and the 3—body model the variational displacement of the transition state is
determined primarily by the stretching frequency of the mode that correlates to
H~H stretching in reactants and to the new C—H stretch in products.

VTST may also be applied to unimolecular reactions in the gas phase
[2,17,98] and the semiclassical tunneling approximations discussed here may be
applied to conformational rearrangements such as switches of hydrogen bonds [99].
Generalizations of the ideas and methods presented above may also be used to
treat reaction rates of vibrationally excited molecules [51] and the state—specific
decay of metastable states [100].

6. Condensed—Phase Reactions

The quasi—thermodynamic formulation of transition state theory, especially the
expression of the rate constant in terms of the free energy of activation, has been
extremely useful in understanding differences in reaction rates between the gas
phase and solution [19a]. Thus it is very important to understand the validity of
transition state theory assumptions for solution reactions, and this question has
recently received considerable attention [2,18,40]. Unlike gas—phase TST, which
has received extensive testing against accurate classical and quantal dynamics, as
discussed in Section 5, condensed—phase TST is much harder to test than
gas—phase TST. In this section we discuss some of the new considerations which
should be incorporated into generalized TST for reactions in solution. Generalized
TST has also been applied to reactions on solid surfaces, and we shall discuss this
as well. We consider both static effects, which are easily incorporated into the
quasi-thermodynamic formalism developed for TST in the gas phase, and dynamic
effects, which require careful interpretation. We note that generalized TST has a
great advantage over many molecular dynamics techniques which are currently
used for condensed—phase reactions because quantization effects and tunneling can
be included by consistent procedures that have already been well tested for
gas—phase processes.

Before proceeding to discuss the effect of solvent we note a formal difference
between gas—phase-and condensed—phase reactions. In condensed phases we do
not have free translations and thus we cannot factor out free translational
partition functions for each species, even though the partition functions for each
species are still proportional to the volume of the system. Thus, by analogy to eq.
(45) and eq. (35), egs. (59a) and (59b) are replaced by

GT —BV\p(S)
kGT(T,s) = O’E—T- % (TESL e MEP (bimolecular)
o (T)®™(T)
(89a)
and ar . 5
- $
kGT(T,s) = agl e p TT;‘ e MEP (unimolecular),
(89Db)
respectively.

Because it is impossible to consider explicitly all of the solvent molecules in




332

a solution—phase reaction (or all of the atoms of the solid for a reaction on a
crystalline surface) as part of the reacting system, all or most of the solvent
molecules must be treated collectively as a "bath" — or ignored. A bath has both
static and dynamical effects on a reacting system. Before considering these effects,
we note that, if some solvent molecules (%r solid—state atoms) play a significant
role in the reaction coordinate, they should be treated explicitly as part of the
primary reacting system rather than as part of the bath [18]. Thus, one should
compromise between, on the one hand, minimizing computational effort by
treating only a small number of solvent molecules (or solid—state atoms), if any,
explicitly as part of the primary system and, on the other hand, accounting for
important couplings between specific solvent molecules (or solid—state atoms) and
the reaction coordinate. Once the primary system has been chosen, the effects of
the bath on the rate constant for the primary system must be incorporated into
the expression for this rate constant, eqs. (58) and (89). The simplest of these
effects are static effects. In this first approximation, it is assumed that the bath
solvent molecules (or solid—state atoms) adjust statistically to motions of the
primary system, i.e., that the bath always remains in equilibrium with the primary
system. The effect of the bath is then incorporated into the quasi—thermodynamic
TST formalism [eq. (56) but without necessarily treating the left—hand side as
classical] simply by considering its contribution to the free energy of the system
(primary system plus bath) [1a,101]. Because the free energy of interaction of the
bath and the system may vary greatly along the primary—system reaction
coordinate, the free energy of activation, which directly determines the TST rate
constant [see eq. (56)], may change drastically in the presence of the bath.

