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Sensitivity of Vibrational and Rotational Energy
Transfer to the Potential Energy Surface
in the Collision of Two Molecules
Large-Scale Quantum Mechanical Calculations

David W. Schwenke and Donald G. Truhlar

Minnesota Supercomputer Institute and Department of Chemistry,
University of Minnesota, Minneapolis, MN 55455

We present an overview of our research program on
HF-HF collisions, including potential energy surfaces
and dynamics calculations, with special emphasis on
the sensitivity of the dynamics results to the choice
of surface.

The molecules of a gas in a thermally equilibrated state are
characterized by a Boltzmann distribution of vibrational and )
rotational states. Although energy is transferred between modes in
individual collisions, there is no net change in the
vibrational-rotational distributions. If the equilibrium )
populations are perturbed in any way, e.g.. by_heating. cooling,
the influx of laser light, or a chemical reaction, then the system
will relax to a new equilibrium distribution (1). The change of
vibrational state populations with time is usually much slom'er than
the rotational relaxation, but it is critical for understandlng
many classes of nonequilibrium processes. For example if an
exothermic chemical reaction like

F+H2—)HF+H

or

H+F2—>HF+F

produces vibrationally excited products — HF in the examp1e§ —
the competition between vibrational-rotational-state redistribution
and stimulated emission is critical in determining whether energy
can be extracted in the form of infrared laser action. Another
example concerns the attempt to force reactions to yield
nonspontaneous products by using laser light to pump a selecf.ed
vibrational mode of a polyatomic molecule, e.g., the stretching )
vibration of a bond that it is desired to break. If the energy is
redistributed rapidly compared to the time scale for the reaction,
only the usual products of the reaction that occurs spontaneously
upon slow heating will be observed.

0097-6156/87/0353-0176807.00/0
© 1987 American Chemical Society

The simplest models of energy transfer involve an atom and a
nonrotating oscillator or an atom and a rigid rotator. But the
single oscillator model is insufficient for molecule-molecule
collisions or even atomic collisions with a polyatomic molecule
because processes involving the transfer of energy between
vibrational modes, called vibrational-to-vibrational (V-V) or
vibrational-to-vibrational-and-rotational (V-V,R) energy transfer,
are usually much more efficient than those involving
vibrational-to-translational (V-T) or vibrational-to-
translational-and-rotational (V-T,R) energy transfer (2).
Furthermore, the coupling of rotational and vibrational degrees of
freedom can change the quantitative values of the transition
probabilities for vibrational state changes by an order of
magnitude or more.

One of the goals of modern scattering theory is the rigorous
solution of the quantum mechanical equations governing molecular
collisions. Prior to supercomputers, one could solve the equations
for the atom-oscillator and atom-rigid-rotator models or for light
enough atom-diatom systems at low energy (3). But in order to
treat V-V and V-V,R processes accurately, we must do calculations
on systems with two or more vibrational degrees of freedom, coupled
to rotations, at energies above the second vibrational threshold
(the energetic requirement arises because different excited
vibrational states are populated before and after the collision for
a V-V or V-V,R process). The problem with doing this is one of
computational economy. As either the number of degrees of freedom
or the energy is increased, the number N of basis functions
required to expand the scattering wave function increases
dramatically. For conventional methods of solving the quantum

mechanical equations, though, the computer time scales as N3 and

the memory required, which can also be significant, scales as N2.
Thus one rapidly reaches a point where the calculation becomes
impossible on any machine — past, present, or presently envisaged.
Nevertheless, with supercomputers one can push the boundaries of
feasibility into a new realm, and we have embarked on a study
designed to do so. In particular we have made large-scale
calculations for the process

HF(v,=1,§;=0) + HF(vy=1.j,=0) » HF(v{=2.3]) + HF(v4=0.3j}) m

where the (unprimed, primed) vi(i=1.2) are (initial, final)
vibrational quantum numbers, and jl. j2. ji. jé are rotational

quantum numbers with the same conventions.

