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ABSTRACT

The availability of large-memory vector processing computers
opens new possibilities for the efficient solution of the
quantum mechanical equations governing chemical reaction
probabilities, and we have initiated a program to exploit this
opportunity. It is being applied to reactive collisions of an
atom with a diatom in either the ground or first excited
vibrational state. The method involves solving a set of coupled
integral equations equivalent to the Schroedinger equation with
scattering boundary conditions by expanding the amplitude
density describing the chemical system in a square-integrable

(Qz) basis set. This method reduces the computational work
involved in the problem to two steps: the numerical evaluation
of multidimensional integrals and the solution of large sets of
linear equations. Our program is designed to run on a Cray-2
computer, and some of our successful runs have utilized over 128
MW of memory. The results obtained so far are very encouraging,
and they have already helped to clarify disagreements between
more approximate theoretical results and experimental results.




The reduction of partial differential boundary value
problems to quadratures and linear equations may be useful in
other fields as well. In quantal collision theory it allows us
to perform accurate calculations that in favorable cases may
supercede traditional laboratory experiments in accuracy.

The present symposium paper provides a summary of our
method and of our first results.

INTRODUCTION

The quantum mechanical calculation of reaction probabilities for
chemical collision processes is a subject of great potential

usefulness and fundamental interest (Claryl). but progress has
been slow due to the difficulty of formulating the general
problem in a way that is both numerically convenient and rapidly
convergent. The recent availability of large-memory vector
processing computers, however, has opened the possibility of‘the
efficient solution of the general problem in a new way, and in
particular we have decided to explore the possibilities for
solving the problem by expansion of the reactive amplitude
density in a square-integrable basis defined in coordinates
related linearly to Cartesians. The advantages of this approach
include ease of integral evaluation, vectorization (Schwenke and

Truhlar2), and the eventual possibility of using highly
optimized basis sets. One way to define basis sets that span
the critical intermediate-coupling regions for reactive
collisions is to use separate, nonorthogonal sets of direct
product bases for each reactant and product’s translational,
vibrational, and rotational degrees of freedom. In principle,
linear combinations of two or more such bases could be

overcomplete (Castillejo et a1.3). but there are several
possible ways to couple the various reactant and product
arrangements that should converge to unique, well defined

answers (Schwenke et a1.4). We (Haug et a1.5. Zhang et al.e) as

well as Kuruoglu and Levin7 have found that one of these, the
Fock coupling scheme, commonly used in treatments of electron-

atom scattering (Burke and Smithg) but also applicable to

chemical reactions (Millerlo, Schwenke et a1.4). leads to
particularly fast convergence. We have proposed therefore that

the equations of the Fock coupling scheme be solved by $2
expansion of the wave-function or amplitude-density components
corresponding to the various arrangements, and we have had good




success with this approach (Haug et a1.5’11, Zhang et al.,6 and
Schwenke et al.lz). In the present paper we present a
description of the Fock-scheme and some results for the chemical

reactions of D + H2 > DH + Hand O + H2 «— OH + H.

One of the primary motivations for obtaining converged
quantal transition probabilities for prototype systems is to use
them as benchmarks against which to test more approximate
dynamical techniques. In keeping with the goal of treating the
quantal dynamics accurately for prototype systems, the present
study treats both reactions as electronically adiabatic
reactions of distinguishable particles governed by single
potential energy surfaces, and the surfaces are assumed to be
given by a convenient (though realistic) analytic functions.
The accurate results are then used to test variational
transition state theory predictions of reaction thresholds and
least-action semiclassical calculations of tunneling
probabilities, and also to test results based on a coupled
states distorted wave approximation.

Further details of the work presented in this symposium

paper may be found in Haug et al.s'11 and Zhang et a1.6’13
DERIVATION OF COUPLED INTEGRAL EQUATIONS FOR THE AMPLITUDE
DENSITY COMPONENTS

In Reference 6 we presented a detailed derivation of the coupled
integral equations for the components of the reactive-scattering
amplitude-density arrangement components for atom—diatom
collisions. Here we summarize that derivation.