For many systems, however, it is questionable whether solvent (or surface)
rearrangement is fast enough to allow solvent (or surface) equilibration at each
step along the primary—system reaction coordinate. Such systems may exhibit
dynamical, "nonequilibrium" solvation effects. As discussed in Section 2.4
equilibrium of phase space points originating in the reactants region is assured in
classical mechanics if the reactants are in equilibrium and all molecules are treated
explicitly; however, if we separate the system into a primary system and the rest,
it may be a serious restriction to define the dividing surface entirely in terms of
primary—system coordinates. In such a case the solvent is said to be
"nonequilibrated" or to "participate in the reaction coordinate." The conceptually
simplest way to include these effects is to include the solvent molecules or surface
atoms showing the strongest interaction with the reacting solute (or adsorbate) in
the primary system,; this increases computational effort but avoids modifications to
the TST formalism which, as described below, would otherwise be required to treat
such nonequilibrium effects. This approach has been used successfully for treating
the diffusion of hydrogen atoms on a metal surface [102—104]. Good convergence
of reaction rates with respect to cluster size, i.e., with respect to the number of
surface atoms included in the primary system, was achieved at and above room
temperature, but convergence was harder to achieve below room temperature,
because of the importance of tunneling. This indicates that tunneling is a more
global, less localized phenomenon than classical barrier crossing. If dynamical
solvent effects cannot be isolated to a treatably few solvent molecules or surface
atoms, it is sometimes feasible to introduce a collective coordinate which can be
included explicitly in the primary system. A good example of this technique is the
i[ntroduct]ion of a polarization vector when treating reactions in -polar solvents
105—-107].

In order to treat nonequilibrium solvation effects of bath molecules without
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including them in the primary system, one may add a friction correction factor 7C
to the TST rate constant [18], e.g.,

1 CVT/G,¢ _ 74kCVT/G, (90)

where the superscript on the correction factor indicates that it is determined by
the degree of solvent friction on the primary system (¢ denotes a friction
coefficient). In the case of solution reactions the friction correction factor may be
approximated by a number of methods; among these are Kramers theory [108| and
a generalized Langevin—equation approach [109,110]. Kramers theory is intended
to account for a series of frequent, but weak, bath perturbations which interrupt
motion along the reaction coordinate. In this theory the correction term is related
to the ratio of the characteristic time scale for crossing the reaction coordinate
barrier in the absence of friction to the characteristic time scale for relaxation of
momentum along the reaction coordinate due to friction. The relaxation time due
to friction may be estimated on the basis of the bulk viscosity of the solvent [18].
Work with the Langevin—equation approach, however, has indicated that the
reaction rate is dependent upon the short—time solvent friction felt by the primary
system [109,110], rather than on the bulk friction constant as used in Kramers
theory; it is believed, therefore, that Kramers theory, with the relaxation time
estimated from bulk viscosity usually overestimates the effect of friction on
reaction rates [40]. An interesting perspective on the high—friction limit of
Kramers theory is provided by a recent paper of Pollak [111]. Using a harmonic
bath to model the generalized Langevin equation, Pollak showed that the frictional
decrease of the rate calculated by TST for the primary system can also be
calculated by doing TST (without friction) on the enlarged system consisting of
the primary system plus the bath.