Since HF has a closed-shell electronic structure and no
low-lying excited electronic states, HF-HF collisions may be
treated quite adequately within the framework of the Born-
Oppenheimer electronic adiabatic approximation. In this treatment
(4) the electronic and coulombic energies for fixed nuclei provide
a potential energy V for internuclear motion, and the collision
dynamics is equivalent to a four-body problem. After removal of
the center-of-mass coordinates, the Schroedinger equation becomes
nine-dimensional. This nine-dimensional partial differential
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equation is then converted to N coupled ordinary differential
equations by expanding the solution in symmetrized internal-state
eigenfunctions (5-7) (which is called the close coupling
approximation and is described further below). These coupled
differential equations must be solved subject to scattering
boundary conditions, and this is accomplished by an
invariant-embedding-type (8-10) propagation method (11,12)
involving repeated operations on matrices of order N.

Although our work is primarily directed to the second —
dynamical — step, it is necessary for us to start with the
potential energy function V. Unfortunately, as is often the case
for systems whose dynamics we wish to study, a completely
satisfactory V function for HF-HF collisions is unavailable. Thus
we constructed two new approximate V functions (13-16) and we
considered five potential functions developed by others (17-21) and
we performed large-scale (N > 250) calculations (13-16,22-24) for
several (13-17,19,21) of these. In some calculations we treated
the vibrations as rigid and considered only translational-to-
rotational (T-R) energy transfer. This reduces the number of
degrees of freedom from 9 to 7 and hence reduces computational
complexity, but it provides a valuable test of the dynamical
significance of the differences in the various V functions because
the final rotational state distributions of the rigid-rotator
calculations are primarily sensitive to the anisotropy of V. We
have also performed large-scale calculations including the
vibrational coordinates for three of the V functions. In one case
the transition probabilities for process (1) are well converged;
unfortunately the potential for that case may be inaccurate.
Nevertheless converged quantal dynamics calculations for any given
V provide a benchmark for testing approximate quantal,
semiclassical, and classical methods of collision dynamics, and the
present results also demonstrate the feasibility — for an
expenditure of more computational resources — of obtaining
converged quantal dynamics solutions for more realistic V
functions.

The above constitutes a general overview of our quantum
mechanical calculations so far (13-16,22-24) on process (1) and
rigid-rotator HF-HF collisions. In the sections below we provide
further details of selected subtopics in this research program.
Section 2 reviews the potential functions we have studied; section
3, the dynamics method; section 4, the results for rigid-rotator
collisions; and section 5, the results for process (1). Throughout
this overview we place special emphasis on the comparison of the
various surfaces and of the dynamical results obtained with one
surface to those obtained with another. Another long-range goal of
our program, though, is to use converged quantal studies of the
dynamics as benchmarks for testing more approximate theories; in
this regard, it should be especially interesting to test
semiclassical (25-27) and quasiclassical (28-31) theories of V-V, R
energy transfer.

Potential Energy Surfaces

The rigid-rotator collisions may be taken as a model for
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HF(v,=0.§;) + HF(vy=0.j,) » HF(vi=0.j{) + HF(vj=0.j5) (2)

We have carried out converged rigid-rotator dynamics calculations
for four potentials:

Abbreviation Reference
AD Alexander and DePristo (17)
BM Brobjer and Murrell (19)
RB Redmon and Binkley (21)
RBST Reference 16

These surfaces are all based on some combination of ab initio
electronic structure calculations plus fitting. The AD and BM
surfaces are based respectively in whole or in part on
extended-basis—set single-configuration self-consistent-field
calculations, whereas the RB and RBST calculations are based on
calculations including electron correlation by Moller-Plesset
fourth-order perturbation theory. For the rigid-rotator
calculations R1 the intramolecular internuclear distances Rl and R2

are fixed at 1.733 ag- The rigid-rotator interaction potential may

be expanded as

V. = 3 v, () (r.rg) (3)
int a,age 9,954 quaon 172
where
4 ~ ~ ~ ~
Y =—70[Y (r)Y_ _ (r5) + Y _ (r)Y, (r5)] (4)
q;99H [2(“5“0)]% qp 17 gyt 2 qpr 1 gppt 2

Y is a spherical harmonic, r is the distance between the
q;H
molecular centers of mass, and Ty and ry are unit vectors along the
molecular axes in a ("body-fixed") frame of reference in which the
z axis is along the vector connecting the molecular centers of
mass. The first several nonzero coefficients are compared for the
four surfaces in Figures 1-6. We see qualitatively good agreement
for the general shape of the r dependence in all cases, but
apparently significant quantitative differences. To get a better
understanding of the effect of these quantitative differences, we
consider the transition probabilities calculated with the various
surfaces for processes (2) in Section 4.

