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Abstract. This paper presents two approaches to gas-phase molecular collisions. The collision
process is described by quantum mechanics, and an introduction to scattering-type solutions of
the Schrddinger equation is presented. Then gas-phase reactive scattering is treated by means of
expansions using quadratically integrable basis functions of auxiliary “amplitude density” func-
tions. This converts the scattering problem into one of linear algebra, highly suited to solution
utilizing vector processing supercomputers. An alternative approach based on the time-dependent
Schrodinger equation is also presented. This method utilizes the powerful Fast Fourier Transform
method to facilitate the time evolution of an appropriate wavepacket from some initial time to
a post-collision time. The final packet may then be analyzed appropriately for the scattering
information.
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1. Introduction. We are interested in the solution of the Schrodinger equation
describing collisions of molecular systems. The description of the collision may be
made using the time-dependent Schrodinger equation of the form

(1.1) ind

519) = H|©),

or the time-independent Schrédinger equation
(1.2) Hlx) = Elx).

We shall employ the bra-ket notation of Dirac [1]. In (1.1), % is Planck’s constant
divided by 27, t denotes time, |¥) is the (time-dependent) quantum mechanical
state vector of the system, and H is the Hamiltonian operator for the system. In
(1.2), E is the total energy of the system, |x) now denotes the time-independent
state vector of the system, related to |¥) by

(1.3) [¥) = |x) exp(—1Et/R),
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and H is the same as in (1.1). Thus, |x) is a stationary state of the system.

In the following, we shall consider a prototype system of a structureless atom
colliding with a diatom, which we assume can both vibrate and rotate, and which
may or may not react. Examples of nonreactive collision systems are the collision
of a He atom with H,, CO, or I,. Examples of reactive collisions are D + H, — HD
+H,0+ H; - OH + H,H + HBr — H; + Br,and F + HD — HF + D or DF
+ H. The objective is to calculate the probability that a collision with a particular
initial state leads to a particular final state. The collision is described using so-
called relative coordinates R and T, where R is the vector from the diatomic center

of mass to the atomic prOJectlle and r is the internuclear vector of the diatom. If

we label the atoms in the system A, B and C, then for later considerations, it
1s convenient to introduce so-called “arrangement channel” labels. There are then
three possible sets of coordinates which can be used to describe the system: Ry,
r1, R, r2; and R3, T3. The subscript 1 implies that atom A is the projectile and
1~30 ;he 1:101ecule72 implies that atom B is the projectile and AC the molecule,
and 3 implies that atom C' is the projectile and AB the molecule. The Hamiltonian
operator H may be written as

(1.4) H=H,+Vi=H;+Vo,=H3;+ V3
where

(1.5) Ho= lim H,

(1.6) Vo,:Ha-— Hy, a=1,23.

Thus, H, is the unperturbed Hamiltonian describing the motion of atom « (1 for
A, 2 for B, and 3 for C) and the molecule in arrangement «, where the atom and
molecule are infinitely separated. Clearly, V, is then the interaction between atom

a and the diatom in arrangement a, which is responsible for the scattering in the -

collision. The Hamiltonian H, consists of a kinetic energy operator for the motion
of atom « relative to the center of mass of the a-diatom and a kinetic energy
operator and binding potential for the relative motion of the two atoms comprising
the a-arrangement diatom. Thus,

Q) Hy=To+ Ve,

where T, is the a-arrangement kinetic energy operator and V¢ is the a-diatom
binding potential. More explicitly,
A2 1 02 h?

18 T=-PL1®p P, A1 B
| “" 2uR,0OR? 2uR2~%  2ury Or? 2;u~2J°‘

where the generalized reduced mass p is defined by [2]

1/2
mampmgc

1.9 = ’

(1.9) # (mA+mB+mc>
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h%£2 is the quantum mechanical operator for the square of the orbital angular
momentum of atom a with respect to the a-diatom center of mass, and %%j2 is

the square of the rotational angular momentum of the two atoms in the a-diatom
measured relative to their center of mass. In spherical polar coordinates,

(110) -Ea = (Ra,aa, ¢a) = (Ra’ Ra)
(111) :cx = (rav7a’ &a) = (rayi:a)

where 64(74) is the polar angle of Ry(7 o), $a(€a) is the azimuthal angle of Ro(7 o),

and Ry and 7, are unit vectors along Ro and r g, respectively. Finally, there is a

unitary transformation connecting the coordinates of any two arrangements a and
o' [2],

Ta! Ay a By o Za
(1.12) (Ra’) - (—Bala Aa'a) (Ra)7

~ ~ .

where
1/2
mama’

1.13 Aa'a = - L)

( 2) [(ma +mar)(Me + ma”)]
ma“(ma +ma + ma") 1/2

1.13b Byog = —

( ) [(moz + mqr )(ma’ + ma")]

Here my(mqos, Mmoo ) is the mass of the projectile (atom) in arrangement a(a’,a").
Of course, it is obvious that any pair of (non-parallel) vectors in the plane of the 3
particles constitutes a basis for any vector in the plane.

We assume the Born-Oppenheimer electronic adiabatic approximation through-
out this chapter, and the total Born-Oppenheimer potential energy surface for the
ABC system is the sum of V® and V,, which sum is independent of a.

1.1. Multichannel Lippmann-Schwinger equation. We now can discuss
scattering solutions of the time-independent Schrodinger equation (1.2). We write
(1.2) as

(1.14) (E — Ha)lx) = Valx),

and apply the inverse of E — H, to both sides of this equation:

(1.15) x) = (B~ Ha)™'Valx).

However, in the limit that the atom and diatom in arrangement o do not interact,

Vo = 0 and therefore |x) = 0 which is a trivial solution. Physically, it corresponds to
no particles being present. In order to avoid this, we treat V,|x) as an inhomogeneity
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in (1.14), and solve the equation using (1.15) as a particular solution and add to it
a solution of the homogeneous equation

(1.16) (E—Hy)l®)=0.
Then the solution is -
(1-17) |X) = I(I)) + (E - Ha)-.lva’X)°

However, this is still not satisfactory since by (1.16), V,|x) in general will contain
a nonvanishing projection along |®), which belongs to the null space of E — H,, so
that (E — Hq)™! on Vu|x) is undefined. To avoid this, we seek a solution of the
form

(118) |X) = |¢) + (E - Ha + ie)-lVQIX)s €> 0’

and at the proper stage, take the limit as € — 0 through positive values. Equation
(1.18) is the Lippmann-Schwinger equation [3]. In the coordinate representation,
H, contains differential operators, so that (1.18) is an integral equation in that
representation.

The final feature of the state function which should be specified in order to
completely characterize the collision is to denote the various quantum numbers
associated with the system. In order to do this, we expect at least one quantum
number for each degree of freedom in the system (a total of 6 using the relative
coordinates E"" T «). These can be the three components of the linear momentum

vector i k%, for the motion of atom « relative to the center of mass of diatom o, and

the vibration-rotational state quantum numbers of the diatom v2, j%, m%, where
vQ, 7% determine the initial energy, Ey j0, of molecule a, v] specifies its vibrational
state, h/j2(73 + 1) is the magnitude of its initial rotational angular momentum,

and hmY, is its angular momentum along some laboratory-fixed z-axis. Thus,

(1.19)
(£, 03, 3%, mO))

= I(D(Egnvgajg’moa)) +(E - H, +i€)_1VaIX(E27"’g’jg7 mg))'

Alternatively, we can utilize states of well defined initial total angular momen-
tum magnitude f,/J(J + 1), 2-component %M, and radial momentum %%, in place
of states of well defined initial relative linear momentum. This is advantageous be-
cause in the absence of external torques on the atom-diatom system, J and M are
conserved; i.e., they are good quantum numbers. Indeed, states characterized by
one set of quantum numbers can be constructed from linear superpositions of states
characterized by the other set. Thus, one may show that [4]

(1.20a) IX(ﬁowvgnjg’mgz)) = Z ’Zz‘:{,jatmeg)IXig(vm}'mea]”g,jgaeg))

Jvga ja
Lo fg
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where
(L206)  1ZL ;0 m) = VERi® /BB F 1(E0:0mE 0| A, 5. ) 1AL,

and where [A it ) is an angular momentum eigenstate vector characterized by

Jm?® Jm)
(1.21) Tl e2) = J(J + DA 72),
Jm®
(1.22) leAj,,e:) aIAJalc.)’
. Jm? . Jm
(1.23) 72IATT) = jalja + DIA]T),
and
m° Jm?
(1.24) L21A;T) = Lalla + 1)IAT2).

The |A Gl ) are the so-called total angular momentum eigenstates for the composite
system and are constructed by vector coupling the angular momentum eigenstate
vectors |Y, m,) and |Ye, ,,) of the diatomic rotor and orbital motion of atom «
relative to the center of mass of the a-arrangement diatom:

(1-25) |A]nea) Z <eaﬂajamaljm )Ina#a)lyama)

My fia

where (R4|Y7, ,.) and (#o|Y;, m, ) are spherical harmonics, and the (£opajammalJm?)
are the usual (real) Clebsch-Gordan vector coupling coefficients (see, e.g., [5]). In
particular, they vanish unless

(1.26) o + Mo = mY.