The dynamical friction effects that we have considered so far are based on
the idea that the solvent molecules hinder the motion of the primary system along
the reaction coordinate. This type of effect will predominate in the high—friction
limit. There also may exist a regime where the time scale for barrier crossing is
much faster than the time scale for solvent relaxation of reaction coordinate
momentum, but $till much slower than the time scale for energy redistribution in
the reactant (see below). In this regime, the rate constant is expected to be
independent of solvent friction. If there is very little coupling of the primary
system to the solvent, however, the assumption that the reactants (or, for
reversible reactions, the products, which are the reactants of the back reaction) are
in local equilibrium may fail [108,112]. This failure results from the inability of
collisions between primary system molecules and solvent molecules to exchange
vibrational energy or to exchange vibrational with translational energy, and thus,
the inability of these collisions to populate reactive regions of reactant phase space
as rapidly as they are being depleted by reaction (or for reversible reactions, to
depopulate highly excited nascent products before they react back), i.e., the time
scale for energy redistribution in the reactants is slower than that for barrier
crossing. This low—solvent—coupling regime is similar to the low—pressure limit
for gas—phase reactions, as discussed in Section 2.4. Thus we expect three regimes
for reactions in a bath. First, in the low—{riction regime, the rate constant should
increase with increasing friction as the reactant distribution of states approaches
an equilibrium distribution. There may then be a regime where the reactant
equilibrium assumption holds, but frictional effects on the reaction coordinate are
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not yet important. In this regime the reaction rate constant will be independent of
friction. Finally, as friction is increased still further, frictional slowing of
reaction—coordinate motion becomes important, and the rate constant will
decrease with increasing friction. This may be referred to as the
"friction—controlled" regime. In both the first and third regimes, the uncorrected
TST rate constant (even if this rate constant was calculated including static
solvation effects) will overestimate the actual rate constant. In the middle,
friction-independent regime, the uncorrected TST rate constant should be a good
approximation to the true solution rate constant. Unfortunately, it is possible
that, for many reactive systems, by the time the assumption of an equilibrium
distribution of reactants is valid, frictional effects on the reaction coordinate will
already be important, and the TST rate constant will overestimate the true rate
constant in all cases if a correction term is not added [113,114].

Here we make two important notes. First, some studies of the importance
of a friction correction term [113,114], as mentioned above, have been performed
by including only the reacting solute in the primary system. It is possible that
including just a few important solvent molecules in the primary system will yield a
more realistic reaction coordinate, and, consequently, the TST or VTST dividing
surface will be a better bottleneck, thus obviating the need for a friction correction
term. Second, we note that recrossing of the transition state may cause errors in
gas—phase TST rate constants, even when variational methods are used, of up to
around a factor of two, especially for classical systems (see Section 5). One should
be careful that these recrossing effects, which would be present even in the absence
of solvent molecules, are not attributed to solvent friction when they eccur for
condensed—phase reactions. Detailed studies of a variety primary systems, both in
the absence and in the presence of a solvent bath, could certainly help to clarify
these issues. Both of these points raise uncertainties which cannot be resolved
without further study.

Frictional effects occur in ultrahigh pressure gases as well as in solution
[38]. In fact the binary—collision language of gas kinetics provides a simple way to
think about the low—pressure and high—pressure fall-offs from the equilibrium
plateau. At low pressures, when back reaction is neglected, the most energetic
molecules, or the molecules with most energy in the most reactive modes, tend to
react fastest, and energy—changing collisions are too infrequent to maintain
thermal equilibrium concentrations of these states. For reversible reactions,
collisions are also required to thermalize the products before they react back. At
ultrahigh pressures, in contrast, collisions occur not only frequently enough to
exchange energy on the kinetic time scale for reaction but also fast enough to
interrupt the molecular motion along the reaction coordinate during a single
reactive event.

Finally we mention a few recent applications of VTST and semiclassical
tunneling concepts to organic reactions without invoking nonequilibrium,
frictional, or solvation effects. In the language introduced at the beginning of this
chapter these have all been based on the phenomenological approach rather than
the absolute rate approach, and these concepts may be very useful for such
reactions.

Houk and Rondan [115] and Doubleday et al. [116] have studied exothermic
reactions with small or zero barriers. For such reactions the free energy of
activation maximum may be controlled by the decrease in entropy of activation for
generalized transition states located later along the reaction coordinate [117].
Since entropic effects become relatively more important compared to enthalpic




335

effects as the temperature is increased, this gives a handle for understanding
fempertu]re—dependent transition states and negative activation energies
115-117].
Kreevoy et al. [77] studied kinetic isotope effects for hydride transfer

between carbons in nitrogen heterocycles, RT + RoH — RyH + R"{. Quadratic
free energy correlations indicated that the critical configurations for H™ transfer are
geometrically more extended than those for D". This was interpreted in terms of
large—curvature tunneling in which H  tunnels at longer RT - R distances than

D .