The AD and BM surfaces are based on ab initio calculations

carried out only for R1 = R2 = Re' where Re is the value for an

isolated diatom. Thus the AD and BM surfaces cannot be used to
study V-V and V-V,R (or V-T) energy transfer.

To study processes involving vibration we must add the two
diatomic vibrational potentials to Vint and we must also generalize
vint to include a dependence on vibrational coordinates. The AD
surface was extended to include all geometries by adding two kinds
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5.0
\.\ ! T T of dependence on the intramolecular H-F distances R1 and R2. The
\\ \ 120 long-range (large r) dependence on R, and R, was based on the known
~— RB!
\\\' ST dependence (32,33) of the permanent dipole and quadrupole moments
\\ —-—RB i i i 1 -
35K -\ MAD § on internuclear distance. This may be reasonable since HF-HF
D \ -

interactions are dominated by electrostatic terms at and beyond the
van der Waals hydrogen-bonded minimum (34). The dependence of the
potential on Rl and R2 at short range (small r) was included by an

approximation based on the idea that when a single interatomic
potential dominates the short-range repulsion, the gradient of the
whole potential is a function of only the pair distance and so
there is a simple geometrical relation between the gradient with
respect to changing this distance by changing r and the gradients
with respect to changing this distance by changing Rl and R2.

These simple relations motivate a more formal approximation in
which we first re—expand the interaction potential in a space-fixed
("laboratory-frame™) coordinate system as

-1.0 L 1 Il 3/2 A A A
4.00 4.75 5.50 6.25 7.00 V. = (4m) z U (r)Y (r.R..R,) (5)
h nt A AN A AN T2
A AGA 12 172

i
F (ag) h 12
where
Figure 5. Same as Fig. 1 except q, = 1 =2 = R Ry )Yy (r
1 9 =2. p=0. Y7\17\2>\ - . m()\lml)\2m2l)‘lxzm)YM“&(Rl)sz"‘z(kz)YN"(r) ©)
12

5.0

(+++]+++) is a Clebsch-Gordan coefficient, and the ﬁi are unit

vectors along the bond axes in the space-fixed system, and then we
make the U)\ AN depend exponentially on R1 and R2 with exponential
172

range parameters based on the r dependence of the potential
(13=15). This kind of parameterization was first applied to a
breathing-sphere model of HF-HF by Gianturco et al. (35). The
resulting potential in the present case is called the MAD
potential, which denotes "modified AD".

The Redmon-Binkley potential is a multi-center fit of ab

initio calculations including separate variations of R1 and R2.

The fit was based on minimizing the root-mean-square (rms) value of
the difference between the fit values and the originally calculated
potential values. The RBST potential differs in three ways: (i)

The ab initio data set was augmented by over 100 points in which Rl

35

Ind
o

Vq, qzu(10‘3Eh)

o
o

and R2 were simultaneously different from Re. (ii) The surface was

L ' refit by making local fits to the separate vibrational forces,
4.00 4.75 5.50 6.25 7.00 —c'iV/aR1 and -6V/6R2. the cross correlation of the forces,
r (a) 82V/8R 3R, and both principal second derivatives, 62'V/6R§. and

1772
Figure 6. Same as Fig. 1 except 9

=p =1, qq = 2. 62V/6R§, and then minimizing the relative rms errors in the global

fits to the local forces and cross correlation of forces as well as
to the potential itself. (iii) For convenience, the new fit was
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made directly in terms of the body-frame expansion (3) with a
restriction to only 23 terms in the sum. Because of the
restriction on the sum, this surface may represent the higher-order
angular anisotropy less accurately than the RB potential,
especially at high energies, but because of difference (ii) it
should be more accurate for the vibrational forces and cross
correlation of the forces that would be expected (36) to be very
important for V-V and V-V,R energy transfer. Both the RB and RBST
surfaces, however, are believed to yield more accurate vibrational
forces and vibrational force cross correlations than the MAD
surface because they are based on highly correlated ab initio
calculations at over 1300 geometries (over 1400 for the RBST
surface). These ab initio calculations (16,21) required over 70
hours of computer time on Cray-1 computers, and they would not have
been possible without supercomputer resources. Thus, in summary,
we performed large-scale dynamics calculations for three potential
energy surfaces for the vibrating rotator case:

Abbreviation Reference
MAD (modified AD) References 13-15
RB Redmon-Binkley (21)
RBST Reference 16

Figures 7-11 show potential energy contours for two-dimensional
cuts through these three surfaces. The contour sets are labelled
by 91. 92, and ¢ where the z axis points from molecule 1 to

molecule 2, Oi and ¢i are the colatitude and longitude of the
vector from F to H in molecule i (6i = 0 if this vector points
along +z), and ¢ = ¢1-¢2. Figures 7 and 8 are for the collinear

geometries FH...FH and HF...HF, respectively, Figures 9 and 10 are
H H

for planar F...FH and FH...F geometries, and Figure 11 is for a

nonplanar geometry. In all cases R2 refers to the molecule on the

right. Notice that for all geometries the vibrational force on the
repulsive wall is positive for the MAD potential but negative for
the RB and RBST potentials. For the collinear geometries the
negative force appears more physical since stretching one of the
molecules increases the strongest pair repulsion. For the other
geometries the determination of the correct force is more
problematic.

Much additional work on HF-HF potentials, as discussed
elsewhere (37,38), is directed very specifically at that part of
the potential energy surface that governs the binding energy,
geometry, and internal dynamics of the (HF)2 dimer near its

equilibrium geometry. Since a knowledge of only this limited part
of the potential energy surface is insufficient to study the
collision dynamics, we do not further review these studies here.

Close_Coupling Formalism

The close coupling formalism employed for the present calculations
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Figure 7. Two-dimensional cuts through the potentia! energy
surface for planar HF-HF collisions including vibre.xtwn: The
quantity plotted in the figure is the total po?ennal (m
hartrees), which is defined as the sum of t}u? interaction
potential and the two diatomic potentials, with the zero of
energy corresponding to two infinitely separated HF m?lecules.
each at its classical equilibrium separation. This figure shows
cuts through the r, R2 plane (in bohrs) for 91 = 62 = ¢ = 0 and

Rl =1.733 ag-
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Same as Fig. 7 except for 91 = 92 =