The [A,, ;. ) are the a-diatom vibrational eigenstate vectors with vibrational energy
Evejo-

It is important to realize that in general, the vibrational spectrum will include
both a discrete and continuous portion. Thus, the sum over v, in Eq. (1.20) really
includes a discrete summation and an integral over the continuum. The role of the
continuum can be of particular importance when reactive collisions are considered,
since, e.g., breaking the BC bond to form a new molecule AB implies that the for-
merly bound relative motion of the BC bond becomes unbound as the new product
molecule BA and atom C separate. In fact, if one tries to solve the Schrédinger equa-
tion for a reactive system, and does not explicitly couple together all arrangements
which are connected by reaction, the continuum vibrational manifold becomes ab-
solutely essential in order to achieve convergence. In this paper, we shall avoid this
problem by explicitly coupling all arrangements to one another. This ameliorates
the problem of the continuum states, unless one is close to or above the breakup
threshold for producing three free particles.
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There is also another reason for explicitly including different arrangements in
the wave function. A general motivation for transforming from differential equations
to integral equations in quantum mechanical collision theory is that integral equa-
tions build in the boundary conditions. For rearrangement collisions, i.e., collisions
in which the particles may be found asymptotically in more than one arrangement,
we must enforce boundary conditions in more than one asymptotic region, e.g.,
not only when R, is large but also when R, is large. Notice, however, that in
the coordinate representation, |x o (vajala[v3j3€%)) needs to depend only on R,.
Thus we now will see below that aeq. (1.20) may be interpreted as an expansion
in vibrational-rotational-orbital internal basis functions with R,-dependent coeffi-
cients. Furthermore the internal basis functions are eigenfunctions of H, [except
that, since these basis functions do not depend on R,, they are not eigenfunctions
of the first term of Eq. (1.8)]. An expansion of the wave function in terms of
eigenfunctions of H, with coefficients that depend on the radial translational coor-
dinate is called—for historical reasons and because it assumes the states retained
when the expansion is necessarily truncated are the “closely coupled” ones—the
close coupling (CC) method [6, 7). With this form of wave function it is easy to
enforce the boundary conditions at large R, but complicated to enforce them for
large Ry or Ron. For electron-atom or electron-molecule scattering, these limits
would correspond to exchanging which electron is at infinity, and a more transpar-
ent treatment would involve using wave functions with the correct permutational
symmetry. This is sometimes called close coupling with exchange (CCE), and it
involves using multiconfiguration Hartree-Fock (MCHF') wave functions with one
electron in a continuum orbital in at least some of the configurations [6, 8-29).
This method was extended to positron-atom collisions, where the channels are not
identical by symmetry, by Smith [30]. The analog for atom-molecule collisions is to
couple wave functions corresponding to different atoms reaching infinity (R, = co
with rq finite, or Ry = 0o with 74 finite). There are several ways to do this [31],
and the way corresponding most closely to the MCHF method was introduced by
Micha [32] and Miller [33] and is considered in Section 2.2. In the nuclear physics
literature similar physical ideas are sometimes studied under the aegis of cluster
expansions (see, e.g., [34], and references therein), but the formalisms developed
in this context are not usually useful in chemistry since they are developed for the
case where the potential is a sum of pairwise interactions, which is a poor approxi-
mation for chemical reactions. We note, however, that a set of equations equivalent
to Miller’s was introduced in the nuclear physics literature by Hahn [35, 36]. In the
remainder of this section we present some further discussion of the integral equa-
tion that follows from the single-arrangement expansion of eq. (1.20). This is most
useful for nonreactive collisions, such as the He + H collisions mentioned above,
where the goal of the calculation is to calculate the distribution of the products
in scattering angle and quantum states, but only one chemical arrangement of the
products is energetically accessible. We return to multi-arrangement expansions
and chemical reactions in Sect. 2.3.

It will be convenient in future equations to use n, to denote the collection
(Vs Jas £a) and nl to denote (v3,52,£00), etc.
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It may be shown that the abstract state vectors |xj, (nq4|n%)) satisfy:

(1.27) IXig (aln@)) = buqv0 8. s B0 17 (€2, K2))
+ D (E = ha, +i6) 7'V (ralny)xis (nlInd)).

where |7(£2, k%)) is specified below Eqgs. (1.34) and (1.35). The operator h,, de-
scribes the relative translational motion of the a-arrangement atom and diatom
when the internal energy of the diatom is E,, ;, and the relative orbital angular
momentum is fiy/lo(lo +1). As such, h,, can be written as the sum of the rotor
energy E,, ;. and the radial kinetic energy operator (Hamiltonian) k; . The oper-
ator V/(nqa|nl,) is responsible for the fact the the o atom and diatom interact, and
therefore energy and angular momentum can be exchanged between the internal
diatomic vib-rotation and the translation of the atom relative to the diatom center
of mass. The indices correspond to a transition ny — nl, for V7I(ny|n.) or n% — ng
for x{o (naln?), while a single total angular momentum label J indicates that, in
the absence of external torques, the total angular momentum cannot change (it is
“conserved”). The absence of the projection label m? indicates that the collision
is independent of the orientation of the total angular momentum vector J. This
is an example of the Wigner-Eckart theorem [5]. We may express Eq. (1.27) in
more familiar form by putting the abstract vectors into a convenient basis (repre-
sentation). It is convenient computationally to use the coordinate representation.
This is achieved by judicious use of the resolution of the identity in the coordinate
representation

(1.28) 1= / dRoR%|Ra)(Ral,
0

where R, is an eigenvalue of the radial position operator in arrangement o. The
vectors |R,) are normalized according

(1.29) (RalRL) = 2 8(Ra — R,

as is usual for a radial-type variable. Then we insert (1.28) into (1.27) and operate
with (R4| to obtain

(]--30) (RalXig (nalng» = 51’::”2 6jaj3. 530.52, (Ralj(eom kg))
+ 3 [ ARLRZRA(E — B, — he, +ie) RS
nt, V0
X (RIV(malntlxdy ()

Now we assume that the potential operator V/(nq4|n!)) is diagonal in the coordinate
representation, so that

(1.31) VY (nalng)|Re) = V7 (nalng|RG)IRG),
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where its eigenvalue, V /(nq|n,,|R.), is in fact the potential matrix element connect-
ing vib-rotational states n, and no. Since the potential is a Hermitian (self-adjoint)
operator it has real eigenvalues and one has that

(1.32) (RalV7(nalny) = VI(naln|Ra){Ral.
We define

(1.33) x7(nalka, nd|Ra) = (Ralxis (nalnl)),
and

(1.34) je (kaRa) = (Ralj (£, k2)),

so that (1.30) becomes

(1.35) X7 (nalk%nQ|Ra) = 6n,ng 6jjo 62, 00703 (kG Ra)

+¥ / AR, R(R,|(E — B, j, — he, +ic)~"|RL)
n' 0
x VI (nalnty  RL)x (na [k, nQ|RL).

In fact, jlg(kgRa) can be shown to be a spherical Bessel function of order £2,
[4]. In this form, it is clear that the collision problem has now been expressed
as coupled integral equations for the radial components x7(nq|kn?|Ry) (projec-
tion along |R4)) of the state vector Ix{;o (nq|nd)). The final step in arriving at
a form of the equations which can provizle the basis of actual computations is to
obtain a detailed expression for the radial coordinate representation matrix element
(Ral(E — E,,;, — hi, +i€)"'|R.) of the operator (E — E,_;, — hi, +i¢)~*. To do
this, it is convenient to introduce the eigenstates of &, given by

h2k?