7. Thermochemical Kinetics

In the quasi—thermodynamic formulation of transition state theory [eq.(56)], the
transition state species is treated like a stable species, except that one degree of
freedom, the unbound degree of freedom corresponding to the reaction coordinate,
is removed. In conventional transition state theory, because the position of the
dividing surface is determined entirely by the potential energy surface, i.e., the
dividing surface is set at the saddle point, s = 0, the transition state species is
independent of temperature. This is not true for the CVT transition state species,
because the position of the dividing surface is re—optimized at each temperature.
Thus, the conventional transition state can be related directly to a single
molecular structure while the CVT transition state cannot. Using this relationship
the quasi—thermodynamic quantities for the conventional transition state can be
calculated directly from the temperature—independent structure and vibrational
frequencies of the bound degrees of freedom of the conventional transition state.
Furthermore, bond additivity and group additivity relationships can be used to
approximate the enthalpy and the entropy [118]. In CVT, however, we must take
?cccilunt of the temperature dependence of the frequencies, bond strengths, and so
orth.

The quasi—equilibrium constant, K+, for the quasi—equilibrium between the
reactants and the conventional transition state species is found from eq. (54) by
setting s = 0, i.e.,

+__Qfm ~viar . i
K %Ri(ﬁ e (bimolecular), (91a)

KT =g g;%% e_v+/ kT (unimolecular), (91Db)

where we have replaced the classical partition functions with their quantum

analogs, as discussed in Section 3, and we have defined Q+(T) = QGT(T,S=0) and
(T) = VMEP(S = 0). By analogy to egs. (54)—(56), we can write the

conventional TST rate constant in terms of a free—energy change between
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reactants and the transition state species, A +G1°1, as

_A,GO
k+(T)=1f§—T—K0e T T/RT, (92)

where A +G% is defined by the relationship

_ 0
A,G4/RT

KT=Koe (93)

The free energy of activation may be further partitioned in terms of the enthalpy
and entropy of activation at temperature T, A +H1‘l and A +S%, respectively, as

From egs. (92) and (94}, one could evaluate the conventional TST rate constant

by evaluating A H% and A S%, i.e., by evaluating the quasi—thermodynamic

properties of the conventional transition state.
However, in systems where the conventional transition state does not

provide a good bottleneck or where tunneling contributions are important, k+ will
not be a very good approximation to the actual rate [14—18]. A much better

approximation for such systems would be KCVT/G defined in eq. (58b), which

includes a ground—state transmission coefficient, nCVT/ G(T), as discussed in
Section 4. For simplicity, we shall consider only the LAG approximation for the
transmission coefficient in this section. Further, let us define the more concise
notation, kwn(T), where, for the methods suggested above,

keun(T) = RCVT/LAG (.

If we define kyar(T), the contribution to the rate due to the optimization of the
dividing surface position as a function of temperature, as

(95)

mear(T) = KOV T(T)/KT(T), (96)
we can factor the rate constant, eq. (58b), as

KOVTILAG 1y _ (T kyae(T)KT(T). (97)

With this factorization, it is clear that one contribution, kT(T), to the rate

constant, kCVT/LAG(T), is determined by a "substance" — the conventional
transition state species — and its properties. This type of contribution is called a
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substantial contribution [119]. The other two terms kyn and Kvar, do not depend
only upon a single transition state species, but rather require characterization of
the system along part or all of the reaction path as a function of temperature.
Thus, this type of contribution is called a nonsubstantial contribution 1[119].

For the nonsubstantial contributions it is useful to introduce a factorization
analogous to that used for the substantial contributions [eqs. (93) and (94)]. This
factorization is [119]

kx(T) = exp(AHXS%/R)exp(~—Aan%/RT), (98)

where An,S7 and An,H{ are nonsubstantial activation parameters which

parameterize contributions for temperature—independent and
temperture—dependent factors in kx(T). These nonsubstantial parameters are
obtained from the relations

An, S8 =RT L8 Fx | g fo g, (99)
AnyH = RT2 460 fx (100)

which are analogous to the Gibbs—Helmholtz relations between the entropy and
enthalgy and the equilibrium constant for a given system. Both kgya(T) and

kvar(T) are factorized as in eq. (98) suggesting

AaHf = AvunHp + Avar + AHY, (101)
and

Aasp% = AtunSr% + Avars% + A+S 0 ’ (102)

such that eq. (97) is equivalent to

ASY/R —AHY/RT
kCVT/LAG) _ E—T Koe 1 ¢ o T (103)
which is reminiscent of eq. (56) if we define

Equations (101)—(103) clearly illustrate that to provide a good estimate of the rate
constant for systems where tunneling or variational effects are important, the
nonsubstantial contributions must be included in the entropy and enthalpy of
activation [119].