180°.
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]
Figure 9. Same as Fig. 7 except for 91 =90, 02 = 0.
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is described in detail else
where (6,7,22). In A
E panding the scattering wave function ix)1 a Setsgr;mzry it involves value of r for the rigid rotator calculations and for each
tgzls.:‘t‘“c.tlonﬂsmthat are simultaneous eigenfunctionsyz)n?ez}:lzed F; combination of r, Rl' and R2 for the vibrating rotator
iatomic iltoni : ; e sum o
onians (with eigenvalues F-n). of the angular calculations. The sum in the expansion (3) is truncated at M
momentum operators j2 (squ terms, and the calculations should be converged with respect to
12 (square of the vector sum of the diatomic increasing M. Having obtained this expansion the angular integrals
rotational angula: 2 of (10) are performed analytically. For the vibrating rotator
momentum of rﬁat;v:w:zrtl;a). ﬁ [square of the orbital angular calculations this still leaves two integrals over vibrational
e (e 2 2 on of the two molecules, with eigenvalues coordinates and these are performed numerically by an "optimal”
n( 1,1+1)f1 }1. J° (square of the total angular momentum) quadrature (39), typically with 7 points per degree of freedom.
(the component of the total 1 - and MJ We solve Equation (8) by an invariant imbedding (8-10)
axis), and of the parity andanglll ar momentum along a space-fixed procedure, in particuilar by the R matrix propagation (11,12)
Denoting these symmetrized imo ecula;.- interchange operators. method. In this method we partition the significant range of r
eigenfunctions by )(n we write into about 300 sectors, we propagate the solution matrix across -
each sector in turn, and we match solutions at sector boundaries to
Ryaa a 1 N construct a global solution. To make the propagation step analytic
v (r,Rl.Rz,E) =7 P fnn (r’E)Xn(_R‘l’I-g';) e in each sector, we diagonalize D at each sector boundary. To avoid
n=1 ° repeating the diagonalization step for each E for which a solution
whe ~ is sought, we propagate the solutions for several (typically 3-7)
re r and r are the radial and angular parts of the energies simultaneously. Then we need to calculate V and
intermolecular vector : and ﬁ‘ a5 diagonalize D only once for a variable-energy sequence of
tntermucl ; 1 and R2 are the molecular calculations with a given J on a given potential energy surface.
clear vectors; N
numb . %o denotes the intial channel (set of quantum Since the calculation of V scales as N2M but the work involved
ers); n denotes a general channel; f is the radial wa in diagonalizing D and propagating the solution of (8) scales as
ve
3
function for relative ; .0 N>, the V calculation should become a negligible part of the
energy. Substituting He)mfrll?n:;al ’_"Otl?ni and E is the total calculation for large N. However, even for N > 500, if the number
equation yields © the time-independent Schroedinger of terms in the expansion (3) of the potential is large. the v
calculation may involve considerable CPU time, e.g., one to several
2 hours on a supercomputer. The N3 steps take up to 17 hours of
d £(r.E) = supercomputer time for the largest single run (a 3-energy run with
dr2 i(r.E) = D(r.E){(r.E) (8) N = 948) involved in the present study. All calculations are
where vectorized, and production runs were carried out on Cray-1 and
Cyber 205 computers.
e (& +1 2 . igi i
= gid Rotator Calculations (1%,10,£9,2%
D (r.E) = g% V_(r)+5 |nnm ) . (e, -E) Rigid Rotator Calculations (14,16,23,24)
pe om nm 2 (9)
and r h In the present overview we concentrate our attention on
calculations with J=31=12=j12=e=0. J is a conserved quantity and
V (r) = D ap oo DA A A a N the final values of the other quantum numbers are denoted jj. 35
am(T) fdeaderxn(Rl,R2,r)vi (R Ry TIX ® R0 . J10 J2
nt*l n(Ry Ry (10) g and 2'. We will also use the notation 3
e Integrals (10) are calculated by evaluating the expansio Jfum = 91 * 32 (12)
n

coefficients of Equati
q on (3) by (Do not confuse this simple sum with the ftude ji2 of the

1 1 vector sum.) Because the molecules are identical the final energy

v (r.R ’Rz) = l_f dcos¢ d N states are labelled by an un-ordered pair of rotational quantum
9191 1 4 sing 00591 dcos8, % V. (r.R numbers j! and j! (40). Since the order is not significant we use

4 e} 27q qpu"intt 71 Ry) 1 2
-1 the convention ji < jé. For given values of J, ji, and jé. the
The i (11) quantum numbers &' or ji2 may take on all values allowed by the
integrals in (11) are evaluated by Gaussi s . s ; _ s gt s
an quadrature for each triangle relations. Since J = O though, ilp = 2’. Summing the

’
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transition probabilities over ji2 (or equivalently over &') yields

values called P]?, ;0» and summing these over all pairs of j! < j!
J1dg 1 2

consistent with a given value of jéum yields values called P]?,
sum

The AD and RBST potentials are defined in terms of Equation
(3) and have finite M values of 9 and 23, respectively. The BM and
RB potentials must be re-expressed as in (3) — by using Equation
(11) — and in these cases we converged the dynamics results with
respect to increasing M, yielding the (unexpectedly large) values
of 525 and 825, respectively. The calculations must also be
converged with respect to increasing the number of channels N. We
did this, and the final calculations involve N = 285 for the AD
potential and N = 440 for the other potentials.

Table 1 compares PR, values for all four potentials at a
sum

relative translational energy, Erel' of 76 meV. We see a great

qualitative difference between the results for the AD potential and
the others, with smaller differences between the BM, RB, and RBST
potentials. Evidently the restriction M = 9 is a serious
limitation, greatly decreasing the rotational inelasticity, but the
simplifications of the angular anisotropy in the M = 23 potential
are less serious.