The atom—diatom arrangements are labelled by a, where a =
1, 2, 3 denotes A + BC, B + AC, and C + AB, respectively. We
scale all coordinates to a reduced mass of
1
b= |t * (1)
mA + mB + mC
and we denote the mass-scaled Jacobi coordinate in arrangement a

-
by T, for the diatom and Ra for relative motion of the atom and

the diatom.

Each channel is labelled by a unique collective quantum
number n = {vn,jn,en}. vwhere v isa vibrational quantum number




associated with T, jn is a rotational quantum number associated

~ A

with T, and Bn is an orbital quantum number associated with Ra'

Since each channel is given a unique value of n, it is redundant

to also specify the arrangement a, but we do so in most cases

anyway because it makes the coupling scheme more clear. The
a.n,

wave function, ¥ ' ', is labeled by the initial values a, and n,

of a and n and is expanded in arrangement components as

a.n, 3 an,
v = 3V . (2)
a=1
In each arrangement we partition the Hamiltonian as
H = HA + VD + VC (3)
a a a
where
HA = lim H (4)
¢ e
and
n
Po s e P
L= 3 e v (¢, | (5)
n=n
a
where n = {1,N1+1,N1+N2+1}, n = {Nl,N1+N2,Nc), and ¢ is 2

channel basis function. In Equation (5) we have used the fact
that each channel has a unique n so the arrangement index is

merely informational. Note that Hg is the asymptotic

Hamiltonian, including all the kinetic energy terms, Vg is the

distortion potential, defined for convenience and to accelerate

convergence, and VS is a coupling potential without which all

rearrangement scattering amplitudes would be zero. The
distortion potential is further defined in terms of a

single-channel distortion potential Vgn. The channel wavenumber
k . is defined by
av)

) (6)

K2 = (2u/h2)(E—eavJ

avj
where




A =~ A ﬁzen(8n+1) S A
Ha¢an(ra'Ra) = |%av J * 2 ¢an(ra'Ra) (7)
n'n 2uRa

a.n,
The wave function ¥ - ' solves the usual Schroedinger
equation
a.n,

E-Hyw''=0 (8)
where E is the total energy. Using the partitioning of the
Hamiltonian given in Equation (3) allows us to rewrite Equation
(8) as

E-ivDy P v PR mE) 3w (9)
a'

(This is the Fock coupling scheme mentioned in the
introduction.) A formal solution to Equation (9) is a coupled
system of Lippmann-Schwinger equations given by

aini aini c aini aini
Yo' T g QUG R 3 v T (10)

where wan solves the distorted wave problem
an
(E-H - VO™ =0 (11)
and Ga is the distorted-wave principal value Green’s function
defined by
-1
G, = #(E - H_ - V) (12)

where # denotes a principal value. We define the arrangement
coupling matrix as having elements

H-E o'

u ¢ = (13)
o VC a=a'
a
which allows us to write Equation (10) as
an, an, an,
Wa =y 5aai + G 2' Uda,wa, (14)
We now define a Fock-scheme reactive amplitude density
a.n,
(al ! to be the operand of the Green’s function, i.e.,
an, a,n,
¢, = 2‘ u v (15)

Operating with U on Equation (14) and using Equation (15) gives




a.n, a.n, an,
ga = Uaa-w + 2' Uaa,Ca,fa, (16)
i a
and this is the equation we solve by 22 expansion. That is we
now expand the amplitude density as

a.n, a.n, N
ga =2 Zanm Qanm(ra‘Ra) (17)
nm
where
-1 = A~ lan
Qanm - Ra ¢an(ra’Ra)Am (Ra) (18)

and Azn(Ra) is a radial translational basis function. In

general the radial translational basis functions are
nonor thogonal, and their overlap matrix elements are given by

an an on
0 = JdR NTHR INTHR ). (19)

We will also establish a convenient notation for the inverse of
this overlap matrix, which is defined as

£ = @™ (20)
Substituting Equation (17) into (16), multiplying by

an
yields the matrix equation
a.n. a.n, a.n,

11 11 11
2 =k " +Ca .

