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1. Introduction

Classical trajectory methods for calculating inelastic scattering cross
sections are covered in earlier chapters of this book, especially Chapters
10 and 12. This chapter covers the extension of this technique to treat re-
active scattering. The first question which must be answered in a classical
trajectory study of a reactive system is whether one should be using this
method at all. Classical trajectory studies are useful not just because they
yield reaction cross sections, angular distributions, reactivity as a function
of initial and final energy distribution, and other observable reaction at-
tributes, but also for the insight they may offer into the actual reaction
event. One may look at the atomic motions in representative trajectories,
and one may calculate such nonobservables as opacity functions (proba-
bility of reaction as a function of impact parameter) and dependence on
features of the potential energy surface. But one must be careful not to
overinterpret the reaction by a trajectory study. Because many reaction
attributes depend sensitively on quantitative and qualitative features of
the potential energy surfaces which are not quantitatively understood. one
must be cautious about believing that the dynamical details of a particular
trajectory calculation are in general accord with reality. Trajectory cal-
culations are discussed from this point of view in Chapter 18 of this book.
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Chapter 18 also discusses some simple theories which sometimes give as
much reliable information as a full trajectory calculation and should be
considered as alternative or complementary theoretical approaches.

Anpther consideration in deciding to use trajectory methods is the .

accuracy of classical mechanics. It is well known that quantum effects
(e.g., tunneling and interference) play a role, and in some instances an

extremely important one, in molecular collisions, so it is worthwhile to
provide a few guidelines about when to expect a good first approximation 3
to the nuclear motion problem from the quasiclassical trajectory method.
These are as follows:

(i) The quasiclassical trajectory method becomes more reliable the 3
larger the masses of the nuclei and the higher the energy in each degree §
of freedom of the system (within the validity of the Born-Oppenheimer g
approximation). This follows from the fact that the de Broglie wavelength 3

becomes smaller as the momentum is increased. When the de Brogiie -
wavelengths for motion along all generalized coordinates become smalier
than the distances over which the potential energy changes rapidly as a
function of those coordinates, the wave (quantum) nature of the inter-
nuclear motion need not be considered and it may be treated classically.

(ii) The quasiclassical method yields more reliable results when the
desired information is highly averaged. This property is related to the
Ehrenfest relations.) These relations show that the quantum-mechanical
expectation values of position {x)» and momentum {p) satisfy the classi-
cal equations of motion for the average potential (V' (x))>. But classical
mechanics assumes they are governed by the potential V({x)) at the
average position. Thus the validity of classical mechanics requires that
the spread Ax of coordinates covered by a representative wave packet
be small. Unfortunately, wave packets representing atoms and molecules
at chemical energies may have considerable spread. But classical mechanics
may still be accurate for sufficiently averaged reaction attributes.

(iii) When the total energy of reactants is comparable to or below the
minimum potential energy barrier separating reactants from products (i.e.,
low-energy collisions of internally “cold™ molecules), trajectory methods
may seriously underestimate reaction probabilities. The use of the method
(without semiclassical corrections for classically forbidden paths as dis-
cussed in Section 3.4) in such threshold regions where tunneling or its
multidimensional analogs are important should be avoided.

(iv) The quasiclassical trajectory method, when used to calculate state-
to-state reaction probabilities, will misestimate probabilities which are
“classically forbidden™ in the classical S matrix sense® (see Section 3.4).
The method is not reliable for predicting small transition probabilities.

(v) The quasiclassical trajectory method is not appropriate for pre-
dicting resonance features or other interference phenomena.

Once it has been determined that the quasiclassical trajectory method
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is applicable and useful for a given system, one must determine the number
of relevant potential surfaces as discussed in Chapter 18 and obtain analytic
representations for them by, e.g. the methods of Chapters 2 and 3. If
more than one surface is important, one must also characterize the non-
adiabatic coupling terms. Trajectory techniques, like other theories of
chemical reactions, have been applied most extensively to single-surface
reactions, and these are emphasized in these chapters. The next questions
which arise are: (i) How does one correspond the initial and final condi-
tions of the trajectory to real (quantized) initial and final collision con-
ditions? (ii) How does one minimize the errors in the classical treatment?
Question (ii) may be restated: How does one incorporate semiclassical
corrections? The answers to questions (i) and (ii) are closely related. The
most straightforward way to incorporate quantized initial conditions is
called the quasiclassical trajectory technique. This is explained in Section 2
of this chapter. This is the largest section cf this chapter. It presents working
equations for the quasiclassical trajectory method as applied to single-
surface reactions of atoms with diatomic molecules.* The literature already
contains several descriptions (mostly incomplete) of various techniques and
equations for classical or quasiclassical forward trajectory calculations on
three-dimensional atom—diatom reactions.®"2%) Rather than review all the
computational schemes which have been used for various aspects of such
calculations or compare the techniques used by various workers, we mainly
present one set of approaches which we recommend as efficient and more-
or-less optimal. However, we do present more than one approach to the
calculation of product distributions since the optimum method may depend
on the problem of interest.

The methods discussed in Section 2 are the ones we recommend in
general for practical applications, but there are some problems where
alternative correspondence methods for initial and final quantized degrees
of freedom may be required or desirable. Section 3 presents a brief discus-
sion of such alternative approaches to this correspondence.

Trajectory methods for studying muitisurface reactions are discussed
briefly in Chapters 13 and 18. We discuss some computational aspects of
these methods in Section 4.

2. Quasiclassical Trajectory Method

The quasiclassical trajectory method assumes that each of the nuclei
comprising a chemical system moves according to the laws of classical
mechanics in the force field arising from the adiabatic electronic energy of

* Many of the techniques in this chapter are also applicable to reactions of atoms with poly-
atomic molecules and to molecule-molecule reactions. Nevertheless, we restrict our explicit
considerations to atom-diatom reactions.
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the system. The method may also be extended (see Section 4) to cases where {
the Born-Oppenheimer separation of electronic and nuclear motion breaks 3
down provided that such breakdown is confined to localized regions of
configuration space. The term “quasiclassical” is used to denote the manner
in which molecules are prepared before collision (i.e., the initial conditions).
In the quasiclassical trajectory method, molecules are prepared in discrete 3
internal energy states corresponding to the quantum states of the molecule. 8
Once the trajectory is begun, this quantum restriction is relaxed so that the &
time evolution of the system is governed solely by classical mechanics. A 3
similar “quantization” is often employed in the analysis of product molecule 3
internal energy states. o

In accordance with the above, this section first considers the calcula-?
tion of a single trajectory for an A 4+ BC collision corresponding to speci-
fied initial quantized rotational and vibrational energies and a fixed initial %
relative translational energy. Then we consider the calculation of reaction §
cross sections and rate constants from a batch or batches of such trajec- 3
tories. Finally, we consider the calculation of other reaction attributes, 3
such as distributions of final conditions of the products and reactivity as a
function of initial conditions.

2.1. Eguations of Motion

It is assumed in the present discussion that the potential energy func-
tion (hypersurface) is an analytic function of the three internuclear dis-
tances, ie, V = V(Ry, R,, R3), where R, R,, and R, are the AB, BC, and
AC distances, respectively, during the A + BC collision.

The first step in setting up a trajectory calculation is to define a co-
ordinate system in which to express the Hamiltonian for the system. It is
convenient to choose as a reference coordinate system a space-fixed Carte-
sian system consisting of the nine coordinates x = {x;;i = 1,...,9} of the
three nuclei, denoted A, B, and C, respectively, and the nine momenta

p. = {p.:i=1...,9} conjugate to these coordinates. The Hamiltonian
in this reference coordinate system is'®
H(x.p:) = T(p) + VR, (x), R:(x). Ry (x)] (1a)
where
)= ¥ (bl + i, + ! (1b)
P = g 2mAP'“ 2mg Pxies 2mcpx”6
Hamilton’s equations of motion®? are
ix; CH cT
Xizﬁ=:——=:(— i=1,..9 (2a)
dv Cpy,  0py,
(0H oV 30V 0
px‘zi&:—(ﬂ——=—~€;—~=—zq f:——k (i=1....9 (b
' dt 0x; ox; k=1 OR, Ox;
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The three internuclear distances in terms of the reference coordinates are

- 3 1/2

Rl = RAB = Z (Xi - x,-+3)2:I (33.)
Li=1
r 3 1/2

RZ = RBC = i Z (xi+3 - x‘-+6)21| (3b)

i=1

r 3 1/2

Ry=R,c= Z (e — xi+6)2] (3¢)
Li=1

from which the required dR,/éx; terms can readily be obtained. There are,
of course, a total of 18 coupled first-order differential equations implied
by equations (2a) and (2b).

It is indeed possible to carry out the entire trajectory calculation,
including the specification of initial conditions, in this reference set of
Cartesian coordinates. While it is usually convenient to transform the co-
ordinate system as described below, it should be noted that it is not necessary
to do so.

From equation (2b) it is seen that if the potential energy function is
independent of some coordinate (i.e., the coordinate is cyclic), the momen-
tum conjugate to that coordinate is a constant of the motion (independent
of time). The elimination of any cyclic coordinate reduces the number of
coupled equations which must be integrated to obtain each trajectory.

Anticipating that the coordinates of the center of mass of the entire
system will prove to be cyclic, we wish to devise a new set of coordinates
in which the three components of the position of the center of mass are
three of the nine new coordinates. It would further prove convenient in
the specification of initial conditions in A + BC to have internal coordi-
nates corresponding to the displacement of A from the center of mass of
the BC molecule. Hence we define'®

il

i = Xive — Xi+3 (i=123) (4a)

Q - + 1
= X — ——— [mgx; Mmex;
(mp + mc) Bl crire
1 .
Si= M [madi + Mpdivs + McGive) (=123 (4c)

1,2,3) (4b)

I

where M = m, + my + mc, as our new system of generalized coordinates.
These particular generalized coordinates for a three-body system are often
called Jacobi coordinates. The coordinates in the three equations in equa-
‘ioﬂ (4) are called internal, relative, and center-of-mass coordinates, respec-
tively.

The Hamiltonian can be obtained in terms of the generalized coordi-
nates {q;, p;, Q;, P, S,, Pg;i=1,2,3}, where p;, P;, and Pg, are the mo-
menta conjugate to g;, Q;, and S, respectively by employing the F,-type
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generator function®?:

3
F,(p,P,Ps,q,Q,S) = Z [pja;(x) + P;Q;(x) + PS_,Sj(x)] ®)

ji=1

Using equation (4) and the relation p,, = (0F,/0x;), one derives expressions
for p, (p, P, Ps) which are substituted into equation (1). The result is

H(q, Q:p’ P’ PS) = T(p’ P’ PS) + V[Rl(q’ Q)st(q’ Q),Ra(q, Q)] (63)

3 1 1 1 k
T(p,P,Ps) = 2 P? ——Pz,) 6b
® s) Z (2.U3cp * 2p4,8c " TV (6b) 3

Here
Hpc = mpmc/(mg + mc) (7a)
and
Hac = my(mg + me)/ M (7b)

are the reduced masses corresponding to internal and relative motion,
respectively, and {R;(q,Q);i = 1,2, 3} are given by'®

F 3 27172
2<m +mq.+Qi>] (8a)
i= B c
3 1/2

R,=| Y 0} ] (8b)

Li=t1

o3 my 2712
R = —{; — i SC
’ _1‘=Zl<”18+mcq Q) ] (&)

While the generator function method has the advantage of generality, the
transformation of the kinetic energy to conjugate momenta of Jacobi
coordinates can be achieved more simply by the mobile method.3"

As was anticipated, the R; are independent of S,, S,, and S5, the
coordinates of the center of mass. These coordinates are therefore cyclic
and the conjugate momenta Pg, Pg,, and Ps, are constants of the motion.
We may without loss of generality define the center of mass to be stationary
(or, equivalently, define our coordinate system to move with the uniform
motion of the center of mass) and delete the terms involving Pg,, Ps,,
and Pg, from the Hamiltonian. The resulting set of twelve Hamilton's
equations is

I

R,

oH 6T
= = (i=1.2.3) (%)
“p; Cpi
. cH T
=t = 1.2.3 9b)
C=7p " ¢ : (

i
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GH &V _ 1V iRy
= — = — j=1,2,3 9%
Pi 0q; qu ; 0 x 04q; ¢ ) Ge)
p_ _CH_ v i VIR a3 e
T T, T T T &R e T

where {R;(q, Q);i = 1,2,3} is given by equations (8). This is the usual
form in which the equations of motion are integrated, although some
workers®2:33 have found it convenient to use the equivalent second-order
form obtained from Newton’s or Lagrange’s instead of Hamilton’s equations
of motion.

It is, of course, possible to reduce the number of equations even further
by recognizing the total energy and total angular momentum (three com-
ponents) as constants of the motion. This would reduce the number of
equations from 12 to 8, but the form of the resulting equations would be
much more complicated and will not be discussed here. Moreover, the
conservation of these quantities can serve as an accuracy criterion when
integrating equations (9) numerically.