Table 1. Rigid-rotator transition probabilities for four

potentials for E = 76 meV
rel

i1

Jsum AD BM RB RBST
0 0.934 0.248 0.031 0.211
1 0.004 0.025 0.077 0.055
2 0.047 0.152 0.120 0.074
3 0.105 0.030 0.082
4 0.228 0.228 0.151
5 0.051 0.119 0.141
6 0.191 0.394 0.286

Under some circumstances the rotationally anisotropy may be
even further simplified for T-R energy transfer of polar molecules
like HF (41). To explore this quantitatively we performed
additional rigid-rotator calculations in which we retained only the
spherically symmetric and dipole-dipole terms of the AD potential,
which yields M = 3 (see Figures 1, 3, and 4). These calculations
converge more rapidly with increasing N and usually yield even less
rotationally inelastic scattering. For example Table 2 compares
the converged inelastic transition probabilities

11.
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i iti babilities
ble 2. Inelastic T » R transition pro
Table for full (M = 9) and truncated (M = 3) AD
potentials as functions of relative
translational energy

M=9 M=3
E‘_‘31 (meV)
0.15
76 0.07

657 0.59 0.28

1550 0.90 0.82
L= 3 p‘;, (13)

ine :
‘]'sum;JFO sum

for .the two surfaces at three energies. In comparison to the RB

i R ies, the total
potential, for which Pinel » 0.97 at all three energies

inelasticity is low at all energies studied for both surfaces in .
Table 2. Clearly the dipole-dipole term or even a small su’?fgt o
low-order anisotropic terms do not account for most of the
ener: transfer at J = O.

gy’l'”he dramatic difference between the AD and the (_)ther
potentials persists up to higher translational energies. For

example, Pg for the AD potential is 0.414 at 657 meV, and the sum

of PR PR and Pg is 0.713 (14), whereas, for example, for the BM
o 1 = )
potential these same quantities are 0.005 and 0.035, respectively,

R s — 1o- )

and the three largest values of P, occur for Jéum = 12-14 (23)
sum )

A more detailed comparison of two of the surfaces at a higher

energy, Erel = 322 meV, is given in Table 3. This table compares

PR., for all energetically accessible values of j;um at this
sum

R itions
energy and also twelve selected value of Pjijé (the transition

included are those for which Pg,j, > 0.035 for the BM potential).
172

distributions peak for j;um

= 6~ thi
We see that both PR, = 6-9 at this

sum

" " j = 4~ ivi transition
energy with a "shoulder” at J;um = 4-5. Individual

probabilities typically, but not alway§, _agree v.uthm a fac}tlo‘x;eof
two and for the most part the same individual f1na'1 state;h ae
large transition probabilities for thc'e §w<.) potentials. ( t;eltial
other final states have larger probabilities for the RB po

R = 0.073.
—- in particular, sz = 0.055, 1734 = 0.061, and PI;G 0.073.)

;
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Table 3. Rigid-rotator transition probabilities for two
potentials for Erel = 322 meV

i! BM RB it A BM RB
sum ! 2 0.390
(o] 0.055 0.021 0 (o] 0.055 0.021 o
1 0.001 0.003 1 1 0.036 c.o26 e
2 0.043 0.026 2 3 0.054 0.037 .
3 0.020 0.033 1 4 0.042 0.021 0342
4 0.048 0.079 2 4 0.044 0.059
5 0.100 0.061 3 3 0.039 0.026
6 0.173 0.135 1 5 0.068 0.046
7 0.222 0.159 2 5 0.122 0.075
8 0.140 0.259 1 [ 0.065 0.016 o 0.234 |
9 0.125 0.165 3 5 0.065 0.140 ' = E
10 0.047 0.052 4 5 0.069 0.057 ]
11 0.013 0.007 3 6 0.038 0.078 8
12 0.011 0.001 o
13 0.002 0.000 0.156
14 0.001 0.000
0.078
Another perspective on the comparison of the BM and RB
surfaces is provided in Figures 12 and 13. This figure shows
quantum mechanical values (23,24) of PR, for both potentials and
sum 0000, ——""5 3 4 5 ®
quasiclassical trajectory values (24) of PI?, for the RB surface “
sum Jsum

for two relative translational energies. The two sets of quantal
results agree with each other much better than either agrees with
the classical simulation. Thus, especially when we consider that
the approaches used (19,21) to construct the two potentials were
very different, we gain some confidence that the dynamically
important features of the anisotropy of the potential are probably
reasonably accurate for both analytical representations. We thus
feel that it is very worthwhile to try to converge the V-V and
V-V.R energy transfer probabilities for the RB potential or for the
more convenient RBST modification of the RB potential.