(1.36) hi li(k, L)) = o

li(k, £a))-
In fact, the radial coordinate representative of this state, (Rq|j(k,4)) is given by

(1.37) (Rali(k,1a)) = ji.(kRq),

where again, ji, (kRq) is the usual spherical Bessel function of order /4 [29]. Then
the identity can be resolved as

(1.38) 1= %/OwdkaU(k,ea))U(k,ea)l,

with the normalization

8(k — k')

(1.30) (ks L)l (K €)) = 52
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Then using (1.36)—(1.38), we write

k?je, (kRa)jt, (kRy)
(E - Eva]a h2k2 + )

(140) (Ral(E — E‘Uaja — h[a -+ 16)—1|R'a> = %/ dk
0

where we have made use of the fact that

(1.41) f(he )i (R La)) = F(R)Ni(Rs £a))s

for well behaved functions f(h;, ). The presence of the +ie in (1.40) ensures the
validity of (1.41) for

(1'42) f(hla) = (E - Evuja - hta + ie)—l'
The right hand side of (1.42)) is immediately recognized as a standard expression

for a Green’s function. The integral over k can be carried out by well known contour
integration using the Cauchy residue theorem. The result is

(1.43)
2 [ Ky (kRo)je (kRy) _  2u :
2 gt Sha)it (M) 2y koo i RORE (Ko, jaR2),
WA (E—Evaja _ hz‘]f +Z€) h,2 aJaJea( o Jo ) la( ad )
where
h2
(1.44) 2” kva]a = E - Evaja,

and h;‘; (kvq j. Ra) is an outgoing spherical Hankel function of order [,, satisfying
(]"45) Rlim hj; (kva Ja RQ’) = exp[i(kvaja Ra - ‘ea”r/Q)]/kva]‘a Ra

The RZ and R are respectively the greater and lesser of Ry, R.,. (We also note
that by construction, hzk‘,}f /2p equals E — Eyo jo.) Thus, (1.35) becomes

(146)  x*(Re) = j(Ra ———L / ARG R (RO (R (RU)x” (RL),

where it has been convenient to introduce a compact matrix notation such that

(147) [XJ(RQ)]nang = XJ(nalkgng|R0)7

(1.48) (klnang = 6vav965a960. 60 ko332,

(1.49) [5 (B3 nang = 8u,008j, 50 8¢, e0de0 (g jo RS),
(1.50) [AH (R nang = Ouqv) 8 io Seaen o (Bug jo R2),
and
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(1.51) [KJ(Ra)]na nl, = VJ("a|n:x|Ra)-

The scattering information is contained in the wavefunction for the region where
one places the detectors (to identify the resulting particles scattered in a given
direction by the collision process). Since one wants to be sure the collision is entirely
over, the detector is placed a large distance from the region where the collision
occurs. The quantity of interest is the number of projectiles per second scattered
into the solid angle of acceptance subtended by the detector. If one knows the
flux of scattered particles (i.e., the number of scattered particles per second per
unit area). then multiplying this by the area of the detector will give the number
of scattered particles per second. This number of scattered particles per second
should be proportional to the incident flux of projectiles times the area of the
target molecule which is effective in deflecting the projectile into the detector. If
the detector can distinguish the final states of the molecule and projectile (including
the vib-rotor state and relative momentum of the final atom), then the area of the
target causing that resulting final state will, in general, depend on the final state
measured. It is this target area which is the quantity of interest; it is the so-
called state-to-state scattering cross section. It is determined by the behavior of
the scattered wavefunction at large distances, R, — 0o. We can ask for the behavior
of X7(vajalalkQv3jdI%|Ry) in this limit by using (1.46):

(1.52) xj(na|kg, nglRa) R 6vav25jaj35£algjlg(kgRa)

- ;‘l; k'}aJa / dR:IR:X2h2; (kvajaRz)j"a (kvaja R:)
n!, 0

x VI (nalnl RL)x (nbkSnd | RY).

But the potential V/(n4|n/|R.) must tend to zero as R/, gets large in order for
the integral over R!, from 0 to co to be meaningful (since x” does not go to zero as
R}, = oo because the particles can separate from one another in a collision). This
means that when R, becomes large, for a given accuracy required for the integral
over R,, R, can be made larger than any R, contributing to the integral. Then
RZ = R,, RS = R!, and we obtain

(1.53) Xj(nalkgvnoalRa) Roo R I LI T (koRa)

™
= Lo 1T (nalnl),

-z——--}—-——— exp[i( kv, j, Re
2 V kglkvajaRa

where

(1.54) T (nalnd) = 24 EE VT Z / dRLRL je (K3 Ra)
vJ(naxn,,uR (W8, SR,

The quantity T/(ny|nq,) is termed the transition amplitude matrix. For the case
where the molecule is rigid (z.e., nonvibrating) it reduces to the transition amplitude
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of Arthurs and Dalgarno [4] and is analogous to that introduced by Percival and
Seaton [10]. In terms of this amplitude, the physically relevant scattering amplitude,
f(vajamalvgzjgmg:IRa)a is given by

(1.55) F(WasJa, Ma|vS, 70, M| Re) = 4 /,r/kgkma Z ;B —tat1
Je, £
X /200, + 1Y, 0 —m (Ra) < Lam® — majama|Jmd >
X (£2050m2|Tm2) T (nq|nl).

The physical differential cross section for scattering the projectile in the direction R,
with the quantum state changing from relative momentum %k9%, molecular internal

state v3,7%,mY to final relative momentum (k,,;, Ry), molecular internal state
VayJayMq 18 given by

(1.56) '—(io"_(vaajm malvgajga mg) = (kw;oja> [f(vas Jas malvg’jgv mglfza)l?'
dR4 ka

Integrating this over all final directions yields the state-to-state integral cross section
or effective target size for this transition. Thus, once the T7(n,|n?) are determined
for all J, £,, and £2, contributing to the sums in (1.55), the physical scattering cross
sections can be calculated. Determining the T'/-elements requires solution of the
x” integral equations from R, = 0 out to the asymptotic region where the potential
elements V7 are essentially zero.

In Section 2, we will discuss two methods for solving the x/(R,) equations.

1.2. Close coupling wave packet method. We also wish to present an
introduction to the time-dependent approach to scattering. Our discussion will for
the most part follow that of Sun, Mowrey, and Kouri [37]. Most of the necessary
apparatus is presented above. Returning to (1.1)-(1.3), it is clear that knowledge
of the |x’) determines the corresponding time-dependent wavefunction |¥7) at all
times . However (1.1) has more general solutions than the stationary ones which
satisfy (1.3). In general, solutions of (1.1) may be constructed as superpositions of
stationary states |x”), with such superpositions being called wavepackets. Further-
more, unlike the |x”), which are non-normalizable, the wavepacket solutions [T 7)
of (1.1) may be constructed to be normalizable. A fundamental feature of (1.1)
is that it is a first order partial differential equation in time; i.e., it constitutes
an initial value problem. Thus specification of the packet at any time ¢ uniquely
specifies its behavior for all other times. If we were to construct a wavepacket de-
scribing our atom-diatom collision system in the distant past, prior to the collision,
it would correspond to a configuration in which the particles did not interact. This
packet would then be a superposition of noninteracting states (eigenstates of Hy).
If the packet were then evolved forward under the action of the full Hamiltonian
H (according to (1.1)), it would produce a final wavepacket which would also be
a superposition of the |x”) stationary states with the same coefficients. This is
the basis of the time-dependent approach. We will emphasize methods that take
advantage of the broadness of the wavepacket in energy.
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As in our discussion of stationary states, we again make a close coupling expan-
sion of the wave function, i.e., we write

(1.57a) @)= > 12, 0 )T (nalndlt))
Jvg €8

and

(1.57b) U7 (nglnd,|Rast) = (Ra|¥ 7 (na|nd, t))-

This is called the close coupling wave packet (CCWP) method, and it was originally
introduced in different contexts by two of the authors [38, 39] and by Jackson and
Metiu [40]. For the present purposes, it is convenient to employ wavepackets corre-
sponding to well defined total angular momenta J. Thus we consider a wavepacket
given initially (¢ = 0) by

(1.58a)
W (|t |Ray0) = Susvg gl [ dEORE A (KL (HERo).
0

This implies that at time ¢ = 0, the packet corresponds to well defined quantum
numbers J and n? but with a superposition of relative translational kinetic energies
h2k22 /2p. The detailed shape of the packet is determined by the weighting func-
tion Agp (k2). Specification of the spatial extent of the initial packet, ®(Rq4, RY),
uniquely determines Ag (k). Here, (R, RY) is a quadratically integrable func-
tion of R, centered about RY. Then

2

(1.58b) An(8) =2 [ dRuRLig (K.Ra)8(Ra, RE).

0

We note that (1.1) may be formally integrated to yield
(1.59) [¥(t)) = exp(—iHt/h)|T(t = 0)).

If the initial packet |¥(¢ = 0)) is a superposition of stationary states |x),

(1.60) |9(¢ = 0)) = / " dBA(E)|x5),

then one immediately obtains
(1.61) () = / dEA(E)|x 5) exp(—iEt/R).
0

If the coefficients A(E) could be related to the A (k3) in an initial packet of the
form (1.58), and such a packet were numerically evolved forward in time according
to (1.1), then the numerical packet would have to be equal to the formal expression
(1.59). Now the most important feature of the time-dependent method is, in fact,
that numerically evolving a packet defined initially by (1.57)-(1.58) forward in time
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using (1.1) eutomatically generates a wavepacket at ¢ given formally by [37] (see

also, e.g., [41]):
(1.62)  ¥(nalng|Ra,t) =
/ dk3kS Agn (k)X (nalkS, n%|Ra) expl—i(Eng jo + h2k3%/2u)t /1],

where the x7(na|kd,n%|Rs) satisfy the integral equation given in (1.46). This
provides the means of deriving how one extracts from a numerically propagated
wavepacket the scattering information, namely, the transition amplitude T'/(n4|n%).
To do this, we re-write the integral equation for the x7(nq|k%,n%|R,y) using the
expression (1.40) for the Green’s function rather than the contour integrated form

(1.43). Thus,

(1.63) X7 (nalk%, n|Ra) = 84,4065, jo 8¢, 00 de0 (kSR
+ 23 [T am Rz /°° dht ke e, (K Raie, (EaRb)
- o 0 atta (h k°2+EvOJ° _Mﬁ.*—ze)
X VI (nalng|RL)x 7 (nh kS, nO|RL).