2.2. Initial Conditions

Before Hamilton’s equations of motion, equations (9), can be integrated
to obtain a trajectory, initial values of the coordinates and momenta,
£4?,00,p%, P?;i = 1,2,3}, must be specified. These initial values depend
on the chosen set of collision parameters, which are those geometric param-
eters which characterize a collision and make one collision differ from an-
other. For collisions of an atom A with some selected vibrational-rotational
state (1, j) of the molecule BC at some fixed center-of-mass collisions cnergy
E., there are five collision parameters. Defining (without loss of gen-
erality) the atom A and the center of mass of the BC molecule to lie ini-
tially in the yz plane on the —z side of the origin of the reference set of
Cartesian coordinates with the initial relative velocity vector v, directed
along the + z axis, the five collision parameters are as follows:

b the impact parameter (the y component of the initial relative coordi-
nate, i.e., Q9)

0 the initial azimuthal orientation angle of the BC internuclear axis (the
angle between q and the + z axis)

¢ the initial polar orientation angle of the BC internuclear axis (the angle
between the projection of q onto the xy plane and the +x axis)

n  the initial orientation of the BC angular momentum (the angle between
q x p and some reference vector normal to the BC internuclear axis)

¢ the initial phase angle of the BC vibration (defined to be zero at the inner
turning point, 7 at the outer turning point, and to vary linearly with time)

It now remains to express the initial values of the generalized co-
ordinates and momenta {¢°, Q?, p?, P?;i = 1,2, 3} in terms of these colli-
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sion parameters. If p is the initial separation between A and the center of
mass of BC and b is the impact parameter of the collision, then

0% =0 (10a) " |
03 =b (10b) i
08 = ~ (p? ~ b3 (109)
Py =0 (10d) 3

Py =0 (109

P§ = (2pancEre)!? = P° (10f)

Let r = |q| and let 6 and ¢ be defined as above so that '

q% = r°sinf cos ¢ (11a) 3§
q3 = r°sinfsing (11b)
q3 = r®cosé (11¢)

One convenient method for specifying the remaining variables p° and °
(the as yet undetermined initial internuclear separation) in terms of #, &, 8,
and ¢ is to place r° at the inner turning point and to define p, the initial
separation of A and BC, as ’

& )
P =Pot 5 Ve ¢ (12a)
12
4 PO,[n.j
< BC
= po + = (12b)
° 2n ps pe

so that when along the trajectory the separation of A and BC decreases
to po, the BC vibrational phase angle has the value & Here tiid is the vi-
brational period of BC in the state (n,j) and pg is the “collision shell”
radius, which must be sufficiently large so that the interaction between A
and BC is negligible. For very long-range interaction potentials corrections
for nonvanishing interaction can be made but these will not be discussed
here. To minimize the distance beyond p, that the trajectory is started, it
is more efficient to use a random number to choose r between r_ and r,,
the inner and outer turning points of BC, respectively, in each trajectory
(or, aiternatively, select either »_ and r, randomly) and replace the vibra-
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tional period in equation (12) by the half-period*

1 . 1/2 (*r+ i3 + 1 hz —-1/2
il = (@> j [sw- — Vaelr) — ’(’—)7_ dr  (13)
2 r- 2pger

where &, ; is the internal energy of the state (n, j) of the BC molecule and
Vac(r) is defined as
Vac(r)= Vac(Ry) = lim  V(Ry, R;, R;) (14)
Ri,R3—=©
The calculation of ¢, ; and of (1/2) 7% will be discussed below.

An even more efficient method®” is always to choose p = p,, but
before integrating the three-body equations of motion to integrate the
diatomic equation of motion from r = r_ for a time (¢/2n) wl M E=m,
one can do this more efficiently by integrating from r = r, for a time
(€ — m)/2n] <.

With the selection of r = r,, all the initial momentum of the BC
molecule is angular momentum, ie., at a turning point there is no radial
component of J, where J, is the BC angular momentum vector which has
the magnitude J, = [j(j + 1)]*/* & or (j + 1/2) h, depending on the corre-
spondence scheme chosen. We will use the former in the rest of this chapter,
although in many cases there is not much difference between the two choices.
We may therefore write

q°-J, =0 (15)
and
J2=j(j+ DA = (rsp°) (16)

Let x be a reference vector normal to the BC internuclear axis defined by
k=q"x & =q%, +q78, | 17

~

where &, &, &, are the unit vectors along Cartesian axes so that
p° Kk = q3p? — q9p% = J[(?)* + (43)° 1"/ cosn (18)

where the second equality in equation (18) follows from the definition of 7
as the angle between the angular momentum of BC and the reference
vector k. Combining equations (11), (15), (16), and (18) leads to the follow-

* Alternatively one could alternate r° between r_ and r , in successive trajectories. If one does
not pick new values for all the other random variables in the alternate trajectories this is a
form of cluster sampling and is less efficient than the procedure recommended in the text.
If one does pick new values for all the other random variables this is a form of stratified
sampling which slightly complicates the error analysis without any expected significant
increase in accuracy.
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ing initial values of internal (BC) momenta

p? = J,(sin¢ cosy — cosf cos¢p siny)/ry (19a)
pY = —J,(cos¢ cosy + cos@sing sinn)/r. (19b)
pY = J,.(sin@sinn)/ry (19¢)

Given some set of values for the collision parameters, these values are
used in equations (10), (11), (12), and (19) with r*=r, and J, =
[i( + 1)]'? h. The constant p, must be determined for the particular sys-
tem studied. The calculation of ., ¢, ;, and (1/2) ¢ will now be considered.

In the semiclassical theory of bound states, the internal energy of the
BC molecule, ¢, , is defined by the implicit equation®®

1J, —ahn+3H) =0 (20a)

re J? 1/2
Jy= ZJ {Zﬂnc[:en.j — Vac(r) — i 2]} dr (20b)
- 2pper

The integral in equation (20b) is readily evaluated by numerical integra-
tion. A particularly efficient scheme is obtained by defining a new variable

where

2F —ry —r_
yE_i___rL__r_ (21a)

ry —r.

and using a Chebyshev quadrature of the second kind®%:

1 k
J S =) dy = Y wif () (21b)
—1 i=1
where
T . in
w,-=k+1sm P (2lc)
and
Y; = €08 X II ’ (21d)

After an initial estimate of ¢, ;, the Newton-Raphson method*® may be
used to solve iteratively for the correct value of ¢, ;. Very few points (k < 15)
are required to evaluate the integral in equation (20b). The integral

aJ, r J? —12
~ = #BCJ {ZUBC[E".] = Vaelr) — 3 3 ]} dr (22)
Ce,,; o <Mpcl

which also arises in the application of the Newton-Raphson method to
ﬁnd the zero of equation (20a), is simply the half-period as defined in equa-
tion (13) and is readily evaluated using numerical differentiation of J, (see
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Reference 27) or by another numerical integration. If the latter procedure
is chosen it is convenient again to make the substitution of equation (21a)
and to use a Chebyshev quadrature of the first kind33:

' 1) ,

J: (Tfy—Z)—iﬁdy = i=zl wif () (23a)

where

n
wi = % (23b)
and
: 2i— =

Yi = €08 T (23C)

Chebyshev quadratures are also called Gauss—Mehler quadratures®” and
are widely used for this kind of semiclassical integral ®3*¥ In evaluating
the integrals in equations (20) and (13), one must first solve for the appro-
priate turning points r, at each trial energy using, for example, the Newton—
Raphson method as described in Reference 5.

2.3. Calculation of a Trajectory

Having obtained the equations of motion and the initial conditions,
the next problem is to calculate a trajectory. This is accomplished by
numerical integration of the equations of motion for the given initial values
of the {q;, 0., p;, Pi; i = 1,2,3}. There are a large number of well-tested
algorithms for integrating coupled sets of differential equations, and these
are described sufficiently well in the numerical-analysis literature.*”’ The
most popular integrators for trajectory studies of chemical reactions have
been the fourth-order Runge-Kutta-Gill and the Adams-Moulton method.
The latter is a predictor—corrector scheme and is most often used with
fourth-order predictor and fifth-order corrector, although higher orders
are used sometimes. Many problems have been solved with a fixed-size
time step, but variable-step-size¢ Runge-Kutta and variable-step-size pre-
dictor—orrector schemes have also been widely used. Predictor—corrector
schemes are more efficient but more complicated than Runge-Kutta
schemes for this kind of calculation if a fixed step size is used. Variable-
step-size algorithms are more problematic. For many problems, they are
actually less efficient than fixed-step-size schemes because of the extra
“overhead™ involved in the variable-step-size routines. But for some prob-
lems significant savings in computer time were achieved by using variable-
step-size predictor—corrector schemes. A good program library will include
a choice of more than one of these kinds of algorithms. If the computer costs
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for the project being undertaken are small, then it is probably most efficient
just to use any one of these which is handy. If the computer costs will be
significant, one should test several algorithms for cost efficiency on the par- §
ticular problem of interest. The algorithm which is most efficient for one
problem (with a given potential energy function, set of atomic masses, E
range of energies and initial conditions, and number of significant figures
of precision required on given trajectories) is not necessarily the most #
efficient for another problem.

There has not been much work reported in systematically comparing
the efficiencies of various numerical integration schemes specifically as 3
applied to chemical dynamics problems. In general it is difficult to tell §
how efficient an integration scheme will be for practical work on the basis
of formal properties like order of the finite difference error, stability regions, }
or number of function evaluations per step. Matzen and Riley*" made an 3
interesting study of two F + H, trajectories (with H, initially in the ground -3
state, E,, equal to about 2 kcal/mol, and the potential given by an extended
LEPS function). For each trajectory they systematically varied the numerical
parameters for each of five integration schemes and determined the com- =
puter time requirements for various accuracies. The most efficient integra- A
tion scheme was the Bulirsch-Stoer extrapolation method*? with auto- -4
matic error control applied to the second-order (Newtonian) equations of ¥
motion.®? The other schemes evaluated, in order of decreasing efficiency ¥
for five-significant-figure accuracy were: the Bulirsch-Stoer extrapolation
method with automatic error control applied to the first-order (Hamilton-
ian) equations of motion, the fixed-step-size, fourth-order Adams—Moulton
predictor—corrector method used in QCPE program No. 273.* the fixed-
step-size eleventh-order Adams—Mouton predictor—corrector routine used
in QCPE program No. 229, and the variable-order, variable-step-size,
automatic-error-control Adams method of Shampine and Gordon.*¥
Their results are summarized in more detail in Table I. Of course these
results are not indicative of the efficiencies of the various schemes in general,
but they do show the kinds of differences in computing times that may occur.
And they show that higher-order and variable-step-size methods are not
always more efficient than lower-order, fixed-step-size methods.

Other comparisons of the efficiencies of various integration schemes
have been made by Parr** and Brumer.*>*® Parr tested an Adams-
Moulton eleventh-order predictor/eleventh-order corrector (AM11), an
Adams-Moulton fifth-order predictor/sixth-order corrector (AMS6), and a
Runga—-Kutta-Gill fourth-order integrator (RKG4) for the unimolecular
dissociation of a triatomic molecule with a pairwise Morse potential. The
first two integrators gave comparable results in his tests and both were
superior to the RKG4 scheme. Brumer was particularly concerned with
trajectories involving long-lived collision complexes. He found that Nord-

* The QCPE programs are discussed in Section 2.7.
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Table 1. Relative Computing Times for Two F + H, Trajectories”

Computing time

Integration scheme 3s.fb 5s.f. 6s.f.
Bulirsch—Stoer, second-order equations 1.0 1.3 1.5
Bulirsch-Stoer, first-order equations 1.4 2.0 2.4
QCPE 273 1.1 2.0¢ 2.4
QCPE 229 22 23 2.4
Shampine-Gordon (ODE) 1.9 3.2 3.8

¢ The results in this table are based on unpublished calculations by M. K. Matzen and
M. E. Riley. They are the average for two trajectories of the minimum computing time
necessary to get a specified number of significant figures correct in all of the following
final-state properties: positions, momenta, translational energy, vibrational energy,
and rotational energy.

s.f. = significant figures.

¢ Extrapolated.

b

sieck’s sixth-order variable-step-size Adams method led to a serious error
buildup for long-lived trajectories. Hamming’s fourth-order variable-step-
size predictor—corrector method suffered from considerable roundoff error
propagation and unreliability of the step-size changing algorithm. He
was able to integrate long-lived trajectories accurately with the RK G4 scheme
and with Gear’s sixth-order hybrid method (G6).“” Since Parr®* was able
to integrate long-lived trajectories using the AM6 scheme, Brumer tested the
latter three schemes by integrating a NaCl oscillator for 125 periods. The
G6 method was the most efficient. In the range of five to eight significant
figures of accuracy, the AM6 scheme gave errors six times larger for the
same number of function evaluations. The RKG4 method gave errors
4500 times larger than the G6 method with twice as many function evalua-
tions as the G6 method used to obtain eight significant figures. For prob-
lems involving short-lived trajectories, Brumer expected that the Gear
method will be competitive with other variable-step-size predictor—corrector
schemes of the same order but that the improvement should not be sig-
nificant.

Once a method has been chosen one must find a step size (for methods
with fixed step sizes) or a value of the error control parameter (for methods
with variable step sizes and/or variable orders) which yields results of suf-
ficient accuracy for the given problem. This should always be determined
carefully for a new problem and rechecked when the problem. energy range,
or initial conditions are varied significantly. There are several ways to de-
termine what step size (or step-size control parameter) is needed. One is
to integrate a few trajectories with very small step sizes and then increase
the step size until the error in the quantities of interest (see Section 2.5)
reaches its maximum allowable limit. This is the safest method but it is
not always the most convenient. Necessary but not sufficient checks for
accuracy are conservation of total energy and angular momentum. Some-
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times these are conserved to more significant figures than the accuracy of j
the trajectory. Another check is back integration of trajectories, i.c., starting 3
a new integration with final coordinates and with reversed final momenta }
of the original integration to try to recover initial conditions. This is one
of the best checks, but sometimes the initial conditions are recovered to
more significant figures than the accuracy of the original forward integra- g
tion.** Another danger in performing checks is that some trajectories, §
especially those for collisions of long duration, are harder to integrate than
others. Thus one must be sure that accuracy checks are really performed 73
on a representative sample. It is a good practice to monitor energy and 3
angular momentum conservation on all trajectories and routinely to back-
integrate a reasonable fraction of trajectories on all computer runs. If any
change in the parameters of the problem causes the errors in these checks 7}
to increase, then one should again recheck the results against trajectories §
integrated with smaller step-sizes. 3

Each trajectory is integrated in time until the chemical species produced
by the collision, either the reactants (A + BC) or some set of products,
have separated beyond the “collision shell” distance pj,. As soon as one or
another such end test is satisfied, the integration may be stopped and the
identity of the products determined. Care must be taken not to stop the
trajectory as the reactants are approaching one another, but otherwise a
good end test consists of finding two of the R; larger than pj. This allows
a tentative assignment of the products. The pair of atoms with the smallest
internuclear separation may be a stable molecule or a quasibound molecule,
but might also have dissociated if the trajectory had been integrated for a
longer time. Analysis of the tentative diatomic molecule’s internal energy
and angular momentum allows a definitive assignment. @

The end test procedure just described has the advantages that (i) com- E -
paring the various R; to p} is very fast computationally and (ii) there is 3
no possible misassignment of products. The end tests used in Reference 5
(comparing to pj the relative separation of each atom from the center of
mass of the other two atoms) can for certain mass combinations (e.g.,
F + HD) incorrectly identify the product diatomic molecule.