¢ 'm' and integrating over the six—-dimensional ra’Ra space

(21)

a.n,
In Equation (21) a ' 1 js an unknown vector of expansion

coefficients, and the b vector and C matrix have elements given
by the integral expressions

%P4 on . an -1,C %M
by = i' Amm,<)\m,¢an|Ra vail\p > (22)
and
Cprp = 2, AR AE e IRV DR e NS (23)
where we have used an collective index defined by
B = (a.n,m); B' = (a’',n',m") (24)

and where we have used Equations (11) and (12) to remove the
coupling operator Uﬁa"

The transition probabilities that we desire are readily
obtained from the reactance matrix (see for example Blatt and




Biedonham.14 Brandt et al.ls) which may be written
+ A (25)

a
0,1 . -

where Kn1 is the reactance matrix component due to the

i
distorted wave problem and is obtained in the solution of
Equation (11), and mn n is the coupling component of the

fi

reactance matrix given by

a.n, a.n,
R R I [ (26)
fi h f
or using Equation (17)
a.n, agn
=y oot f|<1>a Y (27)
fi h" nm f f

In summary, the desired reaction probabilities are easily

obtained from Equations (25) and (27) which requires solving for
a.n.

the a ' % vector from Equation (21) and doing the integrals in

Equations (19), (22), (23), and (27). The integrals involve the
coupling potential Vg, the basis functions ¢an and Aﬁn, and

a.n,
spherical harmonic functions, and the functions ¥ 1 and Ga

that are readily obtained numerically from the solution of the
distorted wave problem of Equation (11). Alternatively the
integrals over the radial part of the Green’s function in
Equation (23) may be generated directly as the solutions of

nonhomogeneous differential equations (Schwenke et a1.12). The
computer time requirement is dominated by the solution of the
linear equations of Equation (21), and the storage requirements
are dominated by the matrices of integrals. (The order of the C
matrix is as large as 6063 for the applications presented here.)

For the results presented here the Azn are distributed gaussian

functions (Hamilton and Lightls) and the ¢an are expressed in

terms of harmonic oscillator functions and spherical harmonic
functions.




APPROXIMATE METHODS FOR COMPARISON

We will be comparing our results with two different approximate
methods, and they are described very briefly in this section.
The comparison itself will be made in the following section.

Variational transition state theory with semiclassical
tunneling.

Approximate methods for calculating threshold energies and
tunneling probabilities for chemical reactions are of great
interest for applications to larger (polyatomic) reactants. The
accurate quantum mechanical reaction probabilities obtained on
the supercomputer provide an opportunity to test these methods
for realistic reactions in three dimensions; (previous work is

. . 17
summarized in Garrett et al. ).

First we consider the predictions of quantized variational
transition state theory (VIST: Garrett and Truhlarls'lg, Truhlar
and Garrett2o), for selected-vibrational-state threshold
energies and of the least-action (LA) semiclassical

approximation (Garrett and Truhlar21) for tunneling
probabilities. In these approximate theories, we begin by
defining a reaction path, here taken as the minimum-energy path
(MEP), and we compute sets of quantized energy levels for the
degrees of freedom orthogonal to this path. For a system with
classical motion along the reaction coordinate and a specified
value v for the quantum number of the high-frequency stretching
vibration, the threshold energy for reaction is given by VIST as
the maximum of the state-selected vibrationally adiabatic

potential curve defined by (Truhlar and Isaacson22, Steckler et

al.23)

24 _ g
Va(v,s) = VMEP(S) + estr(v.s) + eother(s) (28)
where s denotes the reaction coordinate (signed distance along

the reaction path), VMEP(S) is the Born-Oppenheimer potential
along the MEP, estr(v,s) is the quantized eigenenergy of the

vibrational mode that correlates adiabatically to the selected
stretch, v is the vibrational quantum number of this stretch,
and 6§ther(s) is the ground-state, zero-angular-momentum zero
point energy of all the other bound modes. (See Refs. 18, 19.)