We notice that the sum over n}, and integral over R), are similar to those which
defined the transition amplitude T'/(n4|n%) except that certain factors /%, ja Kt j0

2
are not present, and more importantly, the energy —kg‘- + Eyj0 cannot equal

272
L 2’; + E,,, ;. in general since k., is being integrated for each value of k2. However,
we introduce a modified amplitude

(1.64)
J 4ll'i ot ot 2 'R J J
T/(nalnd) = <72 | dRaRe je(KaRQ)V (nalnG  Ro)X (ny ke, nd | RY).
. J0
Because the initial and final total energies are not equal, 7'/ (nq|nl) is related to a
so called “half-off-energy-shell T-matrix” element. In terms of it, (1.63) becomes

(165) xj(nalkg,noalRa) = ‘Sva v2 6]'&]'2 63&50 j[o (koRa)
N R /°° dkL kL 5o (kL R )T (na|nl)
2mip (h A%kg? + E,,o]o — hzk’ I E,.;. + ze)

Then our wave packet expression (1.62) can be written as
(1.66) U7 (ng|nd|Ra,t) = / dkg,k°2Aco (k%)
0

X exp[—z'(E,,gjg + le kgz/zﬂ)t/h] {6,,(_‘ vg 6ja 9 6g°ggjeg (kgRa)

K2 [ dkl kb je, (kb Ra)T(nalnd)
(h’k" '

[ P 2 h2k 2
HWZM e < S5 + Evg‘]g —_ ...._ﬂ... — Eva]a + Ze)

13 paper 12/2/1987




The physical interpretation of the appearance of half-off-energy-shell amplitudes
is that at finite R,, the total energy is still uncertain. We then form the time-
dependent integral I7(kq, Ve, Jos£alvd, 59, £2]t) given by

(161)  Plkanalnllt)= [ dRaRlie,(kaRa)¥ (nalnd Res),
0

which is evaluated numerically at some time ¢ such that the numerically propagated
wavepacket [constructed initially via (1.57)] has passed through the region of inter-
action and back out into the large R, region where the detector can be located.
The final step required to express T/(nq(nd) in terms of the I7(kq,nq|nl) is to
evaluate (1.67) analytically using (1.66). This is done by using (1.39), expressed as

m 5 ko
(1.69) | aRe R (e Rei, (o) = 3 2o ko),
along with the Kronecker deltas, to obtain
(1.69)

oo
I (kq,nalnl) = / kO kS Ago (KS) exp[—i(Eyo jo + h2k0% /2u)t/B]
0

W&(ka—kg) R? -, o
X {511 vg 6,7“]“ 6[,, 0 2 _ng— + ZFZ.T (nalna)

21,02 2712 -1
[h ka +E v3 IS T h2’;a —E”aja +26:| }‘

2u

The first term containing §(ko — k2) is trivial to evaluate, leading to the expres-
sion

h’k?
(1.70) (kg ng|nl) = Y PR LI —A(o (k) exp[—1 ( o + Evah) t/h]

2 oo
+ Z%’ /0 kKO Ago (k) exp [- z(E jo + h2k22/2u)t/h]

x T(nalng)/ [

The integral over k2 in the second term on the right-hand side of (1.70) is done
using the Cauchy residue theorem. It is convenient to carry out the integral using
a kinetic energy variable €2, defined by

(1.71) & = ha2k2% /2,
such that
(1.72) I (kq,nalnl) =

R2EO? X% ,
2§ — OM“ —E,, ;. +ie|.

-~

a]oz

h2k°2
5vavg5]a]05¢ago Ago (ka)exp[—- Eo 0 t/h]

1 *° .
to= [ ded/PueT Agg [W3(S)] expl i€l + Eug )t/]
0

X Tj(na|ng)/ (eg + Eyojo ~ €a— By j, + ie)
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where

k.2
— 2 a
(1.73) ea=h o

The denominator of the second term on the RHS of Eq. (1.72) vanishes where
(1.74) €2 = €a + By, j, — By jo — ie,

so that it produces a pole in the fourth quadrant of the complex €% plane. The
quantity Ago [k3(e2)] does not have singularities in the region of interest of the €2,
plane, nor does exp(—iedt/h). The quantity T7(nq|nd) has poles on the negative
real axis of €2, (corresponding to the true bound states of the full Hamiltonian H)
and in the fourth quadrant of the complex €? plane (corresponding to resonance
complexes associated with the full 3-particle system) [42]. The resonance poles of
T thus occur at

(1.75) ex(m) = € (m) —iTY(m)/2, m=1,2,..;

m labels the resonance, and €l .(m) and I'%(m)/2(> 0) are the real and imaginary
parts of €2(m). It turns out that the dominant factor determining whether one
can close the contour in the lower complex € plane is the factor exp(—iedt/h).
In particular, one must close the contour so as to enclose the pole given in (1.74),
which is —e below the real axis, and exclude the poles due to T7(n4|n%), which
occur at —1I'%(m) below the real €} axis. Clearly, it is necessary then to take € to
be less than the minimum of the 3T'%(m) (but ¢ > 0). Then the contour can pass
between the pole due to (1.74) and those due to (1.75). The smaller the minimum
1T%(m), the smaller ¢ must be made. However, the smaller is ¢, the larger must
be the time ¢ at which the integral I7(kqona|n?) is calculated. This is because the
vanishing of the added contour required to close the path in the integral over €2 is
determined by the magnitude of exp(—eg,,-t/ h), where —eg,,- is the imaginary part
of €, and €) ; must be greater then € but smaller than min[1T'%(m)]. Physically,
we note that the lifetimes of the resonances produced by the Hamiltonian H are

determined essentially by an uncertainty-principle-type relation,
(1.76) T ~ 2h/T9(m);

the smaller I'Y(m), the longer the resonance complex lasts. Thus, ¢ must be longer
than the lifetime of the longest lived resonance complex. The result of the contour
integration is

(1.77) I (kg,nqa|nl|t) =

kS
2u

m . ~
§Azg(kg)exp[—i(Evgjg + I B)[80,02 85 i2 a2 — g jo T/ (Ralnd)],

where
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h2k2 kS

(1.78) +E, j, = 2 + Ey jo

Using(1.54), (1.64), and (1.78) along with the Kronecker deltas in the right-hand
side of (1.77), we may write this as

(1.79) I (ko na|nl|t) = 1’-\/’T Ao (K2)

h’k“ T
)t/rhl‘][‘svmv0 ]a]aétalo -T (nalna)]'

x exp[—i(Ey jo +

This is trivially inverted to yield the following expression for the transition ampli-
tude

2 [kq -1
(180) TJ(nalna) = Ua,,o&,ﬁ_,aagaeg - k° [A[o (kO)]
h2k02
X exp i<Evg o + 2#"' )t/h / dRoR2%j4, (kaRa)¥ 7 (n4|n|Rq,t)
0

This result is well known [43-46], but the derivation [37] just presented may be more
satisfactory than those available earlier. This completes the introductory remarks.
We now turn to consider how one solves the relevant time-independent integral
equations or time-dependent differential equations of scattering,.

2. Time-independent integral equation methods. We shall begin in Sec-
tions 2.1 and 2.2 by discussing two noniterative methods for solving the single-
arrangement integral equations (1.47) for the x7(nq|n%|Rs). Then in Section 2.3,
we consider a set of multi-arrangement integral equations and their solution by a
generalization of the method of Section 2.2.

2.1. Propagation method. First we consider a procedure involving replacing
the original integral equation, which is an inhomogeneous Fredholm equation of the
second kind, by an inhomogeneous Volterra equation of the second kind [42, 47-50].
To do this, we eliminate the RS, RZ variables by splitting the integral over R!, into
one from 0 to R, and another from R, to oo:

(1) x'(Ra) = j(Ra) ~ H kAR / arty R § RV (Rl (R
2R [ dR:.R:fy(R;)zJ(R (R

Now we add and subtract the quantity

(2.2) h"’ k](RQ) - dR. R, 2 +(R' )VJ(R )XJ(RI)
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and combine appropriate terms to write
3 @) =iRL- 25k [ RLRE RV (R (RL)
25 [ dRL R (R R - KRBT (R ()

Here we have used the fact that diagonal matrices commute. Now although we
do not know its value, the matrix f;° dR.R.*r*(R.)VI(R, )XJ(R ) is a constant

matrix. We introduce a new matrix function U/(R,), defined by

(2-4) XJ(RG) = gJ(Ra)gJ
where
(2.5) cl=1- —k/ dR.R, 2h+(R WI(R, )XJ(R ).