The specific factorization of the rate constant, as given by eq. (97), which
yields the separation of enthalpic and entropic terms as given by eq. (101) and eq.
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(102), is particularly useful if one has information about the potential energy
surface, and thus about the properties of the saddle point species, since this

information allows for the calculation of A S% and A H%. Another possible

factorization, which could be more useful for the interpretation of experimental
data, is one which maximizes the substantial contributions to entropy and
enthalpy, while minimizing the nonsubstantial contributions [119]. One such
factorization is based on a single temperture-independent transition state which is

set at the maximum, denoted by s = séG, of the adiabatic ground—state

potential curve, Vg(s) [eq. (72)], instead of at the saddle point. Alternatively it
could be set at the location of the maximum free energy of activation for the
center of the temperature interval of interest; the maximum of Vg(s), in contrast,

would be the variational, or CVT, transition state location for a temperature of 0
K. Thus, we can define a correction factor for the temperature dependence of the
transition state location Kiherm(T) as

kenern(T) = KOV T(T) /kCT(T 46, (105)
and the factorization, analogous to eq. (97), becomes
KOVTILAG(T) = k() rnern( DK T (1,648, (106)

where kGT(T,séG) gives rise to the substantial part of the enthalpy and entropy.

With this factorization, we have for the nonsubstantial contributions to AaHr‘ll and
ALSY,
AnH.% = AtunHr% + Atherer% (107)

AnSP = AgunSY + AthernSp. (108)

For several hydrogen—atom transfer reactions with barriers of about 10 kcal /mol,
it has been found [119] that AthemH,% and Atherms,% are small, especially at low

temperatures where AtunH,‘I’\ and AtunS% are very significant. Table IX gives an

example [119] for the O + Hjy reaction. We see, e.g., that the temperature
dependences of the total enthalpy and entropy of activation are both opposite in
direction to their substantial parts. As a result of the temperature dependences of
both activation parameters the phenomenological Arrhenius activation energy
decreases from 14 kcal/mol at T = 1400—1900 K to 8 kcal/mol at 318—471 K [120].
The latter value is considerably smaller than the saddle point height, which is 124
kcal/mol.




339

TABLE IX. Activation parameters for O(3P) + H, — OH + H.2

T=200 K T=1500K

AH (kcal/mol) substantial 9.7 7.8
therm 0.0 —0.1

tun =3.7 —0.3

total enthalpy of activation 4.0 74
AS (e.u.) substantial —19.6 —23.6
_ therm 0.0 -0.1
tun —14.8 -0.1

total entropy of activation -34.4 —23.8

astandard state = 1 atm.

8. Concluding Remarks

We have seen that transition state theory methods yield consistently good results
when applied to gas—phase reactions. Variational methods and quantum
corrections require more computational effort and more potential energy
information than conventional transition state theory, but they yield much better
results. We now have carried out and interpreted enough calculations to allow us
to make informed decisions about which methods are required for various systems,
based on a knowledge of barrier heights, vibrational frequencies, particle masses,
and/or reaction—path curvature, as well as on which temperatures are of interest.
Applications to larger and more complex systems are limited to a large degree by
the availability of potential energy information, not by the state of the dynamical
theories. The use of transition state theory to calculate reaction rates in
condensed phases and at heterogeneous interfaces is just beginning, as is the
understanding of extensions which may be required or useful for describing these
systems, yet we are already witnessing some successful applications to these types
of systems. Finally, we have tried to stress that more complicated aspects of
reactions, which may be elucidated by examining variational and semiclassical
tunneling corrections to conventional transition state theory, often play a large
part in determining reaction rates, and must be considered when interpreting
experimental results; otherwise their effects may be incorrectly attributed in the
phenomenological analyses.
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