In the present cases, since the MEP's are collinear, 6§ther(s)




is the zero point energy of the doubly degenerate bending mode.
The maxima of the curves defined by eq. (28) provide approximate
threshold energies in the absence of tunneling, and they provide
approximate upper bounds on threshold energies in its presence.

The least-action tunneling approximation is consistent with
quantized VIST in that it assumes that the classical turning
points for tunneling are given by the locatons at which the
total energy E equals the vibrationally adiabatic potential
curves of Equation (28). However it also allows for tunneling
to occur prior to the system reaching this turning point. In
classically allowed regions, the adiabatic approximation is used
to define the caustics parallel to the reaction coordinate which
define the termini of the tunneling paths. Tunneling is
promoted by motion in the vibrational coordinate and, for a
given total energy, can begin at any location along a caustic in
the asymptotic reactant region up to the turning point in the
vibrationally adiabatic potential curve. In the least-action
approximation the optimum tunneling path for each pair of
termini is chosen from a one-parameter set of parameterized
paths by requiring it to be the one that accumulates the least
imaginary action along the tunneling path.

The reactions considered here are either thermoneutral or
nearly thermoneutral and we treat all tunneling of ground—-state
reagents as populating only the ground state of products,

although this is not necessary (Garrett et a1.24, Kreevoy et

al.25). For » DH + H reaction, vibrational nonadiabaticity is

neglected in the approximate calculations because of the mild
reaction-path curvature in the vicinity of the dynamical
bottleneck for the vibrationally excited reactants, and for the
excited-state reaction in this case the full-reaction-path (FRP)

adiabaticity approximation (Garrett et a1.26) is used. For the

reactions O + H2(v=l) - OH + H and OH(v=1) + H> 0 + H2

vibrational nonadiabaticity may be important because of the
moderate reaction-path curvature, and for these excited-state
reactions we use the partial-reaction-path (PRP) adiabaticity
approximation (Ref. 26) which assumes that the reaction remains
strictly adiabatic up to a location near the first occurrence of

an appreciable local maximum of the reaction-path curvature, at
which point a sudden nonadiabatic transition is allowed for.
For the O + H2(v=1) 2> OH + H and OH(v=1) + H> 0 + H2 reactions

these nonadiabatic transitions occur after the first maxima in
the adiabatic potentials (which are different for the forward




-’O,

and reverse reactions), and for the present applications the
location of the sudden transitions are chosen at the local
minima of the state-selected v=1 adiabatic barrier. Thus the O
+ H2(v=l) reaction is controlled by the highest adiabatic

barrier on one side of the region of large reaction-path
curvature, and the OH + H reaction is controlled by a (smaller)
O-H...H-like barrier on the other side.

Tunneling probabilities for a total energy E and stretching
vibrational state v as calculated by the least-action method are

denoted PLA(E.V=O) or PLAG(E) for the ground state and

LA . R

P77 (E,v=1) for the excited states. Summing over all states of
the bending modes for total angular momentum zero gives the
least action approximation to the J=0 cumulative reaction

probability szg(E), (defined by Bowman27) to be compared with
the quantum mechanical J=0 vibrationally state selected
cumulative reaction probability szg(E)’ which is given by the

sum of all energetically allowed state-to-state reaction
probabilities for a given initial vibrational level (i.e.,
summed over initial rotational quantum number and final
rotational and vibrational quantum numbers). In the
least-action calculations the contributions from excited states
are approximated, analogously to the approximation used in the
collinear exact quantum bend-corrected ground-state (CEQB/G)

me thod (Bowman27). from the least-action ground-state tunneling
probabilities, yielding

P'c“ﬁm(}z,v) = PLA(E.V) + iz PLA(E - eint[v.i-s=s;“;(V)]
+e [v.ish(v)1v) (29)

where sﬁ(v:O) is the location of the maximum of Equation (28),

the sum is over excited J=0 bend states [thus i = O corresponds
in the usual notation (Herzberg28) to Oo, i=1to 20. i=2to
40. etc.], and €int is the energy of the bound modes orthogonal

to s. The calculational details are as described in Zhang et
13
al. ™.