This matrix C7 can be shown to possess an inverse for all (real) scattering energies,

and in fact is related to a quantity called the Jost matrix (see, e.g., [42]). As a
result, one finds that U/(R,) satisfies

(2.6) UJ(Ra>=j(Ra)+2—”k / " an LR (Ra)h*(RY)
0
— h*(Ra)i (RIV J(R (R

which is the desired inhomogeneous Volterra equation of the second kind. By using
(2.4), we rewrite (2.5) as

2.7) ¢l=1-2 261 / AR, R WH RV (RLU(RL)C,
so that
(2.8) cl =1+ 2"k / AR, R, RH(RL)V I (RL)U (RL) .

Thus once U7(R,) is known so that [;° dR! R!.*h+(R! )V‘I(R )UJ(R ) can be
calculated, one can determine C”. To obtain the transition amplitude matrix T/,

defined by

(2.9) [T7] 00 mg =T (nalnd),

we note that it can also be written as

(2 10) TJ 4:“’2 1/2 dRI RI 2 Rl VJ R J RI k1/2
: T° =~ J(R)V (Ra)x " (Ra) k.
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By (2.4), this is

(2.11) ;J=%if‘2—i§1/2/0 dR.R! 2](R' WI(ROUI(R,, )C’"kl/2

and using (2.8), we obtain

(2.12) T/ = %El/z/o dR.R.?j (R' WVI(R, U'(R,)
x(1+ 25k [ dRLRL RV RYY (R R

This then completely expresses T in terms of integrals over the matrix function
U'(R4), which satisfies (2.6).

It is easy to devise an efficient algorithm to solve (2.6) for U /( R, ) noniteratively.

We introduce a Newton-Cotes quadrature for the integral over R/, with grids points
at R;, Rs,..., RN so that for the point R, = Ry,

(2.13) U’(Rn) = j(Rw) + 2Ky Z WLR3[j (Rn)h* (Ry)
=1

he~
— h¥(Rw)j (R)]V (R,)UY(Ry),

where W, is the integration weight at grid point v, and with the starting condition
being that U7(0) = j(0). In practice, one does not start the solution at Ry = 0 but

rather at a point where the diagonal potential matrix elements are large compared
to the total energy E. Now consider the term v = N in the sum:

(2.14) Sy = WnRR[j (RN)RT(BN) — h*(RN)j (RNV 7 (RN)U 7 (BN).

But the diagonal matrices j and A% commute, and therefore Sy vanishes identically.
Thus, (2.13) becomes

(2.15) U'(Rw) = j(RN) + L Z W, R?

7=1

X [j (Rn)R*(R,) - g*(m)i (RIVI(R)U(R,),

which is a simple recursion relation for U/(Ry) in terms of its preceding values.

For convenience in calculations, we define two partial sums
2
(2.160) SN -1)= h“k Z WoRSi (R)V(R,)U(R,),
2
(2168) BN -1)=1+5k ¥ W RV (R (R
7=1
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Then (2.14) is written as

(2.17) U7(Rn) = j(BRN)ZIN ~ 1) - A*(RN)SAIN - 1).
Finally, we note that when Ry is large enough that

(2.18) VI(Ry) ~ 0,

the sums will have converged. Further, these converged sums, which we denote as
2.(4lo0), § = 1,2, are precisely the integrals occuring in the expression (2.12) for

the T”. Thus, we have that

(2.19) 77 = %k1/22(1|oo)[2(2|oo)]—1kl/z,

so that when we have recurred out to the region where the potential is zero, all the
information is at hand to calculate the transition amplitude matrix. It is clear that
this algorithm will scale as the cube of the number of quantum states (channels) n,
since one must carry out matrix multiplications and calculate the inverse in (2.19).

An important practical note is that one must be careful that the columns of the
solution matrix U”/(Ry) remain linearly independent in order to compute the scat-

tering information. This necessitates periodically carrying out so-called stabilization
transformations (stabilization methods are also required and were first developed
for coupled differential equations involving closed channels as in [51, 52]). In prac-
tice, every 5-10 steps or so in the recursion, the solution or one of the partial sum
matrices is transformed into upper triangular form. Suppose the transformations
that accomplish this are denoted by g(k), for the kth transformation. Then at the

end of the calculation, in place of the £(1]|oo), and ¥(2|co), one has transformed
matrices:

(2.20) > (tlee) = Y (Uee) B1)B(2) . BV,
(2.21) Y (2le0) =) (2|00)B(1)B(2)... B(N).

It is trivial to show that

(2.22) 5(1/00)[E(2Je0)] ™ = E(1je0)[E(2lo0)] %,

so that the correct T/ matrix results even though the stabilization transformations

have been applied to the solution. Finally, we note that one may replace the com-
plex equations for the U/(R,) by real equations. We simply note that the Hankel

functions may be written as
(2.23) ki (kaRa) = ne, (kaRa) +ije, (kaRa),
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where ny_ (koRy) is the spherical Neumann function of order £, with a sign con-
vention such that the asymptotic condition is

(2.24) ngwnga(kaRa) = cos(kqRa — La™/2)[/kaRa.
Then in obvious matrix notation

(2.25) h*(Ro) = n(Ra) +i i (Ra),

and we see that (2.6) may be written as

(2.26) U'(Ro) = j(Ra) + %‘;g / - dR;,R;"’[j(Ra)n(R;)
+5(Ra)j (Ro) = n(Ra)j (Ra) — i§(Ra)j (R (ROU(Ry,)-

Clearly the imaginary terms cancel, leaving

(2.27) U’(Ra) = ](Ra)+ Lk / dR,R,’[j (Ra)n(R,)
—n(Ra)j (Ry )]VJ(R U7 (R)

showing that, in fact, U’/(R,) is a real function. Thus, the recursion algorithm can

be formulated in a way which involves complex arithmetic only when the TV matrix
is constructed, at the end of the calculation.

2.2. Basis function method. We now discuss an alternative method for
solving collision problems by noniteratively solving the Lippmann-Schwinger equa-
tion (1.46) for x7(R4), Again, it is generally convenient to convert (1.46) into an
equation for a related, real function using the relationship (2.23). We may then
write

(2.28) xJ(Ra) — j(Ra)(1 - 25k [ R R SRV (R (L)
2 f dR.’R! 23(R<)n(R>)VJ(R,,)x](R ),
or using (2.10)
(2.20) xJ(Ra) = j(RL - S T7671
L / dR' R!?j (R<)n(R>)vJ(R )XJ(R ).
We define the real function IZ/J (Ra) by
(2:30) x7(Ra) = W(Ra)[L - 5H/2T 75717,
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where
(2.31) VL’J(R?)= j(Ra ——-k f dR. R ;(R<)n(R>)VJ(R YWI(R).

We then introduce an auxiliary function ¢ (R,), termed the “amplitude density.”

(The amplitude density for nonreactive scattering was introduced by Johnson and
Secrest [53].) The amplitude density is defined by

(2.32) CJ(Ra) = KJ(Ra)vZJ(Ra)-

We remark that the amplitude density is quadratically integrable (£?) as a function
of R, and can be expanded in terms of £2 basis functions of R,. We derive an
integral equation for the ((Rq) by applying V’(R4) to both sides of (2.31), and

use (2.32) to obtain
(2.33)
(¥ (Ra) = V2 (Ra)i (Ra) — 25V (Ra)k / 4R, R, (RS)n(R3)C(BL).

We expand

(2.34) ¢7(nalkgnelRa) = ) f(talRa)a”(ta, nalka, nd),
t

where the f(t4|Rq) can be any convenient, complete set of functions (e.g., harmonic
oscillator functions [54, 55], sinusoidal functions [56-58], gaussians [59-63], or Bessel
functions [64]),substitute into (2.34), multiply by the various f*(¢4|Ra)R2%, and
integrate over R,:

(2.35) zoaant;)a%t;,nawz,nz)

/ dRoR%f*(ta|Ra)V "/ (naln' |Rs)
n!, t’

X [6,)/ v3 510‘]063: 2 ]go (k Ra) 2# kv' i’ / dR' .Rl 2
X jo (ko jo R$Ine (ko ; R>)f(t' |RL)a’(th, nl\ k2, ).