Of course one must be sure that g, is large enough. It must be large
enough not only to insure that the trajectory can be judged reactive or not
but also to insure that properties of the reactive collision, such as discussed
in Section 2.5, are accurate to the desired number of significant figures.
This, like step size, has to be determined numerically.

2.4. Sampling and Averaging over the Initial Conditions

If one can identify some maximum impact parameter such that col-
lisions with impact parameter b greater than b,,, cannot possibly react
according to classical mechanics, then the reaction cross section can be
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expressed classically as the product of a geometrical cross section nh2,,
and an average probability of reaction over all possible collisions with
b < brax» 1-€..

max-»

0, = Mhpu (P,) (24)

where 2, is the reaction probability as a function of all the collision param-
eters as defined in Section 2.2. The average of 2, is taken over all possible
collisions with the impact parameter b < b, and all possible values of
all other variables. If we seek a reactive scattering cross section at some
fixed center-of-mass collision energy for atom A with some selected state
(n. j) of the molecule BC, then

ar(Erel, n,j) = nb?nax('@r(Ereh n,j)> (253.)
and
(Z.(E ) = :
. r( rels Vl,_]) - (21[)3 b,znax
brax 7 2n 2n 27 .
X J J J J’ j gr(b’ 03 d)9 r’Qé;Ereh n’j)b
b=0J 0=04J ¢=0J n=0J £=0
x sin0 db df d¢ dn d¢ (25b)

where the normalization constant is determined by the definite integral of
the volume element. Should we desire to average 2, over some distribution
of collision energies, equation (25) can be appropriately modified. For
example, a state-selected thermal rate constant for the reaction of A with
the state (1, j) of BC is defined as ’

R:I(T) = <Urelo-r(Erel’ ”9j)>T (26&)
RkT \!/?
:< ) Mhmax [(27)* b (KT ] 71
A, BC
x b 7 2n 2n 2n
Xf J J f j f 2,(Ecab.0.6,0,851.)
E=0d b=0J 0=0J $=0J n=04J =0
x E,q e E*T psin0 dE,,, db d0 d¢ dn d& (26b)

where k is the Boltzmann constant. T is the temperature, and v, is the initial
relative speed given by

Cret = P%/tianc (26¢)

One may further obtain the completely thermally averaged rate constant
k,(T) by averaging over Boltzmann distributions of n and j.

The function #, in equations (25b) and (26b) is the probability of reac-
tion for a collision specified by some set of collision parameters. In equation
(25) it is specified by (b, 8, ¢, n, &) at fixed E..,, n, and j. As all classical tra-
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jectories with the same set of collision parameters (initial conditions) are
identical and either do or do not lead to reaction, the function 2, is a
Boolean function which takes on one of two possible values: zero for no
reaction, one for reaction. To determine whether 2, is zero or one for some
particular set of collision parameters, one must compute a trajectory and
examine the collision products to see if a reaction has occurred. Selecting
initial values of the collision parameters for each trajectory is nothing more %
or less than selecting points in the collision parameter space for the nu- ™
merical evaluation of the multidimensional integral in equation (25) or (26).
The values of initial collision parameters, therefore, depend upon the
numerical integration method chosen. _

The two methods in current use in trajectory calculations for evalua-
tion of multidimensional integrals of the form

11 1
I=J j j J(B)dp )]
0v 0 0

are the Monte Carlo method*®3% and the method of “fixed lattice points”
(a so-called diophantine method).!” In the former the selection of points
in the unit hypercube is completely random, while in the latter the selection
is predetermined by a set of “good” or “optimum™ lattice points which
depend upon the dimensionality of the hypercube and the total number
of points at which the function is to be evaluated. Although there is evidence
that the latter method may often converge more rapidly than the Monte
Carlo method as the number of points is increased'” and that practical
error estimates are possible, the method allows no rigorous estimate of
the error, and none of the previously computed function values can be
used to obtain an improved estimate of the integral using a larger number
of points. We recommend the use of the Monte Carlo method because it
allows a rigorous estimate of the error and because all previously computed
function values are used along with additional points computed to obtain
convergence. We will accordingly restrict our discussion of selection of
initial values of collision parameters to that method.

In the Monte Carlo method the integral in equation (27) is approxi-
mated by the average value of the function f () over N randomly selected
values B from a uniform distribution in the unit hypercube, ie..

X .
I~ e()=— 3 f(B) (28)
N3

where ¢(I) is the Monte Carlo estimator of the integral 1.4%3% In the
limit of a sufficiently large number of points, N, the variance of the estimator
&(I) about the value [ is

var{f]
()] ~
varfe(l)] SN

(29)
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where the var[ f] is the variance of the function f(f) over the unit hyper-
cube and is some constant. The standard deviation of the estimator is then
var 172
s = {var[e(D]}'* ~ farl/1}°7 (30)
N—w 1\]1/2

The estimated error in &(I) is usually taken to be some multiple of the
standard deviation, the exact multiple being determined by the desired
confidence limits, so that for a sufficiently large number of points

1
The probability that the estimator ¢(I) is within Ae(I) of I is 0.6826 if Ae(I)
is taken as one standard deviation and 0.9554 if it is taken as two standard
deviations. Confidence limits for the case when N is not very large can be
obtained from standard statistical tables.©*!
Now the variance of the function f(f) is defined as

var[f] = {f? =<2 (32)
where the average values are taken over the unit hypercube. In the special
case in which f is a Boolean function (see above), (f*> = {f) so that

var [fBoolean] = <fBoolean> (1 - <fBoolean>) (33)

Further, (/) = I so that g(I) is an estimator of (/). For a Boolean function
N

D=— 34

eh =+ (34)

where N, is the number of nonzero values of fpoean Sampled (ie. the
number of reactive trajectories or the number of different trajcctories for
which fgo1ean = 1) Therefore

- PURuLY [ IS ) AL AL (35)
Var[fBoolean] = N < N > N2
and from equation (29)
N,(N - N N} N —N,
var[e(D)] = NN = No) (36)

N3 "~ N* NN

Using a one standard deviation rule (68 % confidence level), we obtain the
result for the error in &(/),'>

N,/ N — N \'?
Ac(l) ~ _’<‘ N ) (37a)

for the case of a Boolean function. In many practical applications one has
N, << N. In this case equations (34) and (35) may be combined to yield




T

522 Donald G. Truhlar and James T. Muckerman

the useful limiting form

Ae(l) 1
e(I) oo NI (370)
N>>N,

It is apparent from the N~ '/ dependence of the estimated error in
equation (31) that the Monte Carlo method converges very rapidly at first
but then very slowly as the number of points N is increased. In other words
not too many points are required to obtain a moderately accurate estimate
of the integral, but very many points are required to obtain high accuracy.

To put the integral in equation (25) in the form of equation (27) we
must transform variables according to

1
df, =—bdb (38a)
Cy
1
dp, =—sinf do (38b)
()
1
dBy =—d¢ (38¢)
€3
1
dfs =—dn (38d)
Cq
1
dfs =— d¢ (38e)
Cs
This implies that
4 C1C2C3C4Cs
PHY=——22""22
v (2m)° biax
1 r1 1 1 1
X J : J J j Z(B)dBy dB, dps dBs dps
B1=0 Jﬂz=0 B3=0 J Ba=0 J ps=0
(386)

The relationships of the new variables to the old are then obtained straight-
forwardly by integration:

(61 1 (? 1 b?

B, = df, = — bdb =— — (39a)
Jo C1Jo ¢, 2
f‘ﬁz o 1

By = dp, = — sinfdp =— (1 — cost) (39b)
v o €2 Jo &)
B3 o 1

By = dfy = — dp =— ¢ (39¢)
Jo C3Jo C3
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Ba 1 n 1

ﬁ4=J dﬂ4=—J dn =—n (39d)
0 Cado Cs
Bs 1 g 1

Bs =J dps =*j dé =—¢ (3%)
0 Cs Jo Cs

The normalization constants c; are determined from the conditions §; = 1
at the upper limit of the corresponding variable. The result is

B, =31 — cosf) (40b)
1
Bs = 2—¢ (40c)
7
1
Bs = 57;’1 (40d)
= —l——é (40e)
Bs = -

and the expression for (#,) becomes a special case of equation (27) as

follows:
<9‘r>='[ J j J J 2.(B)dp (41)

The procedure for selecting appropriate values of the collision param-
eters over which to average the reaction probability 2, is as follows.

(i) Select a set of five random numbers 8, f8,, ..., fs uniformly dis-
tributed in the interval (0, 1). Most modern computing centers now have
system libraries which include programs for random number or pseudo-
random number generation. These are always or almost always good enough
for our purposes so this step will not be discussed in detail.

(i) Obtain the corresponding values of the collision parameters by
inverting equations (39). This gives

b = B} b (42a)
6 =cos (1 —28,) (42b)
¢ = 2nfs (42c)
n=12np, (42d)
¢ = 2nfs (42¢)

These values of the collision parameters are then used in equations (10),
(11), (12), and (19) to define'the initial values of the generalized coordinates
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and momenta for a trajectory, and the trajectory is computed to determine

whether 2,(b(B,), 0(B2), &(B3), n(Ba) E(Bs); Erey, n-f) is one or zero. If this
procedure is repeated N times and N, nonzero values of 2, are obtained,
then from equations (25), (28), (34), (37), and (41) we have

Ur(Erelﬂ n’j) = nbmax<'?r> (433)
nhiaN,/N {43b)

I

and

(44)

N, (N = N,
Ac, ~ nbﬁ,ax——'< r)
N

NN

Similarly, an expression for the state-selected rate constant k™ is obtained
by the Monte Carlo integration of equation (26). The result is

, kT \!/? , N,
ki = Ty — (45)
Tiia,BC N
and
. SkT 2 N,/ N — N\
Ak~ ( ) 7bZ,, ~,’( ) (46)
\ THA.BC N NN

The collision energy may be selected in the following manner. A new
transformed variable

AP = ue “du (47)

whereu = E,, /kT is defined analogous to those in equation {38). Integrating
equation (47) to obtain B, (u) we have

Be u
B =J dfs =J ue tdu=1—(@u+ e 48)
0 0
which, unfortunately, cannot be inverted to obtain a closed-form expression
for u{fs). Successive approximations to u, however, may be obtained
using the relation
up+ 1 — (1 — Bg)e”

Uipy = Ui + (49)

u;

which is derived using the Newton-Raphson iteration method. The se-
quence of partial sums, u;, is absolutely convergent for all values of i in
the (open) interval (0, 1) when u, = 1, the inflection point of B¢ (u), is used
as the initial guess. Once a converged value u(f) is obtained using equation
(49), the collision energy is given by E., = ukT. Alternatively the initial
relative translational energy may be selected by a rejection method,®

To compute the completely thermally averaged rate constant one must
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also average over discrete distributions of n and j. When the number of
internal states is not too large this can be done in the following manner.*”
Pick a number N much larger than the number of trajectories to be
run. For example, let N22L be 107. Compute the energies of all states with
a probability of occurrence greater than 1/N9®, by using equation (20)
and compute the number N (n,j) of times each such state should be
sampled in 107 collisions. If the total probability of occurrence of states
with probabilities less than 1/N2L is nonnegligible, then N9, is too small.
Arrange the states in order and store the subtotals of the Ny....(n, j). Then,
for each trajectory, pick a random number in the range (0, 1), multiply by
Newl “and compare efficiently to the table of subtotals to decide what n
and j should be used. If the number of states of the reactant is too large
for this scheme to be practical it can be modified as necessary, e.g., by analytic
approximations for e, ;.

The transformed variables defined by equations (38) and (47) are those
appropriate for so-called crude Monte Carlo sampling. Crude Monte Carlo
sampling is a completely “safe” and unbiased sampling technique (so long
as b, is chosen properly), but it is not necessarily optimum in the sense of
yielding the most precise results for a particular reaction attribute for a
given number of trajectories computed. The goal of the alternative sampling
methods is variance reduction, i.e., by biasing the selection process for
initial conditions we attempt to accelerate the convergence of the Monte
Carlo evaluation of unbiased reaction attributes. This is the most important
area for research in the theory of Monte Carlo integration, and the new-
comer to the field of Monte Carlo trajectory calculations of chemical
dynamics might be surprised to find how little such variance-reducing tech-
niques have been used in this area. This, however, is not without a good
reason. Simply stated, a nonuniform selection procedure which reduces the
variance of one computed reaction attribute will generally increase the
variance of one or more other interesting attributes. Since we are typically
interested in several such reaction attributes (as discussed in later sections).
we often adopt the compromise of using no nonuniformity at all. As an
example. some workers prefer to skew their sample in favor of low impact
parameters. This does not produce biased estimates of reaction attributes
if trajectories with high impact parameters are weighted relatively more
highly than trajectories with low impact parameters. And it may lead to a
smaller Monte Carlo uncertainty (variance) in the estimated reaction cross
section if, as is often the case, the probability of reaction is a decreasing
function of impact parameter. But it will also generally lead to much poorer
statistics for the differential cross section in the forward direction if. as is
usually also the case, the forward-scattered trajectories tend to come from
large impact parameters. However, if one is really interested in only one
or a few reaction attributes, e.g., in only the thermal rate coefficient. it may
be possible to use variance-reducing techniques quite profitably. In general
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the use of any variance-reducing technique requires knowledge of the de-
pendence of the trajectory results (which are the integrand of an integral
being evaluated by the Monte Carlo method) on the independent variable
whose distribution is to be sampled nonuniformly. Thus we usually have
no grounds for biasing the selection of initial variables like the vibrational
phase or the orientation of the BC angular momentum, but we may be able
to bias the selection of initial energy quantities or impact parameters. Two
alternative sampling methods—importance sampling and stratified sam-
pling—will now be discussed and illustrated by applying each to the
selection of the impact parameter.