For D + H2 and O + H2 (but not OH + H) the results

calculated by Equation (29) are multipled by two because we




_H,

consider the sum over the two possible product arrangements (for
example, OH + H' and OH' + H).

Coupled—-states distorted-wave approximation
The accurate quantum results can also be used to test the
coupled-states distorted-wave (CSDW) approximation, which has

been used by Schatz29 for the O + H2 - OH + H reaction. Details
of this method are presented elsewhere (Schatzzg, Schatz et

a1.30). In previous applications to the simpler H + H2 system

(Schatz et a1.29), for which the CSDW results were compared to
previous full quantal studies) the CSDW results were found to be
nearly equivalent to the exact result at energies where the
total reaction probability for each partial wave scattering
state is below 10%. Well converged accurate results for the O +
H2 system have not previously been available to make a

comparison to the CSDW method. For the CSDW method a direct
comparison of state—-to-state transition probabilities can be
made, although we will also compare some cumulative
probabilities in the section below.

COMPARISONS AND DISCUSSION
D+ H2
The H + H, reaction and its isotopic analogs have played a

2
central role in the development of gas-phase reaction rate

theory (Truhlar and Wyattsl), and many aspects of this reaction
are well understood. One remaining unresolved question, however

has been the quantitative effect of vibrational excitation of H2

on the reaction rate. There has been a discrepancy between
. 32
experimental measurements (Kneba et al.”, Glass and

Chaturvedi33. Rozenshtein et a1.34'35) which yield a rate
constant systematically higher, than several approximate
theoretical treatments (Garrett and Truhlar36, Pollak et a1.37.
AbuSalbi et a1.32 and see also Reference 31 of Haug et al.5).
The threshold energy of the approximate calculations would have
to be about 0.04 eV lower for these calculations to agree with
these experiments. One recent experimental measurement (Dreier

and Wolfrumsg) is in much better agreement with the approximate




-,a,

5
calculations. We have examined this controversy (Haug et al.”),
where the accurate quantum total reaction probability for D +
H2(v=1.j=0) was compared to the least-action semiclassical

results of Garrett and Truhlar36. A better way to carry out
this comparison, however, is to use the cumulative reaction
probabilities discussed above. In this section we compare the
vibrationally state selected cumulative reaction probabilities
for the threshold region of the D + H2(v=1) reaction as

calculated by the accurate quantal method reviewed above and by

the VIST/LA method used by Garrett and Truhlar36. These
theoretical rate constants are both obtained with the most
accurate available potential surface, to be denoted LSTH (Liu4o,‘
Siegbahn and Liu41, Truhlar and Horowit242). The comparison is
made in Figure 1 where very good agreement is seen between the
accurate and semiclassical results over the critical threshold
region where the cumulative probability is increasing from about
0.01 to 0.1 in value. The solid curve is the semiclassical
result of Equation (29), including the factor of two, and the
symbols are the quantum mechanical results summed over all
states of DH + H' and DH’ + H. Extensive convergence tests for
the accurate results are presented in References 5 and 6.

The agreement of the accurate results with the
semiclassical results and the lower rate constant obtained by
the most recent experimental measurement both seem to settle the
controversy in favor of the higher threshold energy of the
earlier approximate calculations. The agreement of the accurate
and semiclassical results also supports the use of the FRP
vibrational adiabaticity approximation for this system, as
discussed above.