Here O(t4|t],) is an overlap matrix,
(2.36) Otalth) = / ARoRE f*(tal Ra) f(24  Ra),

since the basis functions need not be orthogonal. Equation (2.35) is a set of linear,
inhomogeneous algebraic equations whose solution is highly suited to modern high-
speed vector supercomputers. We note that once (2.35) has been solved for the
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a’(tanalkdn?), the transition amplitudes may be calculated as follows. By (2.10)
and (2.30),

(237) 17 = Ll [ aRL R ROV (RL)
1 -
x WJ(RIQ)[l _ 5'&1/22.7& 1/2]E1/2'
But using (2.32), this yields
J_ 4m 1/2 o ot B2y Jr ot 1 1/2nJ1.—-1/211.1/2
(2.38) T =—h—2-k dR_ R, j(R,)( (Ra)[l—-z-k T k12 k1 /2,
~o ~ 0 ~ ~ e s ~ ~ ~

It is clear from (2.34) that to evaluate the integral in (2.38), one must calculate
integrals of the sort

(2.39) ]0 dR! R\ jo, (koo s B F(tal BLY),

and weight them by the expansion coefficients a”’(tan4]k%n2). Then (2.38) is solved
for the T7. If we define a so called “reactance matrix” R’ as

[o o]
(2.40) R = 250 [ AR (R (R)E,
R =23k | § (Ra)¢'(Ra)k

then (2.38) can be written as

1

(241) T/ =ilR! - 3R'T),
or

(2.42) T7 =11+ %gj]-lgf
(2.43) =4iR7[1+ %RJ]*.

The above relations (2.41)—(2.43) are examples of the well known Heitler damping
equation [42].

It is important to discuss briefly how the computational labor involved in ap-
plying the £?-amplitude-density moment method introduced above will vary with
the number of quantum states and translational basis functions included. In the
crudest form of application, one might include the same number M of translational
basis functions in expanding every ¢’(n|k®,n°|R). Then if there are N possible sets
of quantum states n,, the total dimension of the coefficient matrix in the algebraic
equation for the a”/(tq, nqlk, nd) will be (M N)x (M N). The computational effort
required for the inversion of the coefficient matrix will then vary as (M N)3. This
is in contrast to the N? variation of the Volterra equation method. However, the
Volterra method involves an N3 step at each quadrature point. If there are Ng
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quadrature points, the total work will scale as NoN3. If Ng = M3, the algebraic
method will be more efficient. If Ng < M3, the Volterra method will be more
efficient.

If desired, one may also use the £2 method of moments for the amplitude density

to directly solve for the T'/-amplitudes. To do this one does not make the substi-
tution of n(Rq) + ij (Ry) for the A*(Rqy) in Eq.(1.46). Then in place of Eq.(2.32)

defining the amplitude density, one defines the complex amplitude density ¢~ (Ra)
by

(2.44) ZJ(RG) = KJ(RG)XJ(RG)°

This new amplitude density is also £?, and its integral equation,

(2.45) {'(Ra) = V'(Ra)j (Re)

~

- BVIRE [ dRLR (RORF(RZ)(Ra),

may be solved by precisely the same technique as was used for Eq.(2.33). Further-
more, because one no longer has to utilize the damping equation to obtain T from

the {7(R,), but rather
J_ 4w 1/2 * 2 *J 1/2
(2.46) 17 = B [ aRaREj (Ra) (R,

it is possible to solve for a single initial condition (as can be dome, e.g., in the
wavepacket method). However, the direct solution would still involve calculating
the inverse of a coefficient matrix, which is now complex, and the work would still
scale as (M N)® just as in the reactance matrix case. However, if a convergent
iterative solution can be found, then the work for a single initial condition would
scale as (MN)2Ny where Ny the number of iterations. If the required number of
iterations is small enough, the iterative procedure would then be more efficient. If
one employed such an iterative method with real algebra to calculate the whole

reactance matrix, the computational effort for No open channels would scale as
(MNNo)?N; which may be less favorable than (M N)3.

Finally, we remark that very similar £? expansions for the amplitude density
can be combined with variational principles for the R’ or TV matrices, and this
has in fact been found to greatly reduce the number of basis functions required for
convergence [65-68]. Thus, the factor M is reduced in many cases by an order of
magnitude or more, resulting in a three-orders-of-magnitude decrease in the com-
putational labor. As a result, variationally correct versions of the £? expansions of
amplitude densities promise to be an extremely powerful tool for treating the most
demanding inelastic and reactive molecular collision systems.

2.3. Multi-arrangement-channel integral equations. Unlike the Volterra
equation procedure, the above £2-amplitude-density method is equally as applicable
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to reactive (rearrangement) scattering as nonreactive scattering, and to see this, we
now consider generalizing the Lippmann-Schwinger integral equation to a situation
where atoms can be interchanged so as to lead to new molecular species in the
collision. (The amplitude density was originally generalized to reactive systems
using uncoupled equations for the reactive transition operator [69] and using a
permutative arangement-channel coupling scheme [70]. The generalization to the
Fock coupling scheme used here was first presented by some of the present authors
and Shima [63].) The basic problem in reactive scattering has already been alluded
to in Section 1.1, and it consists in the fact that more than one way of forming
subclusters (molecules and atoms) can be realized, as indicated in the nonuniqueness
of the unperturbed Hamiltonian H, and corresponding perturbation V, of (1.4).
The total state function |x”’) must produce outgoing scattered waves in all limits
Ry — 00, @ = 1,2,3. We might try to solve for |x”/) as being made up of 3 pieces,
each of which support scattering in one (and only one) arrangement. Then we write

(247) I (a0,n8,)) = zij |x7(alao,nS,))

and

(2.48) E-m)Y [ (alao,n%,)) =0
a=1

Equation (2.47) is clearly nonunique. The three arrangement components are made
unique by defining a coupling scheme and introducing finite basis expansions for
the 3 pieces of |x’). To do this, we rearrange eq. (2.48) into three equations, in
each of which a different arrangement is singled out on the left-hand side:

(2.49) (B = Ho)|x"(alao,n8,)) = Va|x”(alao, n3))
+ X (H - B)x’(@ad,)).
o #a

This is called the Fock coupling scheme [31, 63] because it can be shown [65] to
be a generalization of the continuum multiconfiguration Hartree-Fock method men-
tioned in Sect. 1.1. (Other schemes for coupling the arrangement components in
an expansion of the form (2.47) have also been studied [31, 55, 57, 63, 69, 70, 72,
73].) Just as in deriving (1.19), we write [57]

(2.50)
|xj(a|ao,ngo)> = baao @J(ao,n&o)> +(E-Hy,+ ie)_lValx‘I(alao,ngo)>

+ 3 (B = Ha+i) ™ (H - E)|x(«'|ac, 1)),
o' #o

It is also convenient to rewrite this using matrices in arrangement channel (o, o)
space,

(2:51) [ (@0,n8)) = |27 (a0,n,)) + GE V| (@0,m3,))-
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Here, the vectors (in arrangement channel space) are

(2.52) “ {J(ao,ngo)ﬂ = [x7(alao,nt,)),

(2.53) [lgl(ao, ng°)>] = buao

o

@7(a0,n3,)),
and the matrices are

(2.54) [GFlae = bae[E — He + i) !
(255) ['B]aa’ = 50&’ VOI + (1 - 6aa')(H - E)

If (2.51) is put in the coordinate representation, it is complicated compared to
the single-arrangement version considered previously by the fact that the scatter-
ing variable R, in arrangement a depends on the scattering variable R, and the

molecular internal vector r in arrangement o', and similarly for ro. As a result,
integrals over o will involve knowledge of functions of Ry, o' # a, over all Ry

space, in general. This eliminates the possibility to convert (2.51) into a Volterra
integral equation [47-50, 74] in any simple fashion. However, in analogy to the
discussion of the amplitude density in Sect. 2.2, we define a generalized “reactive
amplitude density” [¢7(ao,n% 50 13.)) by

(2.56) ‘S‘](ao, n?,o)> = Y‘EJ(QO’ ngo)>.

The equation satisfied by the |¢ 7(aq,n? ,)) is obtained by applying V to (2.51) from
the left, using (2.56), to obtain

(257)  [¢7(e0nd,)) = V]8(a0,n8,)) +VGE|¢ (@0,n2,))-

This is the abstract vector form of the reactive amplitude density integral equation.

The derivation given above of the Fock coupling scheme amplitude density equa-
tions, (2.50), can be made mathematically precise using the techniques of injection
operators. This approach to few-body collision equations has been used by Chan-
dler and Gibson [75] in their “Two-Hilbert-Space” formalism, and subsequently by
Evans [76] in discussing coupled arrangement channel wavefunction equations. The
derivation using injection operators will be given elsewhere [77].

It is of particular interest to examine, for a moment, the action of V on G7.
We note from (2.55) that off the diagonal (a # a'), the operators comprising V

are all (H — E). This operator involves the kinetic energy, which in the coordinate
representation is a differential operator, and is therefore inconvenient. In addition,
the energy E is a constant. We can simplify it by noting that [63]

(2.58) (VGF )aw = (H — E)(E — Hy + €)™
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for a # a'. This is readily expressed as

(2.59) (V6§ )aw = =1+ Vo (E — Har + i)™
or

(2.60) VG§ =-N + VG,

where

(2.61) (NMaar = (1= baar),

(2.62) (Voo = V.