Consider the opacity function (this is one of the reactivity functions
discussed in Section 2.6.1),

) 1
yr(b;Erela I’l,]) = 5(57;)—3
.4 2n 2n 2n
x J f J J P,(b,0,0,n,&; Eeyy . )
0=0J $=0 J 7=0.J ¢=0
x sin@df do dn dé (50
denoted simply by £,(b) in the following discussion, which has the properties
bmux
(P =3 J 2,(b)bab (51)
br‘;lax 0
bmux
g, =27 j 2,(bybdb (52)
0
and
do, )
y = 2nb?,(b) (53)
where
bnax
o, = J %t b (54)
o db

If an expected opacity function 2°(b) is defined, then equation (51) may
always be rewritten as®®?

2y =2 r 20 59y ab 55
< r>_b2 0 y?(b) r() (3)

_ j 2,(:)
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where

2
dap, = e P2(b) b db (57)

max

If the actual opacity function resembles the expected function, the ratio
2.(b)/#? (b) should vary quite slowly with impact parameter (or equivalent-
ly, with B,). The more slowly varying this ratio can be made, the smaller
the variance of the integrand becomes, and the smaller the estimated error
for a given number of trajectories computed. The function #°(b) is an
importance-sampling function.

It is clear from equation (57) that use of the crude Monte Carlo selec-
tion of the impact parameter defined by equations (38a) or (40a) corre-
sponds to taking the expected opacity function (importance-sampling func-
tion) as a step function, i.e.,

o 4L b= Bax 58

2, (b) {0’ b> b (58)

If the step function in equation (58) is not expected to have the same shape

as the actual 2,(b), then crude Monte Carlo sampling might not be the

method of choice for the calculation of the reaction cross section or reaction

rate constant. One alternative is to use the following importance-sampling
function®®?:

b
———— <
P0(b) = 3<1 bm)’ b = binax i
(59)
0, b> b
in which case
6 b
18, = — | 1 = bdb 60)
45 bﬁm< bm3x> |
B1 b 2 b 3
b L 4 3<bm> (bm> ©n
Y 2,(8))
Py = AUATT (62
N J ARG ’
and
b = by icos[icos™ (1 — 26;) + in] + 1} (63)

Notice that the factor of 3 in equation (59) was chosen so that f, (b = b,,,) =
1, and in deriving equation (61) we used the fact that 51@ =0) =0. When
using an importance-sampling function for the selection of the impact




528 Donald G. Truhlar and James T. Muckerman

parameter. equation (41) becomes

2 = ) 4B, dp, dp, B, dp- 64
& LLLJ J ,/’O(ﬁ By dB, dfs dB, dp (64)

and its Monte Carlo estimator becomes
280 1% 1
N —— Z POplY N & 0 plily
L 2280 T NS 2B
where the N computed trajectories are for f, selected at random uniformly

on the interval (0, 1). It is evident from equation (65) that each trajectory
is weighted by

(63)

1 1

w; = M (66a) ?
when importance sampling is used. Note that w; = | for each trajectory é
when #° is given by equation (58). Because we have required that 2°(b) ‘i
be normalized so that B, (b = by.) — By (b = 0) is unity, one will find in 3
general that .

N

>w, ~ N (66b)

i=1 large N

The importance-sampling estimator for the reaction cross section is

o, = nb,f,ax Z w; (67)

G PAAPERAR 0 L e

with estimated error (for sufficiently large N)

1/ M 2712
Ao, ~ mb2, — I: Z w? _W< Y w,-> :l (68) ‘

i=1

It should be pointed out that the above procedure for importance
sampling always results in an unbiased estimator for the cross section but
is advantageous only if 2,/2° has a smaller variance than £, itsell. For
example, the importance-sampling function #%(b) = b,,,./2b is a poor
choice because of its unphysical behavior near b = 0. This leads to extremely
large weights for some trajectories and thus to a very uneven approach of
the calculated results to convergence. This sampling function leads to a
flat b distribution, i.e., equal probability of sampling any b rather than the
probability being proportional to b. In practice, when flat b sampling has
been employed it has usually been combined12:13:19:20:22) with a discrete ’
selection of the corresponding angular momentum J,,, given by g1 gct,eib/h,
but this does not eliminate the problems. We recommend that equation
(39) is generally a better way to give higher weights to small-b collisions
when that is appropriate.
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Equations (64)-(66) are easily generalized for the importance sampling
of variables other than (or in addition to) the impact parameter.

Another type of sampling which is often quite useful is stratified sam-
pling. In stratified sampling the unit hypercube is divided into subvolumes
{usually by hyperplanes perpendicular to the edges). Sampling is carried
out within each subvolume exactly as in crude Monte Carlo sampling, but
all subvolumes are not sampled equally densely.

As an example of stratified sampling consider partitioning the impact
parameter interval (0, b,,,,) into k., subintervals (b,_,, b,) where k goes
from 1 to kg, and by = 0. This partition corresponds to a division of the
unit hypercube by the (k. — 1) hyperplanes B, = B, = (bi/bmax)"’* Let
subvolume k, denoted by ¥, be defined as the subvolume characterized
by B, in the interval 8, , -, < f; < B, .. By design,

Kstrat
Z ¥, =1 (69)
k=1
The stratified-sampling analog of equation (41) is
Kstrat
(P> =) Vi (70a)
k=1
Kstrat N
~ Z ,;/“k rk (70b)
k=1 N,
with estimated error
k%l!"d\ N N p— Nr 1/2
ACPS z{ Sz “ﬂ‘k'f‘”k—)} (71)
k=1 Nk

where N,, and N, are subtotals of N, and N for the kth subvolume. Any
number of trajectories N; may be computed at random in the kth stratum,
but the estimated error in equation (71) is minimized for a fixed total
number of trajectories

Kstrat
N = Z L’Vk
k=1
when for each stratum k,5¥*
Nu{ Ny — Na\'"?
Ny x # 5 —2 —“——-") (72)
Nk Nrk[Vk

Alternatively we may ask: what is the optimum allocation of stratifica-
tion boundaries in the sense that all N, are equal for the optimum bound-
aries? Clearly, for impact parameter strata, the answer is that the bounda-

* This is a consequence of the Tschuprow-Neyman theorem.
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ries should correspond to an equipartition of the variable f, (b) as computed
by integrating equation (57) with the optimum £ (b). The generalization
to boundaries for the other f; is straightforward. Allocating trajectories to
the various strata according to equation (72) or using the strata which are
optimum for (£, ) may, however, defeat one of the very useful applications
of stratified sampling. As will be discussed in Section 2.6, stratified sampling
can be used to obtain greatly improved statistics on cross sections for
producing minor products or final-state distributions of any products in
regions of their final-state parameter space that are lightly populated if the
region of initial conditions leading to that product or that region of product
space can be identified. Equation (72) applies only to minimizing the error
of (2,> or of the cross section related to it by equation (25).

We conclude our discussion of stratified sampling by noting that
from equation (70)

(Po>=— ——— Ny (73a)

1 kstrar  Nx

N2 Z

k=1 i=1

A (B (73b)

This implies that the statistical weight of each trajectory in the kth stratum
is 7" N/N;.

2.5. Product Analysis

Once a trajectory is complete and a product diatomic molecule ten-
tatively identified, it is most convenient to transform to a new set of gener-
alized coordinates and momenta in which the Hamiltonian is asymptotically
separable, i.e.,

H(q,Q,p.P) ~ T.a(P) + Hy, (4, P) (74

Here ¢ and p’ are the coordinates and conjugate momenta for the product
diatomic molecule and Q’ and P’ are those for the relative motion of the
products. As the trajectory is integrated in the generalized coordinates
appropriate for reactants, {gq;, Q;, i, Pi; i = 1,2, 3}, it is necessary to derive
expressions for the product coordinates { ¢, Q}, pi, Pi;i = 1,2,3} in terms
of those for reactants. (Of course, if the product molecule is BC no trans-
formation is necessary.) This is accomplished in two steps:

(i) Derive expressions analogous to equation (4) for ¢ and Q' in terms
of the reference Cartesian coordinates, {x;;i = 1,9}. This defines the trans-
formation matrix T in the transformation

[g}=Tx (75)
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The matrix T is defined by equation (4) and

q
Q [=Tx (76)
S

Note T"is 6 x 9 but Tis 9 x 9. It should be pointed out that the conven-
tion for the scattering angle depends upon whether the relative motion
coordinate is taken to be the atom with respect to the center of mass of
the diatomic, or vice versa. If, as is often the case, the scattering angle is
to be defined as the angle between the final relative velocity of the species
which contains the (initially free) atom A and the incident direction of A,
then the sign of the right-hand side of (4b) should be changed for T’ but
not for T.

(ii) Find the inverse of the transformation defined by equation (76),
ie., find the inverse of the square matrix T; then

P
x=T'|Q (77a)
S
which upon substitution in equation (75) gives
, q
[q,]=TT-1 Q (77b)
Q S

the desired result. It does not matter thafi T’ is not a square matrix as its
inverse is not required. The new conjugate generalized momenta are
obtained from

pi=mg; (i=123) (78a)
Pi=pQ; (i=123) (78b)
where
q 1
[Q'] =TT @ (79)
S
and
1 .
qi =—"D; (l = 1, 25 3) (803)
Hpc
) 1
Q= P, (=123 (80b)
Ha,BC
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For the products AB + C, m is s and p is pc g For the products AC +
B. m is piac and p is pgac. The (6 x 9) matrix product T'T~! appropriate

for the transformation to collision products other than reactants is defined
by

g=—-—T 40, (i=123) (8la)

mg + M¢

mgM My

0i=-

Q:

Il

it 1,2,3) (8lb
(my + mg) (mg + mc)q my + mg ) @Y

for the products AB + C, and by

My

‘ii = ——qi - Qi (Z = 1, 2s 3) (823)
mg + mc
mcM mA o
;‘ = i + i 1= 132’ 3 82b
Q (my + mc)(mg + mc)q my + mCQ ( ) (82b)

for the products AC + B. Dissociative collisions producing A + B + C

may (for convenience) be analyzed in the reactant generalized coordinate
system.

Expressions for various quantities associated with collision products
in terms of the generalized coordinates and momenta appropriate for
reactants (the final values of which are known from the calculation of the
trajectory) are obtained from the relations given below by substitution of
the proper transformation [equations (4) for A + BC or A + B + C,
equations (81) for AB + C, or equations (82) for AC + B]. The scalar
diatomic internuclear separation is denoted by r (=[q -q']'/?) and the
diatomic potential energy, defined analogous to equation (14), is represented
by V;(r). A tilde is used to denote a quantity which is continuous according
to the expression given, but would be discrete according to quantum me-
chanics. Expressions derived for the AB + C products may be compared
to those given in Reference 5:

Total energy (conserved):

12 12
H =— P+ — 2+ V(R 83
2u ,»Z‘l 2m ,Z:l i’ (R(Q) (83)
Internal energy:
1 3
E/im - -‘2_’;; Z pi2 + VD(’) (84)
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[nternal angular momentum: -

Jo=qxp

(85a)

= (44205 — ¢5P2) & + (4530) — 41P5) &, + (q1p> — q>p1) & (85b)

Relative angular momentum:
~/

et = Q' x P
Total angular momentum (conserved):
Jo =T+ T
=qxp+Q xP
Relative velocity and relative speed:

1

Ve =—F
u

r

1 1 3 1/2
me=—wﬁvﬂ”:—< HO
l U u 2:1

Scattering angle:

’
-1 Veel * Vrel

0 = cos -
Urelvrel
where
PO
vrcl = e:
Ha BC

and v, is the initial relative velocity.

Diutomic vibrational and rotational energies:

3,7,
Eron min{ Vp(r) + > 1 — Vp(r,)
2mre )

—_ »/ \/
Lyib = &ing T Erot

where r, is the internuclear separation at the minimum of Vj,

(86)

(87a)
(87b)

(88a)

(88b)

(89a)

(89b)

(90a)

(90b)

Viplr, ) is the

classical zero of internal energy for the product molecule. and the minimum
of the effective potential Vy(r) + J,-J,/2mr? may be determined. for ex-

ample. using the Newton-Raphson iteration technique.

Diatomic rotational “quantum number™ (continuous):

j - % + é—[l + 4j;.j;//hz]1;2

On
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Diatomic vibrational “quantum number” (continuous):

Lo g J
= - = 4+ — {2m[£’im — Vp(r) — }} dar 92)

2 nmhj,. 2mr?

where r, are the diatomic turning points of the effective potential at the
energy &, and are determined using the Newton—Raphson iteration tech-
nique as in equations (13) and (20). The integral is evaluated using equa-
tions (21).

The definitions of the quantities in equations (83)—(88) are unambigu-
ous. We have already mentioned the arbitrary choice of direction for v,
which affects the definition of scattering angle. Diatomic vibrational and
rotational energies cannot be unambiguously defined. Various definitions
that make them sum to &, are acceptable in various circumstances; the
choice given in equations (90) seems reasonable for many purposes.* The
correspondence principle for rotational quantum number is also not unique;
the choice given in equation (91) is equivalent to J/> = j(j + 1)#* as
opposed to J;* = (j + 1/2)* h% The continuous “quantum numbers” j’ and
i’ are often rounded to the nearest integer value in making the corre-
spondence between the result of a trajectory calculation and the discrete
nature of the quantum-mechanical states of the product molecule. While
this is an extremely powerful procedure it should be exercised with caution,
especially in cases where rounding to a higher value places the product
in a “closed” (energetically forbidden) state.