0+ H2
The reaction O + Hz(v) =2 OH + H has received extensive study in
recent years (see for example References 8-34 of Haug et al.ll)

due to its importance in combustion reactions. We will examine
this reaction for both v=0 and v=1 by comparison of accurate
quantal results to VIST/LA results and for v=0 by comparison to

CSDW results. The reverse reaction OH(v=1) + H » O + H2 will

also be examined by comparison of accurate quantal results to
VIST/LA results. The v=0 probabilities for the forward and
backward reaction differ from each other only by an arrangement




channel multiplicity factor of two, so the v=0 reverse reaction
does not provide an independent test and is not included. The
potential energy surface used in these calculations is a

modified version (Schatz43) of the LEPS-type (Sato44) surface of
Johnson and Winter.45 Extensive convergence tests of the

quantum results have been presented in Zhang et a113. The
cumulative probability for the reaction O + H2(v) - OH + H for

v=0 is presented in Figure 2. The solid curves are the
semiclassical results of Equation (29), including the factor of
two, and the symbols are the quantum mechanical results summed
over all states of OH + H' and OH' + H. The accurate and
semiclassical methods agree very well for v=0 in the threshold

region over the cumulative probability range of 10—7 to 10_1.

(The wavering about a smooth curve of the semiclassical

probabilities above 10—1 for v=0 appears to result from the
classical turning points being located in a region of high
reaction path curvature.)

The cumulative probabilities for the forward reaction O +

H2(v=1) - OH + H and the reverse reaction OH(v=1) + H > O + H2

are presented in Figure 3. The solid curve is the semiclassical
result for the forward reaction, given by Equation (29)
including the factor of two, and the dashed curve the
semiclassical result for the reverse reaction, given by Equation
(29) alone. The accurate results summed over all product states
and reactant rotational states are denoted by x for the forward
reaction and by o for the reverse reaction. The accurate and
semiclassical results agree fairly well for the forward reaction
but less well for the reverse reaction and this will be
discussed below.

The classical barrier height for the surface employed here
is 12.5 kcal/mol, at which energy the cumulative probability is

about 10 3. Therefore the energy range shown includes energies
quite far above the saddle point energy as well as deep into the
tunneling region. It is encouraging that the semiclassical
method works well in both energy regions.

The energy of the H2(v=1,j=0) state is 18.0 kcal/mol. As

can be seen from Figure 3, the v=1 reaction "turns on" at about
19 kcal/mol of total energy, corresponding to an initial

relative translational energy of about 1 kcal/mol, and showing
clearly that the vibrational excitation energy is not entirely




available for reaction. The semiquantitative correspondence of
the accurate and semiclassical v=1 results in Figure 3 means
that the adiabatic approximation employed in the latter are
apparently valid in this case, and they provide a simple way to
estimate how much of the vibrational energy is available for
reaction.

The cumulative probabilities for the reverse reaction,
OH(v=1) + H-> O + H2, are also presented in Figure 3. For the

OH(v=1l) + H> 0 + H2 case the accurate and semiclassical

probabilities for the reverse reaction differ by about one order
of magnitude for total energies above about 20 kcal/mol with the
semiclassical method overestimating the reaction probability.
Since the quantum results for this case appear converged with
respect to numerical parameters to the same extent as for the O

+ H2 reaction discussed in above, one interpretation of the

difference of the two sets of v=1 probabilities in Figure 3 is
that the reverse v=1 reaction is even more vibrationally
adiabatic than assumed in the semiclassical method. The
disagreement between the methods can be interpreted as involving
the location where the sudden nonadiabatic transition occurs, as
discussed above. If the reaction were assumed not to become
appreciably nonadiabatic prior to reaching the O---H-H-like
adiabatic maximum, which is higher than the O-H-—-H-like one the
VIST-plus—semiclassical~tunneling results would all be smaller.
The first VIST adiabatic maximum for OH(v=1) + H is 1.3 kcal/mol
lower than the fully adiabatic maximum and the Pgﬁm(v=1) curve
for the reverse reaction is accordingly shifted to the left in
Figure 3 (the shift is less than 1.3 kcal/mol because the
forward curve involves a factor-of-2 arrangement degeneracy
factor). However the accurate quantal results in Figure 3 show
a much smaller shift indicating that the higher adiabatic
barrier controls the reaction in both directions. Thus the
accurate quantal threshold is intermediate between the PRP and
FRP predictions, which is similar to what was found for this