Finally, we note that, because H,, ®(aq) = E®(ay),

(2.63) (}Z|<~I>J (o, ngo)>) = Vo

o

87(aq, ngo)>1
and
(2.64) 'XI%J(ao,ngo)> = 1~f|y(ao,ngo)>.
Using these results, we can write our reactive amplitude density equation as [63]
(265) |¢%(a0,n%)) = V|27 (a0,n8,)) = N]¢ (e0,n8,)) + VG |¢“(e0,md)

which involves no differential operators. This can be put into the coordinate rep-
resentation by projecting the ath component onto the coordinate state (Rq, 7 o|(=

(Raea¢ara7a6a|), to obtain
(2.66)
(J(alao, n?xo IEaa r‘a) = Vao [}jao(;@m f;cz), 1ao(1’za, .7;"‘)]
x @J(ao’ ngzo ’Rao(Rm Ta), Tao(Rm "'a))
- Z CJ(allal)a ng,o IRa'(Rm ra), Ta’(ch ra))
o #a ~ o ~ ~r
+ Z Vo [Eo{’ (Em :’;a)a :’;a’(gm Qa)]

~

X /dlj:x'dr‘ix’ GZ’ [Ija’(Em 20)7 Za’(}jm Ea)l-ﬁ'a'a ‘r:.x,] Cj(allao’ ng:o Ilj:r" :':,’a')’

where by Ry(Ra,To) and ry(Rqa, ) We mean the point R,, 7, expressed in
terms of the o' arrangement coordinates. Thus, Ry/(Ray T a)s T or(Ra, 7o) is simply
an “alias” for the point Ry, ro. However, R,, and r!, are integration variables and

are not restricted by Rq, 4. It is the fact that the radial variable Ry depends on
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R, and r o that prevents one from converting (2.66) into a Volterra equation, so as
to employ the recursion method discussed earlier.

In this connection it is instructive to again consider the MCHF method for
electron scattering [6, 9-29], which was discussed briefly in Section 1.1. In that
case all V,, are sums of coulomb operators. Furthermore consider the three-body
problem of e] + pte;, where e and e; denote electrons and pte~ is an H atom.
Then, because the mass of a nucleus is so much larger than that of an electron, we
may take the mp — oo limit in eqs. (1.12) and (1.13) with negligible error. This
plus the form of V,, makes the integral kernel in eq. (2.66) particularly simple [21] so
that a noniterative integral equation propagation method may still be applied [47,
50, 78], but this is not possible for more general arrangements such as considered
here. (Other methods for treating chemical reactions by propagation methods may
be based on natural collision coordinates or hyperspherical coordinates [31, 79-82],
but it is beyond the scope of the present chapter to discuss those approaches or
yet other approaches based on matching local solutions obtained in disjoint regions
of configuration space.) Thus previous work on the MCHF approach to chemical
reactions was cast in terms of coupled integrodifferential equations [32, 33, 83-87].
Equation (2.66) provides an equivalent formulation in terms of coupled integral
equations.

If one projects (2.66) onto a particular a-arrangement internal state by multi-
plying the equation by some (Z,] |rq, Ry) and integrating over r,, effectively this
also integrates the R variable in the Green’s function, and obviates the steps (2.1)-

(2.3) required to obtain Volterra equations. The procedure then is to expand the
I¢/(a lao,ngolgal, r o) in terms of basis functions appropriate for each particular

arrangement o', for all a’. Projecting (2.66) with specific basis functions then leads
to simultaneous linear inhomogeneous algebraic equations which may be very effi-
ciently solved utilizing vector-processing supercomputers. The a'-arrangement basis
set is taken to be comprised of the AJ (O b0y Ve ) ARy Jor [T ) ftor | Rev),
just as would be used in nonreactlve scattenng in the same arrangement. Because
there are no external torques, the equations are uncoupled in the J, M quantum
numbers (and are independent of M) [4, 9, 10]. Thus, we write

(2'67) CJ(a,IO‘Oa noao l-EOH Z A o o (901’, ot s Yo s fa’)
t '
X A('va’ s J o Ira' )f(ta' IRa’ )a J(ta’ Ny |kao ’ nao)

where

(2.68) Zoa #)a? (¢, malkS, 0, ) = / dRadr oA I (Ray o) A (vay jalra)
X f* (talRa)Vao [ ao(Rm f;a)s zao(ljm Za)] (I)J[O‘O, n(c)xo l{zao(-ﬁm :a)’ f;ao({,zm f;oz)]

- Z Z [/dR d"'a (Rmra)A*(vaa]cvlra)f (talRa)A]a,[ ,(Ra'ﬂ:a')

a'Fany ty
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X A[va"ja'lra'(Ra, a)]f(ta'lRa’(Ra, a)) ] J(ta' N |kaoa 010)

Z > [ f / dRodr / R R AP (Ro #0) A* (Vs falra) f*(tal Ra)

o ngrtye

X Vo [Ija’(ljm Za), th’(@as Ea)] kva,ja: hj;, (kva: Jo! Rz')jta: (kva:ja/ Rgi)

X f(ta'IR ) ]a,( , [Ra'(Rou a)ra'(Raa "'a)]A (”a’,Ja’lra')]

X a (tal na'lkao’ Olo)

The integrals over all angles (except for the v4) can be done analytically by use of
rotational symmetry properties [63, 88, 89], leaving integrals over the Ry, T, Ya,
and R!,. To achieve this, we rewrite (1.25) as

(2.69)
IC :(RO" TO! )
280,: + 1
Z(za'OJa'ma’Uma') JalMa :(’Ya' 0)® ,(¢a',0a's§a')a
and
(270) Mm :(¢0' 01”60!’) = Zd m (Aaa')DJ‘G‘m;,(¢aieaa€0),

where A,y is the angle between R and Ra, and ‘D]{,Im and d{lm are the rotation
matrices of Wigner [5, 63]. Then because the potentials depend only on the size
and shape of the 3-atom triangle and not its orientation, the integrals over dR, and
df4 can be done using

2T 27 T
(2.71) / dtq / dpa / 0o sin 00D (abata),
0 0 0

872

X D]{/;m;,(ﬁi’aaasa) = mama m,-

Then we find

(2.72) ZO(t |t )a” (th, nalk, n%,) =

*° o " 20, +1)(2€%, +1)
2 dR.R? / dror? / dy, si V(2L o
7"/0 o . Tal Yo SIN Yoy (2J+1)

x Z {€aBjamalJma)Yy, o, (Yo 0)A™(va, falra)

My mao

X f*(ta|Ra)Vao [Rao(Rm Tay 'Ya)a Tag (Rm Tay 7a) 7ao(Rm Tay ')’a)]
X (Z OJaomao |Jm010 )Y]a Moy (70'0 ’ O)A( ao ’ ]ao I"'ao )dma Mag (Aaao )jlgo(kgoRao)
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V2l + )2 +1),, .. |
2w %: nz’t:, (2J+ 1) <£a0]ama|z]ma) (eal[]]a,ma,lJmal>

mamg,

X [ / dR.R? / dror? / Yo sinYa Y;i m, (Yar 0)A*(Vas jalra)
0 0 ]

X f*(talRa)Y0m, (Yo, O)dmama,(Aaa’)A(va"ja’Ira’)f(ta’lRa')

47r 2fo,+l 200 +1 .
X a7 (tor, o |2 O ” Z Z vt dur V( (2.}1—(1) )(Eaﬂjam,,]Jma)

a'mam 1 N1ty

X (EO,IOjafma:Uma:)/ dRaRi/ drari/ dyasinyg
0 0 0

/ dR!, e (T O)A* (Vs alra) F* (2l Be)
X Va',(Ra’ Taly ’Ya')h-l- (kv ;]a;R ).7[ (kv 1 ot Ra')

X f(tw| R Y mar (Yo O)dmam ,(Aaa')A(Uor’Ja’Ira’)“ (to, na"kao,nao)

The remaining integrals over Ry, Tay Yo, and R., are done numerically using ei-
ther Gaussian quadratures or Newton-Cotes quadratures. The final result again is
a set of algebraic equations for the expansion coefficients a”’(tqnq|kd n%) whose
structure is basically the same as in the nonreactive case. This leads then to a very
robust method which may be used for general collision problems. Applications have
been made for the fully 3-dimensional collisions systems: I 4+ Hs nonreactive [63],
H + H; and D + H, reactive [63, 90], O + H, reactive [71, 91]. In addition we are
currently studying Br + H, reactive [92], Cl + H; reactive, and F + H, reactive
collisions. (The latter two systems are currently under study in a collaboration
involving the Minnesota, Houston, and Ames research groups.)