After calculating each trajectory and analyzing the collision products,
it is quite useful to store certain information about that trajectory on some
mass storage device (tape, disk, etc.). Having the pertinent information
about each trajectory in such a form greatly facilitates the calculation of
reaction attributes (see the following section, 2.6) through the analysis of a
large number of trajectories. In fact, it is sometimes more convenient to
create two data files: one to be used in most of the data analysis which con-
tains only the more commonly used information (e.g., channel designation.
impact parameter, scattering angle, product internal state, final relative
velocity, etc.) and another which contains the initial and final coordinates
of each trajectory from which any additional information may be computed
at a later time if desired.

* Often it is best to define the rotational and vibrational energies in terms of the quantum-
mechanical eigenenergies of the states with discrete quantumn numbers n and j as assigned
by the histogram method. Then &, will be one of the allowed discrete product internal
energies. Optionally, v/, can then be adjusted for energy conservation but it is difficult and
almost always unnecessary to readjust all product variables in a consistent fashion this way.

b |
i
4
£

A4
%




A S P RS AT

Reactive Cross Sections: Quasi- and Semiclassical Methods 535

2.6. Calculation of Reaction Attributes

Having completed the calculation of a statistically significant sample
of trajectories and calculated a reactive scattering cross section using equa-
tions (43) and (44), or a state-selected rate constant using equations (45) and
{40), one is faced with the realization of having calculated far more informa-
tion than is represented by o, + Ag,, or k, + Ak,. The following discussion
focuses on extracting this additional information, calculated for individual
trajectories using the above formulas, from the trajectory data in a form
amenable to comparison with experiment.

2.6.1. Reactivity Functions

We use the term reactivity function to denote the probability of reac-
tion, or any other quantity derived from the reaction probability, as a
function of some reactant collision parameter. The opacity function, or
probability of reaction as a function of impact parameter, defined by
equation (50), is one example of a reactivity function. Another (closely
related) example is do,/db, defined by equation (53). Still another example
is the excitation function o,(E..;). We will limit our discussion to a few of
the more commonly used reactivity functions involving the impact param-
eter and collision energy. Other reactivity functions (e.g., the dependence
of reactivity upon reactant orientation or vibrational phase) may be ob-
tained in an analogous manner.

In constructing histogrammic representations of reactivity functions,
the proper specification of the “bins” into which the trajectory results are
to be sorted is intimately coupled to the manner in which initial values of
the collision parameters were selected. For reactivity as a function of initial
collision parameters, there is an a priori “best method™ for specifying the
bins assuming the initial conditions were selected optimally. We note that
the choice of sampling method implies some knowledge about the reaction
probability function #,. This same knowledge should be brought to bear
on the presentation of results; reactivity function histograms should be
constructed in a manner consistent with the sampling method.*%

Consider the histogrammic representation of the opacity function
2,(b). The initial selection of b(f,) according. to equation (42a) or (63)
implies some expected opacity function ¢, either equation (58) or (59).
respectively. To the extent that the choice of 2 (b) was optimal, the bins
of the histogrammic representation of #,(b) should correspond to an
equipartition of the variable g, (b).*? The following considerations will
make the meaning of this statement more clear. If #)(b) is defined by
equation (58), the values of the impact parameter corresponding to the
boundaries of the k.,,, bins are given by

by = (k/Kmax)*'? Brmax (k=0,....Kkn) (93a)
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In general, they are given by

s k
bk:b(ﬁl =ﬂlk)=b<:81:r) (k:09"‘~kmax) (93b)
The value of the opacity function in each bin may be calculated more than
one way. First one may use

Nrie Ni
Pox= Y wi/ Y ow (94a)
i=1 i=1

where %, is the average value of 2,,(b) for b in the kth bin (i.e., b,_; < b <
b,) when impact parameters in this range are properly sampled at random
from a distribution uniform in b, and where N,, and N, are the number
of reactive and total collisions, respectively, with impact parameter b in
the kth bin. The estimated error for each 2, is

1 1/2
APy ~ {F(W,k - ‘a]rgk)} [with 2, from (94a)]  (94b)
k

Note that if the expected opacity function is within a constant factor of the
true opacity function, each of the numerators on the right-hand side of
equation (94a) is approximately equal to N<{£.>/k... In this case each
bin accounts for roughly an equal fraction of the reactive cross section.
This is the sense in which the equipartition of the variable f,(b) was opti-
mum. Furthermore, we see that the optimum allocation of bins for reactivity
functions of collision parameters is closely related to the optimum alloca-
tion of strata for stratified sampling of collision parameters.

A second expression for 2, may be obtained by replacing the denom-
inator of equation (94a) by its converged value (which is not generally N,
when the weights are not all unity):

Ny original __ poriginal
1.k 1k—1
Z wip o~ Nk new new (953')
i=1 N large tk T Plrk-1
~  N(BYE™ — pYE™) (95b)

Nlarge
where f{#"! and ¥ are defined by equations (38a) and (57), respectively.
Thus

bZ Nrx

Pz e ot (96a)
N(by — bi-y)

with error estimate

b2 Nri 1 Nri 27172
A«? ~ max ',‘2 _ w; 96b
NG —bf-n[ 2" N(Z ) ] oo

i=1 i=1

Although equations (94a) and (96a) give the same results for infinite N,

o A .V&’ L
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one or the other may be more useful or more accurate in different calcula-
tions with finite N. Notice that if we take k., = 1, then #,, becomes
{2,». In this case equations (96a} and (96b) reduce to equations (67) and
(68), but equations (94a) and (94b) provide an alternative method of cal-
culation. In general it requires some judgment or a comparison of error
estimates to decide which formula to use in a specific case.

Consider now the histogrammic representation of the related function
do,/db, as defined by equation (54). We may define the expected function
[cf. equation (53)]

do, \°
") =2nb?°(b 97
| (2 <2 o
which, for #° defined by equation (58), is
Y <
do, _ 2nb, b < by, (98)
db 0, b > b«
Equation (54) may always be rewritten as
brax (dg,/db) [ do, \°
: o, = L&%( o \ db (99)
o (da,jdb)°\ db )
! which upon substitution of equations (57) and (97) becomes
! do,/db
b2 —L—d (100}
O T j o to,javp "

Again it is clear that, if the expected function (dg,/db)° is an accurate one,
the “best” impact parameter bins, in the sense that each bin contains an
equal fraction of the cross section, correspond to an equipartition of the
variable ;. The histogrammic representation of do,/db is derived from
equation (54) as follows. We write

-\ ke (B g
" g, = r “0121)
kgl J\bk—l db
K max do
b, — b ( ;) (101b)
Z (b = br-1) b /.
kmax  Nric
= rcb?m Z Z w; (102)
N k=1 i=

where (do,/db), is the average value of do,/db in the kth interval of b (ie.,
in [bi_, bi]). Equating equations (101) and (102) term by term gives(32-3%)

1 Nrrk
<CZ)’> ~ b_‘bﬂbL Z w; (103)
h Jk — b1 N5

Clearly, if one substitutes each (do,/db), into equation (10la) for

AR sttt . i AN . e A eSS .
2 0 oo




538

Donald G. Truhlar and James T. Muckerman

b, < b < b, and integrates, one obtains the correct value of the integral
as given by equation (67). The estimated error in each bin is given by

do nb} L[ A 1 [ N 272
A<—~'>z~——f’ﬁ‘———[2w~2 —— X w (104)
db (b — bi—y) NL i1 l N\:iS l
Other histogrammic distributions as functions of initial collision
parameters can be constructed in a similar fashion. Of course in some cases
one does not necessarily desire an equal contribution to the cross section
from each bin of a reactivity function, and then one should adjust the bound-
aries according to some alternative criterion.®?
Another reactivity parameter of interest when calculating k' is the
activation energy
. dlog ki
E(T) = o (105)
d(—1/RT)
This is the activation energy for a state-selected rate constant. By analogy
to the derivations for completely thermally averaged rate constants,*>>"
it can be shown to bet3#-3®

EZJ(T) = <Erel>rC:T - <Erel>ap;T (1063)
= <Erel>rc:T - <Erel>ac:T + %kT (106b)

where the subscripts rc, ap, and ac mean reactive collisions, all pairs, and
all collisions, respectively. The use of this definition of the activation energy
will be called the Tolman method. It yields a far more precise estimate of
that quantity than any algorithm involving differences in k%’ at different
temperatures.°%->® To apply equation (106) to a set of trajectory data at
some fixed temperature, the average values are evaluated by the Monte
Carlo method,

N N
Zi=rl WiEer Zi=1 Wikei

Eg.j ~ — + 3kT 107
Yeow Z?Ll Wi ’ 1o
?’; w; Ere i i‘vz Wi Ere i
o 2 1N, Li P L LT (107b)
i=1 W; N

For a sufficiently large number N of trajectories, the second term in both
equations (107a) and (107b) becomes 2kT. For the activation energy of
completely thermally averaged rate constants one must also compute the
average value of the internal energy for all reactions minus that for all
collisions. For N sufficiently large one will obtain the same results for the
averages over all collisions using Y _; w; as using N. But if importance
sampling is being used there may be a significant difference. This illustrates
the general principle that if importance sampling is used to accelerate the
convergence of one reaction attribute, e.g., (£, the convergence of others,

'
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in these examples (E . Duc: 1 OF {&€nac. » May be decelerated. The user of
these algorithms must therefore use discretion in deciding which results
are reliable and which are not.

2.6.2. Final-State Distributions

We subdivide the discussion of the analysis of final-state distributions
according to the number and type of variables involved, i.e., according to
whether the distribution is a function of one or two variables, and whether
the variables take on discrete values quantum mechanically or are really
continuous. More than two variables may be considered but such dis-
tributions are difficult to plot and usually suffer from poor statistics.

2.6.2.1. One Variable—Discrete. The discrete variables of interest in
product distributions are those corresponding to the quantized internal
states of the product molecule. It is of interest to calculate a reactive scatter-
ing cross section for collisions of some fixed vibrational-rotational state
(n,j) of the BC molecule producing some specific product state (',j’) or
group of product states (e.g., all states with a specific n’ irrespective of j').
For fixed E,.,, this is called a state-to-state cross section and for a thermal
distribution of E,., it is called a state-to-state rate constant. We will ex-
plicitly discuss state-to-state cross sections but the methods are also ap-
plicable to state-to-state rate constants and to final-state distributions
when the reactant states are completely thermal. The total reaction cross
section for producing arrangement ' may be decomposed as

Oy (Ecern ) =Y. Y 0,(n,j— o, 1, j'5 Erer) (108a)
n
=Y o0,(nj> o, n;EL) (108b)
=Y o0,0nj> o, jEea) (108c)
=

where the index o refers to the chemically distinct product molecules
(AB or AC). To calculate a histogrammic representation of a,(n.j — 1'.j’),
a.(nj— ), or a,(n j— j) for a given product, the continuous values of
i and j’ from equations (91) and (92) for each trajectory are first rounded to
the nearest integer value (as discussed above). The Boolean reaction prob-
ability function 2, is then redefined (for each trajectory) such that

1, for (o1, j), (o, ), or (&, j') equal to some
P, = preselected values (109)

r

0, otherwise

The state-to-state cross section and estimated error are then computed
using the same equations as for the total reaction cross section [e.g., using
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equations (43) and (44) for crude Monte Carlo sampling] except that N,
now represents the number of trajectories with 22, = 1 as defined by equa-
tion (109). N is still the total number of trajectories calculated. £stimated
relative errors, Ag,(n, j = o', 1, j')/o,(n, j — o, 1, j'), for state-to-state cross
sections are generally much larger than those for the total reactive scattering
cross section because N, is generally much smaller.

As an example, if we wish to compute the way in which the products
are distributed in their various vibrational states, we would “bin” the
product states generated from a set of N trajectories according to the
identity of the products (), and within each of these arrangement bins we
would further “bin” the trajectories according to the value of /i’ rounded
to the nearest integer. The result would be a one-variable (n') histogram
for each distinct product molecule.