as a function

R
i i bability P,
cational excitation pro 'm

Figure 12. Ro

: = V.
of .]é“m for Erel 76 me

Vibrating Rotator Calculations (13-16,22)

We consider the V-V,R process (1),

2HF(v=1, j=0) = HF(vi=2,ji) + HF(Vé:O,jé)

with total angular momentum J = O. Therefore we again have 512 = £

= 0, and we again sum over ji2 or &' for a given jéum defined by
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Equation (12); in this case the result is called P,, . Summing
sum
P;IY over jéum yields the total V-V,R transition probability,
sum

which is called PW. Selected results are given in Table 4, where
0.
27 the rows labelled 0-7 are PY\,’ . and the rows labelled "sum™ are

sum

322 meV
BM quantal pw‘
—— RBquantal

The largest N for which calculations were performed for the
MAD potential is 948, and comparison (15) of these calculations to
others with N = 694, 824, and 880 shows that the N = 948
calculations are well converged at Erel = 2.455 meV and

0.206

approximately converged at 76 meV. The largest N for which

> 0.154 calculations have been performed on the RB potential is N = 694,
3 which is not enough for quantitative convergence, but which is
3 adequate for a discussion of trends. [For these calculations the V
n'? matrix was not calculated as accurately as for the calculations
0.103 with the MAD and RBST potentials, and the sum of Equation (3) was
truncated at M = 161, but these approximations should not matter
Table 4. V-V,R energy transfer probabilities
0.051
., N = 694 N = 948
Isum MAD RB RBST ¥AD RBST
0.000 E_, = 2.455 meV
rel
. 0 0.85 0.10 0.02 0.90 0.03
Tsum 1 0.04 0.03 0.17 0.04 0.24
Fi 2 0.00 0.19 0.38 0.00 0.35
gure 13. Same as Fig. 12 except for E_ . - 329 meV 3? 0.00 0.20 0.42 0.00 0.37
rel : sum 0.89 0.42 0.99 0.94 0.99
E = 76 meV
rel
0o 0.81 0.00 0.00 0.73 0.00
1 0.05 0.01 0.05 0.03 0.05
2 0.06 0.01 0.02 0.09 0.02
3 0.01 0.01 0.05 0.01 0.05
4 0.00 0.02 0.06 0.00 0.06
5 0.00 0.02 0.06 0.00 0.06
6 0.00 0.02 0.09 0.00 0.09
7 0.00 0.02 0.12 0.00 0.12
sum 0.93 0.12 0.45 0.87 0.45

aHighest: value allowed by conservation of total energy at this

rel”
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for the present qualitative discussion.] To facilitate comparison
of the results for the RB potential to those for the other
potentials, the latter are tabulated for both N = 694 and N = 948,
There are two major differences between the results for the RB and
the MAD potential. The MAD potential predicts more V-V.R energy
transfer, and it also predicts that the V-V,R process involves very
little rotational excitation whereas the RB potential predicts a
wide js,;um distribution peaking for the higher energetically allowed
values. We believe that the j;um distribution for the MAD
potential is likely to be an artifact of the restricted rotational
anisotropy of the AD potential.

Table 4 also shows that the RBST potential, despite the
restriction to M = 23, predicts a broad jéum distribution similar

to that obtained for the RB potential, but it predicts a higher

value for the total V-V,R transition probability. It is not known

at this time which potential is more accurate.
Further work is underway.

Conclusion

The use of supercomputers has allowed us to test the sensitivity of
accurate quantal molecular energy transfer probabilities in
diatom-diatom collisions to the choice of potential energy surface,
even at total energies great enough to allow both diatoms to be

vibrationally excited.
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