3. Time-dependent wavepacket methods. We conclude our discussion of
methods for solving molecular collision problems by outlining a practical method for
obtaining cross sections by solving the time-dependent Schrédinger equation. The
detailed time-dependent Schrédinger equation for atom-diatom inelastic scattering,
in matrix notation, is

(3.1)
z‘h%\y(ngma,t) = 1(—-2—;%—;5%% hR +E+V(Ra)| 27 (ng|Rast)
(3.2) = HU'(ng|Ra,1),

where

(3.3) (1)nang = Soaut S5 2Bttt

(3-4) (£ nany = buqvg 85,9 6t e La(€0 + 1),

(3.5) (E)nang = 8uqv8 8502 8tats Bvgjis

(3.6) [VI(Re)lnangs = VI (nalng|Ra),

and
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8.7 [\I’J(nglRmt)]na = \IlJ(na]ng[Ra, t).

A convenient initial condition for E‘J has already been discussed in Section 1. (In
fact, other initial conditions are possible which can reduce the amount of labor
required to calculate physically significant scattering amplitudes [93].) In order to
propagate the coupled equations (3.1) in time, we note that the formal solution is

(3.8) I (ng|Rat) = exp(—iHt/R)T7(ng| Ra0).

This requires repeated evaluations of the radial derivatives of the \EJ (n2|Rq,t). Fur-
thermore, we require a sufficiently accurate evaluation of the action of exp(—élg t/h)
so that long propagation times can be treated, since many cases of interest involve
long-lived resonance complexes. Once the long time packet has been determined,
the ﬁnal state ana1y31s may be carried out as discussed in Section 1. The action of
[— 2,;R aR2 257 Ra + “—Ryﬁa(é +1)] on ¥J(ng4[n%|Ra,t) can be evaluated by means
of the Fast Fourier Transform (FFT) method. (The use of the FF'T for molecular
scattering calculations was originally suggested by Kosloff and Kosloff [94].) Here
we review a technique developed by three of the authors [37]. It is based on the
fact that the spherical Bessel function satisfies

h? 1 &2 Lo(lo +1 h2lc2

2p « ORZ, RZ

and the completeness relation

— !
(3.10) / dRa R e, (FRa)je, (K Re) = Z2EZED,
0

Thus, we write
(3.11) U7 (nqlnd|Rayt) = / dkk?jr, (kRa)T (nalndlk, 1),
0

so that by (3.9),

(312) (— Egéﬁg{—Ra + —T— LG (nalna|R, t) =

bt —J
| ke, (kRaYT (maln b, 1)
0
To obtain the -‘:II—J(nalnglkt) to use in (3.12), we employ (3.10) to write

— 2 [
(13)  Tlnalnlli) = 2 [ dRaRje, (+Ra)¥ (ol | R ).
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In order to use these expressions, we need to convert them into a form involving
the FFT. To illustrate, we focus on an integral of the form

(3.14) I= /0 oodRR2jg(kr)\Il(R),

where ¥(R), as a prototypical wavepacket, is assumed to be basically gaussian in
shape, behaving as exp(—aR?) for large R. Using the relation

1/2
. nk
(3.15) je(kR) = (ﬁ) Jey1/2(kR),
we write I as
A2 e
(3.16) I= (12—) /0 dRR*?Jy 11 /5(kR)U(R),

where Jy11/5(kR) is a cylindrical Bessel function of order £ + 1. We then insert
unity in the form

(3.17) 1 = exp(—6R) exp(6R),
so that
L\ /2 o
(3.18) I= (%) / dRJpy12(kR) exp(—6R)R*/*T(R) exp(6R).
0

At this stage, 6 is arbitrary but we will find it must be greater than zero, and
not too large, for the method to work. We now expand [J, +1(kR) exp(—6R)] and

[exp(6R)R?¥(R)] in terms of sine functions:

(3.19) Je+1/2(kR) exp(—6R) = /0 ” dKC,(K)sin(KR),
(3.20) exp(6R)R*/*¥(R) = /0 ” dK Cy(K)sin(KR),
where

(3.21) Ci(K) = -72; /0 ” dRexp(=6R)Jes1/a(kR) sin(KR)
and

(3.22) Co(K) = % /0 - dRexp(6R)R*/?U(R) sin(K R).
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Then one easily finds that

1/2
w [k *
(3.23) I=§(_2_) /0 dKCy(K)Cy(K).

Furthermore, C1(K) is readily evaluated analytically to be

(3.24) Ci(K) = %Im { [V1+ (6 —iK)? - (6§ —iK)]|tH1/2 } .

kt+1/2, /(6 — iK)E + k2

It is here that 6§ > 0 is required. Numerical tests show that large § values lead to
accurate results, but if § is too large, then exp(§R)R? ¥(R) may extend too far for
the FIF'T grid used, thereby necessitating use of a larger grid. This then increases
the computation time, so that too large a § makes the method become inefficient.

Another possibility is to include the centrifugal potential 2‘%; £? in the potential

and evaluate only the action of ——% (-RJ: %Ra) on U7, This can be done directly
using the spherical Bessel functions jo(kR4) rather than j, (kR,) [95]. This leads
directly to sine type integrals which can be evaluated by FFT. However, in any
case, the final state analysis requires evaluation of integrals of the sort given in
(8.13), so that the above analysis is important even if not used in propagating the
wavepacket. Another alternate procedure, discussed by Bisseling and Kosloff [95],
is to use Fast Hankel Transforms; however, these have been found to be unstable in

applications to gas phase atom-diatom collisions [37].

The above FFT procedures are accurate and efficient for repeatedly applying
the radial kinetic energy operator to the wavepacket. The final step in developing
a method for solving gas phase 3-dimensional atom-diatom collisions is to specify
how (3.10) will be carried out. An efficient method was suggested by Tal-Ezer and
Kosloff [96]. In this procedure, exp( —iHt/h) is developed in an expansion using

Chebychev polynomials, according to [37, 39, 96]
o0
(3.25) exp(—iHdt/h) = a/T(W),

t=0

where T is the Chebychev polynomial of order ¢, and the operator W is defined by

(3.26) (W) = (/FY-HS +(F+0)),
(3.27) F = d(Emax ~ Euin)/25,

(3.28) G = Emindt/h,

and

(3.29) as =142 — 8;9) exp[—i(F + G)]J,(F).
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e

Here, J: is a cylindrical Bessel function of order . When the expansion index ¢
is larger than F, J,(F) ~ 0 and higher terms in the sum are negligible. Thus
F' determines the number of terms needed in the series. The energies En.x and
Enin are the largest and smallest eigenvalues of Iz , so that the eigenvalues of 11/' lie

between +1. In practice, Fyax and En;, may be estimated as [39, 96]

E Gt E
(330) max — m + ( vaj,,,)max + Vmax’
(331) Emin - (Evo.j., )min + Vmim

where AR is the grid size in the radial variable, Vi, is the maximum value of
the potential on the grid, Viin is its smallest (non-negative) value, (E,, j, Jmax is
the largest vib-rotor energy included in the basis set, and (E,, j, Jmin is the small-
est. Note that by the uncertainty principle, 72k%/2u(AR)? is the largest radial
momentum describable in the wavepacket. We point out that (3.25) enables one
to propagate the wavepacket in a single time step by an amount dt. The larger
dt is, the more terms are required in the sum in (3.25). If one is uninterested in
analysis at intermediate times, one may propagate the packet in one step from the
initial region to the asymptotic region, simply by making df large enough, and then
including enough terms in (3.25).

It is important to note that exp(—ilgt/h) is applied to a vector :If"(n&lRa,t),

with a number of components equal to the number N of basis functions A JJa “{a A(vay Ja)
included in the calculation. Thus, H (or W) is an N x N matrix and ¥7 is an N x 1

matrix. Application of exp( —iIi t/h) then involves multiplications that scale as N2,

rather than as the cube, N3, as do the Volterra and £2-amplitude-density methods.
This means one can handle many more channels in the time-dependent approach
than in the time-independent methods. The price one pays for this is that one only
gets information about scattering from a single initial state, although by judicious
choice of the wavepacket, results for many energies can be obtained in a single prop-
agation. The time-independent methods we have described, on the other hand, give
results for all possible initial states. If, however, one could solve the complex £2-
amplitude density equations for a single initial state by iteration, then the work
would scale as the number of iterations times N2. If the method converged in a
few iterations, this might be more efficient than the wavepacket method. To date,
the largest numerically exact quantum scattering calculation for full 3-dimensional
scattering has been done by means of the wavepacket procedure; it has successfully
been used to solve a problem with 18,711 quantum states, simulating the collision of
an N, diatom with a corrugated (but nonvibrating) model of a LiF crystal surface
[97]. It is of considerable interest to extend these calculations to other types of
collisions. Initial work on strictly gas-phase collisions is underway. Finally, we note
that wavepacket propagation in more than the radial variable may be more efficient
than using basis function expansions in those variables (see, e.g., [44, 45, 94, 95,
98-100]), and this is also under further study. In summary, the prognosis for new
time-dependent methods is very bright. A continuing challenge, though, is to find
the most efficient formulation for various problems with larger and larger N.
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