Another method for calculating final-state distributions of variables
which quantum mechanically take on discrete values is classical P matrix
theory.(°-%% Because quantal rotational energies are more closely spaced
than vibrational energies, the histogram method is more justified for assign-
ing j’ than for assigning n’. It may be useful to use the histogram method for
assigning j’ and classical P matrix theory to assign n". To do this we write
the state-to-state cross section as (suppressing the index «')

Gr(n’.j - n/»j,; Erel) = Gr(n’.j —“’.1/1 Erel) Pn’(n’.);-’j/; Erel) (110)

where o,(n,j — j'; E,) is computed by the histogram method as described
above and P,.(n,j-— j'; E,,) is the probability that collisions with initial
conditions n, j, and E,., and final rotational quantum number j* should be
assigned final vibrational quantum number »’. Define moments of the
final vibrational quantum number n’ for such collisions by

Yo ()" a,(nj— ', j  Ere)
Yoo 0, (n,j— 1, 5 Eral)
S ()" Pyl J's Eve)
C X Pu(nj— i Ere)
where n[,,,, is the maximum value allowed by conservation of total energy.
These moments may be approximated from the trajectories as an average

over the N,; trajectories which are assigned final rotational quantum
number j as follows:

LHY" > (nj—j5 Ee) =

(111)

(112)

Mo (A" w;
>N wy
Then the classical P matrix theory prescribes that the quantities P, (n,j — j;
E..) .be given by the least-biased estimate in the information-theory sense
consistent with the constraints that the probabilities sum to one and
that the first N, ., moments (m=1,2,..., Npom) of equation (112) are equal
to the first N, moments of equation (113). A least-biased estimate in the

<(ﬁ/)m> (nsj——’j/;Erel) = (113)
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information-theory sense is one that maximizes the information-theory
entropy of the distribution. For a probability distribution P, the informa-
tion-theory entropy is'®®

Mmax P,
I=-K ZP,,,ln<PO> (114)
n'=0 n’

where PO is an a priori probability and where K is a constant. For the
present problem, maximization of the information-theory entropy subject
to the constraints yields

_ Py exp[ =Y mmep An(n' )]
T Yy Py oexp[— Y oA, (n )]

where the arguments (n, j - j’; E.;) have been suppressed on P,., P9,
and 4,. The quantities 4, are Lagrange multipliers whose values are
found by using the trajectory results [equation (113)] on the left side of
equation (112) and substituting equation (115) on the right side of equation
(112). This gives N, simultaneous nonlinear equations for N, Lagrange
multipliers. .
The above description shows that a complete specification of the algo-
rithm requires specifying N, and the prior probabilities Py. There are
three approaches to each of these choices. For N, one might try to use
(i) the value that would make the classical P matrix predictions be most
accurate as compared to a quantum-mechanical calculation,®®:¢® (i) the
minimum value required to reach a region of stability of the information-
theory entropy with respect to increasing Npom.\®%®> or (iii) some fixed
small value such as 1, 2, or 3.¢°1'%% Choice (i) requires theoretical considera-
tions of how many classical moments might be accurate as compared to
quantum-mechanical ones.‘®® The other choices have the disadvantage that
inaccurate classical moments might be used or accurate classical moments
might be unused. The choice of N, is not independent of the choice of
a priori probabilities. There are four approaches to this choice. The original
one was to use the statistical phase-space theory®®-®” predictions as the
a priori probability.°®-°® This has the advantage that every individual
quantum state allowed by energy and angular momentum conservation
has the same weight. Including angular momentum conservation requires
a model so it might be neglected. Then for the present problem Py is pro-
portional to the sum of the degeneracies of all energetically allowed rota-
tional states of vibrational level . The second choice is Pp = 10103
which coincides with the first choice for collinear collisions. The third choice
of a priori probabilities is the microcanonical statistical thermodynamic
one'®®-¢® which allows information-theory entropy to be treated like statis-
tical mechanical entropy.®® Fourthly, we might use a model for pp.©2:03
Atabek and Lefebvre used N, in the range 1-3 and two sets of Py to
predict the final vibrational distribution of CN in the photodissociation of

P

(115)
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ICN. They found for that problem that for N, = 2, the results are fairly
insensitive to either the a priori probabilities or N n; the information-
theory entropy and the larger probabilities become invariant to varying
either. The classical P matrix approach is recommended for consideration
because it is capable of much better accuracy than the histogram method
for final vibrational state distributions. But the optimal choices for N
and the a priori probabilities are not clear at this time and are subjects
for further research.

2.6.2.2. One Variable—Continuous. As the choice of sampling method
for initial conditions does not necessarily imply any knowledge of dis-
tributions of product state variables (e.g., scattering angle, final relative
velocity, etc.), there is no a priori method for binning the final values of
these variables to achieve the maximum resolution of their distributions.
However, one extremely useful technique for obtaining histogrammic re-
presentations of product state distributions is to construct “bins” such that
each bin contains an equal volume of phase space.”® This uniform phase
space (UPS) method for constructing histograms is applicable to any
number of discrete and/or continuous variables. The basic premise of the
UPS method is that having no a priori knowledge of a distribution is equiva-
lent to “expecting” the distribution to be uniformly spread over all the avail-
able phase space, and that in the absence of such knowledge the histogram-
mic representation should be constructed according to this expectation.’?
Of course as soon as some trajectories have been computed one can make
a more knowledgeable estimate of the shape of the distribution, and one
may find that it differs significantly from the uniform distribution. If so,
then the UPS prescription for binning may be inappropriate. For example,
because of vibrational population inversion in the products, the distri-
bution of final relative velocities for an exoergic reaction is often peaked
at a value corresponding to a low fraction of the total available energy being
in translation; but a uniform phase-space distribution is peaked at high
final relative velocity. Thus the UPS prescription corresponds to large
bins at low v,,; and small bins at high v}, but a more optimum presentation
of the results would involve small bins at low v}, and large bins at high
Uie;- The systematics of choosing bin sizes so that all bins contain the same
number of reactive trajectories or so that all bins contain the same fraction
of the total cross section are presented elsewhere.®? In this chapter we
present a detailed treatment only for the UPS prescription for binning
trajectories. This illustrates the general techniques, but as just discussed
it is not always the preferred method for binning.

Consider the distribution g(y), where 7 is some continuous product
variable, which is related to the total reaction cross section by

do,
dy

gy = (116a)

PR
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LC.,

o, = f g dy (116b)
_ J 90 oy (116c)
v PO

min

Here p(y) is the density of phase space along the y coordinate’® and is
assumed to have the normalization

j p(dy =1 (117)

Vmin

Equation (116¢c) may be rewritten as

1
o, = f 9(0) du (118)
0
where
g(u) = g—(—y—) (119)
p()
and
du = p(y)dy (120)

Equal increments of the transformed variable

u=j du =J p(y)dy (121)

0

7min

contain equal volumes of phase space. If the density of products were uni-
formly distributed over all allowed phase space, the distribution g(u) would
be a constant. In such a case, if the variable y(u) were binned in equal
increments of u, then g,Ay,, where g, = {(g(7)>x, would be identical for
each (in general, nonuniform) interval Ay,. In fact, any deviation {rom a
uniform (flat) distribution g(u), or equal volumes (areas) in the bars of the
histogram g, vs. y, reflects a dynamical preference for certain regions of
phase space and is directly related to the dynamical information contained
in the distribution.”%’" The UPS method will now be used to derive ex-
pressions for histogrammic representations of several common product
state distributions.

The solid-angle differential reaction cross section d*a,/dQ is related
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to the integral reaction cross section by

4n dzg
o, = J L aQ (122a)
o dQ
4 (d*o,/dQ)
- j @0, /dY | a0 (122b)
(%)
Taking p(Q) = 1/4x yields
Vd’c
=4 d 123
g, T JO 0 u (123)
where (using the cylindrically symmetric dQ = 2z sin8 df)
du = p(Q)dQ = p(6)do (124)
= 3sin6 do (125)
Therefore,
u=31(1 — cosb) (126)
The UPS partition of 6 is then given by
—1 kmax -2k |
0, =cos™ ' — (k=0,..., kpa) (127)

max

An expression for d?g,/dQ, is derived as follows. Equation (123) is rewritien
over the partition of 6 given by equation (127) and equated to the Monte
Carlo expression for the integral reaction cross section over the same
partition,

kmux k/kmux dzo'
g, = 4n " du (128a)

k; J = D 42

4 ko [d2g
= ! 128b
kmax kgl < dQ > k ( )
1 Komax  Nrk

~ 7b? Yoy ow (128c)

max g
NE 5

where (d’6,/dQ), is the average value of (dc,/dQ) in the kth interval of u.
Equating equations (128b) and (128¢) term by term gives the desired re-

Sult(52.72)
dz Gr > kmaxb;ax 1 A'rk
>~ — Wy 129
< aQ /. 4 N 1:21 (129)

et
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The estimated error is given by

dzo. k b2 1 Nrk 1 Nk 27172
A _._l’ ~ max*~ max . 2 o ) 130
<d9>k 4 N[,-;W‘ N(-Z W’) ] 10

i=1

The polar differential reactive scattering cross section, (do,/df), is
related to o, and d%a,/dQ by

"9 4 (131)
g, =
r= ], 40
and
dz
% ~ 2nsinf dg' (132)

As indicated by equation (122b), the density of phase space is not uniform
along the 8 coordinate. If the integral in equation (131) is partitioned ac-
cording to equation (127), then each interval of 6 will contain the same
volume of phase space. Hence

kmax O da-

o = " i (133)
DN

~ kf,x 0 — 0 )<d0,> (134)

& k AT )

kmax Nrk

= b2 Y 3w (135)
k=1 i=1

where (do,/d0, is the average value of do,/df in the interval [0,_,.0,].
Equating equations (134) and (135) term by term yields®*?

2 Nrr
<@> UL L (136)
do /[ Oy — by N5y

The estimated error is given by

2 Nei Ny 2712
A do,\ _ __“EHLL[ y Wg_l( ¥ w,.> ] (137)
do /4 ()k—ok—l NL:S N\i=1

For differential scattering cross sections we have just seen that the
UPS criterion suggests that histogrammic boundaries should correspond
to equal intervals of cos @ rather than equal intervals of 8. The use of equal
intervals of cos rather than 0 has also been suggested 72 on the grounds
that such bins contain equal fractions of the available 4z sr of solid angle.
But the argument involving equal fractions of the available phase space
is more general and can also be applied to other kinds of product dis-
tributions. For example, consider the relative translational degree of free-

ittt
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dom of the products. The continuous variable under consideration here
could be the final relative translational energy E.. or final relative speed
Uy- We may define fp. = Ei)/E ., and f, = v,;/V max a8 the fractions of
could be the final relative translational energy E.., or final relative speed
respectively, which are related by fz = f2. The densities of phase space
along the coordinates fz. and f,. are rather complicated to specify ex-
actly, but in the limit of classical (continuous) vibrational and rotational
energies for a rigid-rotor harmonic oscillator (RRHO), which should re-
semble a real system well enough for the purpose of constructing bins of
a histogram, the phase-space densities are®3-79

p(fe) = Bf (1~ fp) (138)
p(f) =200 =f2) (139)
It is easily shown that!"?®
Zp =2, =z (140)
where
e
ze = f p(fe) dfe (141)
S
Zy = Jo p(fo)dfy (142)

This unique translational variable, along which equal increments represent
equal volumes of phase space, may be written in terms of either f;. or f,. as

2= 30 - 1) (143)

or
z=3f3(1L=3f3) (144)

To calculate a UPS histogrammic representation of, say, do,/dv,,, one
constructs an equipartition of the uniform variable z and finds by inter-
polation of equation (144) the value of f,., corresponding to each z,. As
the function z(f,) has an inflection point at f,, = 1/2!/2, this point is a
good initial guess when using the Newton-Raphson method for the inter-
polation. The final-relative-speed bins are then defined by ve1 s = Usarfo k-
The desired result is then obtained by analyzing

Vimax do‘
o, = f ——dU,g; (145)
0 durel

analogous to the way equations (134) and (135) were analyzed. The resuit

is52)
dar nbrzﬂﬂx 1 Nrk
v = /————— — w; (146)
Uret /& Uretk = Vrerk—1 N =1
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with estimated error

d b2 1 Ny 1 Nk 270172
A( G) z,—”—“‘“f——[zwf——<zwi> ] (147)
dvrel k Urelk — VUrel,k—1 N i=1 N i=1

It is also possible (and, in some cases, more appropriate) to treat vy as a
discrete variable resulting from the quantized (1, j’) internal states of the
product diatomic molecule.”"%7?

Other histogrammic distributions as functions of a single continuous
variable may be derived in a similar fashion. In addition, if one has some
knowledge of the product distribution (on general grounds or by having
already calculated some trajectories) one may generalize the treatment
given above by replacing p(y) by a more appropriate function.

An alternative way to calculate continuous distributions of product
variables is to expand them in a set of functions and determine the expansion
coefficients by moment methods.??-7%7® The most convenient functions
are the natural orthogonal functions for the interval involved. We present
here the details only for final angular distributions; extension of the method
to other continuous distributions proceeds analogously. In addition the
extension to recoil velocity distributions will be clear from the treatment of
joint distributions.

Just as for histogram methods, it is recommended first to transform to
an appropriate variable u such that, e.g., equal increments of u correspond to
equal volumes of phase space. For angular distributions the variable u is
given by equation (126). Angular distributions are defined on a finite interval
so the convenient orthogonal polynomials are the Legendre polynomials.
They are usually defined on the interval —1 < @ < | so we make a linear
transformation

ii = Au+ B (148)

to a variable # which has this range and is therefore a more convenient
argument for Legendre polynomials but, since the transformation is linear,
still provides a UPS representation. This yields

i = cosf (149)
We recall the following important properties of the Legendre polynomials:
Po@) =1 (150)
Py@=ua (151)
P (@) = (21 + DYaP, (@ — IP_, (@ (152)
: .
J_le(a) Py (i) = 212‘1”'1 (153)

So it is convenient to define normalized Legendre polynomials by

Py = [ + 1/2]'?P,@) (154)
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Then the differential reaction cross section per unit solid angle is expanded
as

d*o,
dQ

and the expansion coefficients are determined by the usual method of
multiplying both sides by one normalized Legendre polynomial and in-
tegrating. This gives

UT J =4 ~
=52 Z d, P, (%) (155)
2n 5

2n (1 d%e, .

d, = G_r B P,(7) dii (156)
1 (' do, _
=— — P, (i) dii (157)
6,) -, di
[«
-1 Jpl (@) do, (158)
ar

If 5, and the last integral are both evaluated from the same sample of
trajectories, this becomes

N, Ny
drl = z Pl(ﬁl) ‘Vi/ Z w; (159)
i=1

i=1

where the sums are over the N, trajectories which yield the product of in-
terest. Substitution of equation (159) into equation (155) yields the desired
result except that one must decide what upper limit to use in equation (155).
For exact values of the d,,, the limits should be 0 to co. But for the Monte
Carlo values of d,; given by equation (159) it is best not to include the highest
[ values in the sum. If the values of / used are too high, the computed dif-
ferential cross section will exhibit meaningless statistical noise. It is recom-
mended for working purpcses to use only those terms for which d,; is
reasonably well converged with respect to increasing the number N of
trajectories run. This provides an appropriately smoothed analytic repre-
sentation of d?a,/dQ. If desired, the differential reaction cross section per
unit polar angle may then be obtained from it by equation (132) as before.

When using the moment method one does not get as convenient an
error estimate for the differential cross section as one gets for the differential
cross section averaged over a bin width in the histogram method. But one
does get an analytic smoothed result as a compensating advantage. The
differential cross section computed by the moment method must be checked
both with respect to increasing [, and increasing N. If [, is increased
indefinitely for fixed N, the result will tend to a sequence of delta functions
at the set of N, scattering angles. But for large enough N, there should be a
region of stability where the result is insensitive to increasing /_,,. This
result is the actual differential cross section. Distributions computed with
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smaller [_,, and smaller N are approximate smoothed versions of this
converged result. It is not possible to give a universal recommendation for
how far the result should be converged with respect to increasing /.,
{always including only terms reasonably well converged with respect to
increasing N) and increasing N (to converge better the individual terms).
These decisions depend on the use to which the calculation will be put.