reaction in the collinear world by Garrett et al.25

The accurate quantal results are compared to the CSDW
results (Schatzzg) in Figure 4 for the O + H2(V=0,j=0) - OH + H

threshold region, where the probabilities have been summed over
all product states. This comparison is shown by the small plot
symbols on Figure 4 and the CSDW results are very accurate over
the energy range of about 11-18 kcal/mol. Also shown in Figure




4, with the large plot symbols, are the cumulative probabilities

for the O + H2 5 OH + H reaction for the accurate and CSDW

calculations. The cumulative probabilities can also be seen to
agree very well.

The remaining rearrangement reaction for this system is the
exchange reaction H + OH' » H'O + H. On the surface used here
the classical barrier height for this process is 35.7 kcal/mol
above the OH + H potential asymptote, corresponding to a total
energy of 38.5 kcal/mol for the zero of energy used here which
is the asymptotic O + H2 potential. At the energies we have

been examining the reaction probabilities for the exchange
reaction are 4 to 10 orders of magnitude smaller than those for
the O + H2 reaction and its reverse.

OONCLUDING REMARKS

We have initiated a new program to exploit large-memory vector
processing computers to calculate benchmark quantum mechanical
reaction probabilities for atom-diatom chemical reactions. We
have used these benchmark calculations to test the dynamically
approximate variational-transitional-state—theory-with-least-
action—-tunneling (VIST/LA) and centrifugal sudden distorted wave
(CSDW) methods on the D + H2(v=1). 0+ H2(v=0), 0+ H2(v=1), and

H + OH(v=1) reactions.

A discussion of the memory requirements of our algorithm
and the storage strategies we used to implement it is presented
46

).

Additional unpublished work has involved the use of
mul tichannel distortion potentials and variational principles to
make the method more efficient; initial results are very

encouraging (Schwenke et al.lz). We have checked the
variational code for reactive collisions by applying it to the H
+ H2(v=0) reaction. We obtain the same results with the

elsewhere (Schwenke et al.

variational formulation and a sine basis as we obtained earlier
with the method reviewed above and gaussians.
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Logarithm to the base 10 of the cumulative reaction
probability vs. total energy. The solid curve is the
approximate cumulative reaction probability from
Equation (29) for D + H2(v=1) -» DH + H. The x

denotes the accurate cumulative reaction probability.
The zero of energy is the atom-diatom potential
asymptote.

Logarithm to the base 10 of the cumulative reaction
probability vs. total energy. The solid curve is the
approximate cumulative reaction probability from
Equation (29) for the forward reaction O + H2(V=O) -

OH + H. The x denotes the accurate vibrationally
state-selected cumulative reaction probability for
this reaction. The zero of energy for Figures 2-4 is

the O + H2 potential asymptote.

Logarithm to the base 10 of the cumulative reaction
probability vs. total energy. The solid curve is the
approximate cumulative reaction probability from
Equation (29) for the forward reaction O + H2(v=1) -

OH + H. The x denotes the accurate vibrationally
state-selected cumulative reaction probability for
this reaction. The dashed curve is the approximate
cumulative reaction probability from Equation (29)

for the reverse reaction H + HO(v=1) » O + HZ' The O

denotes the accurate vibrationally state-selected
cumulative reaction probability for this reaction.
The X and O at 22 kcal/mol are accidently coincident,
and the X for 23 kcal/mol is off scale.

Logarithm to the base 10 of the reaction probability
vs. total energy. The small x denotes accurate
quantal results and small ¢ denotes CSDW for O +
H2(V=O,j=0) -» OH + H. The large x denotes accurate

quantal results and large ¢ denotes CSDW results for
the cumulative reaction probability for O + H2(v=0) -

OH + H.
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