2.6.2.3. Two Variables— Discrete, Continuous, and Mixed. Provided the
two variables are separable, the construction of histogrammic representa-
tions of distributions of two variables is an obvious generalization of the
one-variable cases discussed above.* Only one example need be given here.
Consider the distribution d3g,/dQ dv., in velocity—angle space. The defining
relation is

n Y max d3a,
0, =2m ———sinf df dv,, (160)
0JO dQ Urel
which may be rewritten in terms of the UPS angle variable u as
N A
o, =4n —————du duf (161)
0Jo dQdv

If boundaries {u;} are defined by an equipartition of u, and boundaries
{t}ex) are defined by an equipartition of the UPS translational variable
z, then

Joax kmax (4 Vrel k d30. d o (167)
=4 U AV 2
o . Zl kgl \[u-_ v dQ durel :
J-1 Prelk—1
47[ Jmax  Kmax d30
= < > (Vreik = Vretk—1) (163)
Jmax Jj=1 k=1 de Utel

~ Z z Z w; (164\

N j=1 k=1 i=1

where N, is the number of reactive trajectories which produced a product
in the jth angle bin and the kth velocity bin. The final expresion is©?’

3 . 2 1 Nrjx
< d’o > ~ Jmaxbmax o Z W, (165)
dQ dl'rel 4(U/rel.k - U/rel,k-l) N i=1

with estimated error

3 ; 2 Nrjk 1 Nrjk 212
A d ag, ~ Jln.lxbmux l Z wiz _— ( Z Wy > } (] 66)
dQdvi 4k — Vrax-1) NLi=1 N\i=h

Unless a very large sample of trajectories has been computed, the N, ; for

* The case of nonseparable variables is treated elsewhere.”?
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most (j, k) bins will generally be quite small, resulting in large relative errors.
Distributions which are functions of two or more variables can also
be calculated by moment methods. We will illustrate this only for one
important distribution—molecular-beam, velocity-angle maps. The ex-
tension to other cases proceeds analogously. The quantity to be calculated
is the double differential reaction cross section d3a, / dQ dv,,;, where v}, is
final relative speed. For a fixed initial energy, v/, is confined to a finite
interval from zero to a maximum value determined by conservation of
total energy. Just as for histograms of final relative velocity we first trans-
form to the variable which provides a UPS representation. Then, since the
conventional finite interval for orthogonal polynomials is —1 < Z < 1, we
transform to a new UPS variable defined on this range. This yields

F=5f0(1—-2f2) -1 (167)
Then the triple differential reaction cross section is expanded as

o, _ 0 Y Y P (2) Pi(@) (168)
do, _ o 5
dQdv,, 2m 4 5 MR

where i is cos f as in Section 2.6.2.2. Multiplying both sides of this equation
by a product of normalized Legendre polynomials and integrating yields

2n (1 (Y d’e, -
dyy = - J_l J_ ey P, (3) P, (1) dZ dia (169)
1 1 1 dZG_ - ~ ds \
=— ~P.(2) Py(ii dz dii 170
J,J_lj_ldﬁdf < l(u)dv;e, i (170)
O . iz
=—JPk(2)Pz(ﬁ) ‘,Z do (171)
Oy dvrel

If 6, and the last integral are both evaluated from the same sample of tra-
jectories, this becomes

N B oen s dZ
i<y Pe(Z) Pl(”i);,_

~ rel
drkl = N,
i=1W;

w;

Urot = Uiers (172)

where the Jacobian will be considered below and the sums are over the
N, trajectories which yield the product of interest. Substitution of equation
(172) into equation (168) yields the desired result. As for angular distribu-
tions one must decide what upper limits to use in the sums. Again we recom-
mend that only converged coefficients be used in the sums. This automatically
smooths out statistical noise.

Equation (172) involves a Jacobian which can be evaluated analytically
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for each trajectory. It equals

dz 15 |
- =Zy—f31(1—f§r) (173)
rel max

where we have used equation (141) and the definitions preceding equa-
tion (138).

Finally, we mention that moment methods are also very convenient
for calculating quantities such as the mean final relative velocity as a func-
tion of scattering angle or the mean component of product rotational
angular momentum along some axis as a function of scattering angle.
Details are in the literature.?

We have explicitly discussed only the case of two continuous final
variables. One could also consider two discrete final variables, e.g., n' and
Jj’, or a mixed pair. e.g., j’ and 0. The application of the above techniques
to such cases is straightforward.

2.6.3. Initial-State-Final-State Correlations

Another application of the above techniques is to calculate initial-
state—final-state correlations. An example is the average product rotational
angular momentum as a function of reactant orbital angular momentum
129 Another example is the average value of [ as a function of scattering
angle.*” More complicated examples would be the distribution of product
rotational angular momentum as a function of /, the distribution of  as a
function of scattering angle, or the distribution of scattering angle as a func-
tion of .27 These kinds of results can all be obtained efficiently by various
combinations of the techniques explained above.

2.7. Available Programs

The Quantum Chemistry Program Exchange (QCPE) has four com-
puter programs (QCPE Nos. 229, 248, 273, and 316) for carrying out
trajectory calculations on reactive atom—diatom collisions. Although they
do not incorporate all the most recommended techniques described in this
section, they may be convenient for some trajectory studies where the use
of the optimal techniques is not of the utmost importance.

All four programs are written in single-precision FORTRAN iv. Program
248 is an expanded version of program 229. Program 229 is the program
used for one of the author’s trajectory studies'-**-’* on the F + H,. HD.
and D, systems. Program 316 is a version of program 273 that is suitable
for use on minicomputers; thus it is less efficient than 273 when used on large
computers. Program 273 is, in the words of the manual a program “ex-
pressly intended for easy transferability between computers and for use by
people who may be unfamiliar with the numerical techniques involved.”
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Table 2. QCPE Trajectory Codes

Number of
Number Authors Name symbolic cards
229 J. T. Muckerman CLASTR: Monte Carlo quasiclassical 2000
trajectory program
248 D. G. Hopper CTAMYM: Modification of the 3000
atomic—diatomic quasiclassical
trajectory program CLASTR
273 S. Chapman, D.L. A + BC: General trajectory 1225
Bunker, and program
A. Gelb
316 S. Chapman, K.R. MINIT A + BC: Minicomputer 1500
Wright, D. L. adapted version of the QCPE
Bunker. A. Gelb, # 273 general trajectory program

and J. Santamaria

It includes several options and is probably to be most recommended for
general purposes. The program writers and the names and sizes of the
programs are given in Table 2. Further documentation and/or the pro-
grams themselves may be ordered for small fees from QCPE (Chemistry
Department, Indiana University, Bloomington, Indiana).

3. Other Trajectory Methods for Single-Surface Reactions

The quasiclassical trajectory method discussed in Section 2 is unsym-
metrical in the way it treats initial and final states. Initial vibrational and
rotational energies or actions are quantized exactly,* but final states are
quantized by histogram or moment methods, if at all. Thus cross sections
and rate constants calculated by the quasiclassical trajectory method do
not satisfy detailed balance and time-reversal requirements.”’> It has been
suggested that more accurate quasiclassical histogram results can be ob-
tained for some state-to-state cross sections by quantizing the actions in
the final state rather than the initial one.”® This involves running tra-
jectories on the reverse reaction using the procedures of Section 2 to cal-
culate the reverse state-to-state cross section. The state-to-state cross
section of original interest is calculated from the detailed balance relation
which relates the exact forward and reverse state-to-state cross sec-
tions. This is called the quasiclassical trajectory reverse histogram
(QCTRH) method, and the original method may be called the quasiclassical
trajectory forward histogram (QCTFH) method. The QCTRH region may be
useful in some cases near thresholds for a given state-to-state process. but

* Some workers also quantize the initial orbital angular momentum / of relative translational
motion, but there is usually no good reason to do this.
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it is hard to decide for a given case which method is more accurate.®%77
We recommend that if QCTRH calculations are done they not be considered,
without further evidence, as probably more accurate than the QCTFH calcu-
lations. Rather any large difference of the QCTRH results from the QCTFH
results should be considered as a warning that perhaps neither is reliable.

There are also some techniques which do treat initial and final states
more symmetrically. These are discussed in the rest of this section.

3.1. Unquantized Initial and Final Conditions

When one is interested in thermally averaged reaction rates rather
than state-to-state rates or cross sections, it may not be necessary to use
the quasiclassical quantization procedures of Section 2. In some cases, for
example, for all the atoms heavy, equivalent results may be obtained if one
treats the initial rotational and vibrational energies purely classically and,
for thermal averaging, samples from a classical continuous Boltzmann
distribution instead of a quantum discrete one. This may be called the
forward classical trajectory method. If the problem of interest allows one
to forego the quasiclassical quantization, then one can use the Liouville
theorem to make the calculation more efficient by beginning the trajectories
in a transition region instead of the reactant region. Liouville’s theorem
states that probability density is conserved along phase-space trajecto-
ries.”® Therefore, in the absence of transition-region trajectories which
never reach reactants or products, a classical equilibrium distribution of
reactant and product states implies an equilibrium distribution at the
transition region. This is rather obvious, but it has caused some confusion.
Some workers have argued that this cannot be true because if a batch of
trajectories sampled from an equilibrium distribution in the reactant region
(where the reactant atom is not interacting with the molecule) is followed to
a dividing surface in the region where all the atoms are interacting. a non-
equilibrium distribution is obtained there. But this should be expected
because the batch sampled does not contain those interaction-region tra-
jectories which began in the product region. Further, if the trajectories
are stopped when they first reach the dividing surface, one will be missing
those interaction-region trajectories which started as reactants. have reached
the dividing surface at least once previously, and are returning to it T-hus
to obtain the thermal reaction rate by sampling in the interaction region,
one can sample from an equilibrium distribution along the dividing surface.
but one must count only those trajectories which originated from reactants
and which proceed directly to products without recrossing the dividing
surface. Alternatively, one could count only those trajectories which arrived
directly from reactants (without previously crossing the dividing surface)
and which eventually proceed to products. But there may be more compu-
tational advantage in one formulation than the other. In the formulation
given second one must integrate every sampled trajectory forward until it
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reaches one of the asymptotic regions, but one needs to integrate trajec-
tories backward only until they recross the dividing surface or reach the
reactant region. In the formulation given first one needs to integrate every
trajectory backwards until it reaches an asymptotic region, but one can
stop the forward integration if a trajectory recrosses the dividing surface.
This method is called the combined phase-space—trajectory (CPST) method.
It was developed and applied by Keck,”?-*!) has been applied most ex-
tensively to atom-molecule reactions by Anderson and co-workers, -84
and has also been discussed by Mayer®> and Miller.®® In this method
the equilibrium reaction rate constant k.(T) is given by the product
k,(S, T)E(S, T), where k,(S, T) is the one-way equilibrium rate constant at
temperature T for flow of phase points through the dividing surface S
which separates reactants and products, and £(S, T) is the fraction of tra-
jectories, sampled from a Boltzmann distribution along the surface S at
temperature T, which initiated as reactants and proceed directly to prod-
ucts.* If S is placed in the reactant region this yields the classical trajectory
method mentioned in the first two sentences of this paragraph. This has
the advantage that k,(S, T) is very easy to calculate and unweighted
sampling may be done by general methods, as in Section 2. If S is in the
interaction region, however, one may gain the computational advantage
that (S, T) is much larger. But k,(S, T) and the distributions to be sampled
need to be recalculated for every new choice of S. For processes with small
rates the calculation may be economically prohibited if trajectories are
sampled in the reactant region. But the higher efficiency of the CPST
method opens these systems to the possibility of trajectory analysis.

Since the converged results of the CPST method are necessarily iden-
tical to the converged results of a classical trajectory calculation with
sampling in the reactant region, one may calculate product distributions,
using the methods of Section 1. By applying “product analysis™ to the
reactant end of the trajectory too, one may also calculate reactivity func-
tions and reactant—product correlations. If state-to-state cross sections or
rates are not needed and effects of initial- or final-state quantization are

not important, the CPST method should be considered whenever the

inefficiency of sampling in the reactant region is a serious problem.

3.2. Symmetrically Averaged Initial and Final Conditions

It was mentioned at the end of Section 3.1 that one could sample tra-
jectories in the interaction region. integrate both forward and backward,
and apply “product analysis” techniques to both ends of the trajectories.

* Alternatively, one may sample from a surface dividing reactants and products, integrate in
both directions, and sum the quantity

(/2 (N + )71 1 + (_])NL“

where N7 is the number of additional crossings of the []th trajectory as time runs in both
directions.!7%:59
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For example, one could calculate state-to-state rate constants by applying
the histogram method to both ends of the trajectory. One could calculate
the same kind of approximation to the state-to-state rate constants by
starting the trajectories at one end and averaging the initial conditions
over a histogram interval instead of fixing them at the center as in the quasi-
classical trajectory method. By sampling in the reactant region this way
one can also calculate state-to-state cross sections. This is called the sym-
metrically averaged classical trajectory method.!”3:86-88) t has not been
applied widely, and the few results have not been encouraging. While this
method has the advantage over the quasiclassical trajectory method that it
can be carried out in such a way as to satisfy detailed balance, it has the
disadvantage that it appears to be less accurate. Apparently quasiclassical
quantization of at least one end of the trajectories is an important element
in the correspondence of trajectory results with state-to-state cross sections.
The symmetrically averaged classical trajectory method is not recommended.

3.3. Exactly Quantized Initial and Final Conditions

Another way to eliminate the asymmetry of the methods of Section 2
is to calculate all results using only trajectories which satisfy the double-
ended quantized boundary conditions. If this is done without including
any interference effect,t it yields what has variously been called the classical
limit or the classical-semiclassical method.?:°0-89-°2 The quasiclassical
trajectories already satisfy the quantized boundary conditions in the
reactant channel, but imposition of such boundary conditions on the
products requires a root search. Having found these root trajectories. the
state-to-state cross sections may be calculated from the Jacobian deter-
minant D of the final quantized action variables with respect to the initial
values of the angle variables conjugate to the corresponding reactant action
variables.2-°1°2 However, it has been shown both on general grounds”®
and by computational examples®® that this method is not more accurate
than the quasiclassical trajectory histogram method. Since (because of the
root search) it is also more difficult computationally, it is not recommended.

3.4. Classical S Matrix Theory and Other Semiclassical Methods
That Include Interference Effects

In this section we discuss a few methods for incorporating more
quantum effects into trajectory calculations. In particular the methods
discussed here all incorporate some effects due to the phase of the quantum-
mechanical wave function. i.e., interference effects, and they also allow for
the treatment of muitidimensional tunneling effects. They have not been
demonstrated to be practical for three-dimensional reactive scattering cal-

t Interference effects are discussed in the following section, 3.4.
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culations, and we are not recommending them for such. But they provide
valuable insight into the reasons for the successes and failures of simpler
trajectory techniques, and they provide a language for discussion of semi-
classical and quantum corrections to these techniques. For these reasons
we recommend the study of these methods.

The first method is the classical S matrix theory,>:#2-°? also called
exact semiclassical theory.®® Using the root trajectories of Section 3.3,
which satisfy double-ended quantized boundary conditions, one calculates
a phase along each trajectory. The phase is an action integral computed
from the local momenta and is basically the number of de Broglic wave-
lenghts in the trajectory divided by 27. Each root trajectory j contributes
an amplitude D}'?¢'%, where D, is the Jacobian determinant and ¢; the
phase. Adding amplitudes of all root trajectories for a given-state-to-state
transition and then squaring gives what is called the primitive semiclassical
approximation of classical S matrix theory. Because amplitudes are added,
interference effects are included. If there are no root trajectories for a given
state-to-state process then the state-to-state transition is said to be classi-
cally forbidden or classically inaccessible. A state-to-state process for which
the quasiclassical trajectory histogram methods, either forward or reverse,
yield zero is always classically forbidden. But the converse is not true. If a
state-to-state process is classically forbidden, one may still always find
solutions to the classical equations of motion which satisfy the double-
ended quantized boundary conditions by letting the time step be a complex
number in the numerical integration. This causes the coordinates, momenta,
and phase to become complex valued (i.c., have a nonzero imaginary part)
during the trajectory although, to satisfy physical boundary conditions at
the end of the trajectory, the positions and coordinates must all become real
valued again at the end of the trajectory. This requirement is sometimes
associated with computational instabilities. The instabilities must be re-
lieved by judicious choice of path through the complex t plane. This free-
dom of choice exists because the final values of coordinates, momenta, and
phases are independent of the path chosen as long as no branch lines of the
trajectory are crossed.®!) For complex time paths, the phase is complex
and the physically interesting solutions have |e'”’| < 1, often << 1. Thus the
contribution of complex-valued trajectories to the cross section for a
state-to-state process is exponentially small. This procedure is called the
analytic continuation of classical mechanics and it provides a muitidimen-
sional generalization for classically forbidden transitions of the tunneling
picture for one-dimensional barrier penetrations. When any real-valued
root trajectories contribute to a particular state-to-state cross section,
their contributions will often but not always dominate the contributions
of complex-valued trajectories. For practical applications to real problems
it 1s difficult to know whether or not one has found all the significant root
trajectories, especially the complex ones. Another serious problem is that
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usually, and especially in threshold regions for the state-to-state process of
interest, accurate numerical results can be obtained only by using a uni-
formized expression (rather than a simple sum) to add the amplitudes of
the root trajectories.®®-9%-24-*") The appropriate uniformized expression
may be special to each new case, and at this time no straightforward gen-
eral way to derive the appropriate uniformized expressions for new cases
is known. An additional difficulty in applying uniformized expressions is
that they require absolute phase differences, including the phase differences
coming from D}/2, but phase differences are easier to calculate modulo 7.°®

Although, as mentioned above, it is generally impractical to apply the
classical S matrix theory to real problems, the theory does help one to
understand the limitations of the quasiclassical trajectory histogram meth-
od. The quasiclassical trajectory histogram method can be derived as a
suitable average of the primitive semiclassical method with real-valued
trajectories when applied to an observable which does not correspond to a
completely specified (including a component of rotational angular momen-
tum) final state or which involves some averaging over initial conditions.®®®
But for classically forbidden processes or threshold regions, the analytically
continued trajectories and the phase information are crucial aspects of
the problem which must be included for quantitative results.

An alternative approach to semiclassical dynamics is the Gaussian
wave packet method of Heller.®®1°9 In this method the initial states are
decomposed into time-dependent localized wave packets, each of which is
separately propagated using the assumption that the potential energy may
be expanded quadratically around the instantaneous center of the wave
packet. Because of this assumption the center of the wave packet in both
coordinate and momentum space follows the classical equations of motion.
The wave packets carry phase information and must be added coherently
in the product region. This method has the advantages that it requires no
root searches and in a sense uniformization is automatic. In addition the
visualization of the wave packets as quantum trajectories has appeal for
intuitive understanding of quantum effects. But the method has the dis-
advantage that effects of barrier penetration, rapidly varying potential
surfaces, and long-lived collisions require wave packet bifurcation or multi-
furcation to attain good accuracy. There is no simple criterion for how often
to bifurcate the wave packet. If the reexpansion of the wave packets is
repeated often enough, the method yields the exact quantum-mechanical
result in the form of a discrete phase-space path integral. Many of the
practical details of application of this new method to semiclassical dynamics
have not been thoroughly explored, but the method seems well suited in
principle to computational exploitation, and further study is clearly war-
ranted.

Another approach to semiclassical dynamics involves the use of Wigner
phase-space densities.!°? It has been suggested that Wigner phase-space
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densities might provide semiclassical initial conditions for a trajectory

study; the semiclassical phase-space distributions might be more accurate -
than the quasiclassical ones of Section 1.1°? The Wigner phase-space
densities have a high-energy tail which can provide a semiclassical de- ¥
scription of multidimensional tunneling effects. Further, they have negative

weights in some regions of phase space; this suggests that interference j}
effects might be included. Heller has analyzed some of the errors in clas-
sically propagating such phase-space distributions, and he has suggested a 1
revised classical-like dynamics for ameliorating the difficulties.*°? General
practical solutions to all the computational difficulties have not yet been J
obtained. But comparison of the quasiclassical initial phase-space dis-3

tributions to the Wigner ones does help visualize some of the effects missing j
in the former approach.

J«'

4. Trajectory Methods for Multisurface Reactions

So far in this chapter we have only considered the case where the elec-
tronic motion is treated completely adiabatically. Then there are no elec- ;
tronic transitions, and the electronic energy plus internuclear electrostatic
interactions provide a potential energy surface for internuclear motion.
This is the correct limit if electronic motion is treated by quantum mechanics
and nuclear motion is treated classically, i.e., if the wave function is expanded
in exact fixed-nuclei electronic states at any time, but the limit #— 0 is
taken when considering the changes in the system’s wave function due to
nuclear motion.?193:19%) Sych a limit is most valid when the spacing
between electronic energy states (for fixed nuclei) is large compared to the
kinetic energy of internuclear motion. For some chemical reactions, e.g.,
H + H, at low energies, this is true for all points on all trajectories. For
some other problems, e.g., low-energy collisions of systems with isolated
surface crossings or isolated weakly avoided surface crossings, this is true
for all except a few isolated regions of configuration space. These regions
may be considered as narrow subspaces in the configuration space. and
collisions may be considered as electronically adiabatic except when the
trajectories enter these subspaces. Other problems of interest involve
weak interaction of electronic states with large energy differences, interac-
tion of electronic states which are close in energy over wide regions of
configuration space, and interactions of dense (in number of electronic
states per unit energy) sets of electronic states where successive surface
crossings or avoided surface crossings are not well isolated. For these
classes of problems, electronic and internuclear motion are not well sep-
arated dynamically. Since electronic motion in bound states must almost
always be treated quantum mechanically, its nonseparation from inter-
nuclear motion means that internuclear motion must be treated quantum
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mechanically and the trajectory concept must be discarded as inapplicable
for such collisions. For the former class of problems, involving only narrow
regions of nonadiabaticity, we can use the model of trajectory surface
hopping. In this model one defines a seam in the nonadiabatic region. The
internuclear motion is treated by trajectories everywhere else, and transi-
tions are assumed to be able to occur only when a seam is crossed. At
seams it is assumed that there is a certain probability for an electronic
transition to occur. If it does the internuclear motion is continued as a
new trajectory, starting at the seam and governed by the potential surface
corresponding to the new electronic state. If it does not then the original
trajectory may be continued as if a single-surface problem were being con-
sidered. This is called the trajectory surface-hopping (TSH) model.

The account just given indicates that there are three new elements in a
TSH calculation: (i) defining the seam, (ii) calculating the probability of a
surface hop, and (iii) determining the momenta to start the trajectory on
the new surface. All the other aspects of the calculation are the same as for
single-surface calculations discussed in Sections 2 and 3. Element (i) depends
on electronic structure considerations and is discussed briefly in Chapter
18. Here we discuss elements (ii) and (iii).

The probability of a surface hop is governed by the nonadiabatic
coupling terms in the quantum-mechanical equations'*®*'°® for coupled
electronic and internuclear motion. In an adiabatic representation. tran-
sitions are caused by internuclear kinetic energy operators acting on the
internuclear parameters in the electronic fixed-nuclei wave functions. The
simplest theory of nonadiabatic transitions is the Landau-Zener semi-
classical model (see Chapter 13) for transitions caused by the radial kinetic
energy in atom-atom collisions. It is natural to try to extend this to treat
nonadiabatic transitions in atom—molecule systems as caused by the velocity
component perpendicular to the seam. Tully and Preston have shown by
classical path calculations (see Chapter 18) that this velocity component
is the effective one in causing nonadiabatic transition in some cases.”" ™ It
is clear from its derivation, however, that the Landau-Zener model has
serious shortcomings. We recommend instead that the surface-hop prob-
ability be calculated by the original method of Tully and Preston.!®”
which is to perform classical path semiclassical calculations for the time-
dependent probability amplitudes of the coupled electronic states and
parametrize an analytic expression to the results for probabilities of a
surface hop to be used in the TSH calculations. However. if the conditions
for validity of the Landau-Zener approximation are to be assumed to
apply, then the parameters of the Landau-Zener expression should be
evaluated by the prescription of Stine and one of the authors.""® This
problem is discussed further in Chapters 13 and 18.

The prescription for changing momenta when an electronic transition
occurs at a seam can be obtained by solving the classical equations of
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motion for the internuclear motion on a potential surface given by the old
surface V;(R;,R,,R;) on one side of the seam and the new surface
V»(R.R5, R;) on the other side of the seam.!°® In general the location
of the seam is given by a function w(q, Q) of the generalized coordinates
of equation (9).* Since w(q, Q) is independent of time and depends only on
relative coordinates (q,, 45,43, @1, Q,, Q3) the solution to the equations of
motion automatically conserves total energy and total angular momentum.
The explicit solution to the equations of motion indicates that the change
in the generalized momenta is proportional to the gradient of w evaluated

at the point where the trajectory crosses the seam. The final expression
1o(103.108)
is

T ow A B \/2
pi=pi — EC—]_ E I - 1 — 2AVV;eamZ—2 (174)

? A B\'"?
P2 = P ( fW ) 1= 1=-20W,n— (175)
C’Qi seamB A

ow 1 ow 1
) L (2) L]
i; |: aQI seam UBC UQi seam HA .BC

[1(5»&7)2 N 1 <8w)2 ] a77)
1L Hsc 8(11 seam :uA.BC an seam

where the superscripts (1) and (2) indicate values just before and just after
crossing the seam, respectively. In equations (174) and (175)

A[/Vseam = (V2 - Vl )seam (178)

One final point should be mentioned. It is computationally more
efficient to let the trajectory branch rather than hop."'°” In other words,
instead of letting the trajectory change surfaces or not based on the prob-
ability P, one can continue integrating two trajectories, one on the original
surface with weight (I — P) and one on the final surface with weight P.
As each branch reaches additional crossing points it branches further and
each branch acquires new reduced weights. This complicates the error
analysis but is more efficient. Tully and Preston have named these two
techniques the anteater and the ants technique. They found the most
efficient procedure was a compromise between the two in which trajectories
were allowed to branch at first but when the number of branches became
too great they were forced to hop.!°”

where

and

o]
Il
g

1t

i

* For cases where the seam is the locus of intersection of two diabatic surfaces, w(R,. R,, R;)
is the energy difference of the two diabatic surfaces.
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Just as semiclassical methods are useful for understanding the errors
in trajectory studies of single-surface reactions, they are helpful in under-
standing the errors of trajectory surface-hopping calculations. The classical
path method!®” and classical S matrix theory!?:193-109-114) 3re most
usetul in this regard. The former shows clearly how TSH calculations must
fail when the nonadiabatic regions become too nonlocalized. The latter
shows clearly how TSH calculations must fail when successive non-
adiabatic regions occur too close to each other or when nonadiabatic regions
are too close to classical turning points or in classically forbidden regions
of configuration space. The latter regions are regions which are not visited
by trajectories starting with the initial conditions of interest.

5. Concluding Remarks

In this chapter we have tried to recommend computationally efficient
techniques for carrying out molecular trajectory calculations for atom-
diatom reactive collisions. We have discussed different ways of using the
trajectories to predict final distributions of both discrete and continuous
properties of the products. We have also discussed semiclassical theories
which shed some light on the errors due to using classical mechanics.*
Despite these errors the trajectory method is -one of the most powerful
computational techniques for studying the details of reactive molecular
collisions and we envision its increasing use in the years to come.
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