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Abstract

We present an overview of variational transition state theory from the perspective of the
dynamical formulation of the theory. This formulation provides a firm classical
mechanical foundation for a quantitative theory of reaction rate constants, and it provides
a sturdy framework for the consistent inclusion of corrections for quantum mechanical
effects and the effects of condensed phases. A central construct of the theory is the
dividing surface separating reaction and product regions of phase space. We focus on the
robust nature of the method offered by the flexibility of the dividing surface, which allows
the accurate treatment of a variety of systems from activated and barrierless reactions in
the gas phase, reactions in rigid environments, and reactions in liquids and enzymes.

5.1 INTRODUCTION

Transition state theory (TST) is a theoretical framework for calculating and interpreting
rate constants of chemical reactions. TST was formulated nearly 70 years ago [1-3] with
the goal of providing a computational tool for predicting rate constants from a knowledge
of the potential energy surface (PES) controlling the reaction. However, this goal was not
attained until much later because theoretical chemists were unable to calculate the PES
with sufficient accuracy. Thus, for many years, TST was used primarily for correlating
and interpreting rate constants, including kinetic isotope effects, and that aspect of its use
continues and will be discussed briefly. The major focus of this article, however, is on the
more recent use of TST as a computational tool for predicting rate constants. It is a
testament to the utility of TST that its development has continued over an unusually long
period of time. For historical perspectives on TST, we refer the reader to previous reviews
and perspectives [4—6]. In this work, we review variational transition state theory
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(VTST) with multidimensional tunneling (MT) contributions and its implementation for
calculating rate constants for chemical reactions in gaseous and condensed phases.

5.2 GAS PHASE REACTIONS

TST provides a means to evaluate the equilibrium rate constant, that is the rate constant
for an equilibrium ensemble of reactants described by a Boltzmann distribution of states
[7]. The method also assumes that the reaction is electronically adiabatic so that the
reaction dynamics of the system can be described by motion of the atoms on a single PES
[8]. TST is most easily described in its classical mechanical form, because when classical
mechanics is valid, TST can be derived by making a single approximation, the so-called
fundamental dynamical assumption [3]. We first review classical TST and the
justification for the variational form [9] of the theory before discussing approximate
methods for including quantum mechanical effects into the theory.

Our starting point for describing the computational approach to rate constant
calculations is to define the Hamiltonian H for a reaction of N atoms with masses m;,
i=1,...,N, and Cartesian coordinates Ry, i=1,...,N, {=x,y,z, and conjugate
momentum Py, i = 1,...,N, { = x,y, z, which can be reduced to the compact form
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where u is a reduced mass that is chosen for convenience, and V(q) is the PES as a
function of the mass-scaled coordinates.

5.2.1 Classical mechanical theory

Exact classical equilibrium rate constants for electronically adiabatic reactions are
obtained by evaluating the flux of reactive trajectories through a dividing surface
separating the reactant and product regions of phase space (q, p). The dividing surface plays
an important role in TST and its variational formulation, and it is worthwhile being explicit
about how it is defined and used. For a system of N atoms, the total phase space, excluding
overall translation and rotation, has 6(N — 2) degrees of freedom. The dividing surface is
then a 6N — 13 degree of freedom hypersurface that is defined by the constraint Z(q, p) =
0. We consider only those dividing surface that separate reactants from products, where by
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convention Z(q, p) is a function that is negative for reactant-side regions and positive for
product-side regions of phase space. The flux of trajectories through the dividing surface at
phase point (q, p) on the dividing surface is given by

dz _(az dq _ azZ dp) _(p 0z av az)
Z=0

— 4
dr aq dr ap dr ©n oq aq op “)

Z=()
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The reactant rate constant is then obtained by the proper averaging of this flux through a
dividing surface. The dividing surface can be defined to be in the interaction region (e.g.
near the saddle point of the reaction) as well as in the reactant region. The question that
arises is what weighting of phase points to use in this averaging for arbitrary choices of
dividing surface, and there are two parts to this question. One is the correct statistical
weight and the other is the weight that should be used to select only reactive trajectories.
For the choice of dividing surface in the reactant region, the correct statistical weight to
obtain an equilibrium rate constant is an equilibrium distribution of states. For example, the
correct statistical weight for a canonical rate constant is just the Boltzmann factor,
exp(—BH) [7]. Liouville’s theorem of classical mechanics [10] shows that an equilibrium
distribution of reactant states will evolve into an equilibrium distribution at the dividing
surface and products [11]. Thus, the correct statistical weight for any choice of dividing
surface is an equilibrium distribution.

Now we turn to the question of the proper weight to select reactive trajectories. First,
note that the flux given by Eq. (4) can be both positive and negative. Averaging the flux
over an equilibrium distribution with no additional weighting will include all trajectories,
that is, those that cross the dividing surface in both directions, including nonreactive as
well as reactive trajectories, so that the equilibrium average is zero. Stated another way,
the principle of detailed balance insures that the equilibrium average of the total flux at
the dividing surface vanishes. The fotal forward flux is obtained by giving nonzero weight
to those phase space points on the dividing surface for which dZ/dr is positive. However,
some of these phase space points may actually lie on trajectories that recross the dividing
surface or are nonreactive or both (this includes trajectories that originate in the products
region and recross the dividing surface one or more times, reactive trajectories that
originate in the reactants region and cross an odd number of times, and nonreactive
trajectories that originate in the reactants region and cross an even number of times).
The rotal one-way reactive flux of reactants toward products is obtained by projecting out
only those phase space points that lie on trajectories originating in reactants and ending
up in products. For this choice of weighting, a reactive trajectory that recrosses the
dividing surface multiple times will have multiple contributions to the averaged flux.
The net one-way reactive flux of reactants to products is obtained by counting each of
these trajectories only at its first crossing, even if it crosses more than once. The latter
two are much harder to calculate because they require following trajectories to make sure
they are reactive. (The fundamental assumption of TST, as we shall see, is that the latter
net one-way reactive flux equals the former forward flux.) A compact expression for
the net one-way reactive flux through the dividing surface is written as

p dZ aVazZ
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where the Dirac delta function 8(Z) restricts the phase space to the hypersurface dividing
reactants from products (i.e. Z = 0). The characteristic function y(q, p) projects out the
net contribution from reactive trajectories and therefore requires following trajectories
from phase points on the dividing surface forward and backward in time to make sure
they originated in reactants and finished in products and that only the first crossing is
counted. With these definitions, the exact classical rate constant for a canonical ensemble
at temperature T is obtained from a phase-space average of the reactive flux

1

e L

jdqdp exp(—BH)F; ()
where fi = h/2r, h is Planck’s constant, B = 1/kgT, kg is Boltzmann’s constant, and
O(T) is a normalization factor appropriate for the type of reaction (unimolecular or
bimolecular). For a unimolecular reaction the normalization factor is given by

OT) = qudp exp(— BH)8(—Z) = gim(T)OR(T) 7

1
Qmh)N
where the Heaviside step function [6(x) is zero for x < 0 and 1 for x > 0] restricts the
phase-space average to the reactant region, Qf(T) is the vibrational —rotational partition
function of the reactant species, and g¢&y(7) is the translational partition function for the
center-of-mass motion of the system. For bimolecular reactions @(T) takes the form

1) = gém(DDHT) (8)

where ¢'§(T) is the reactant partition function per unit volume and includes the
translational partition function per unit volume for the relative motion of the two reaction
species. The center-of-mass translational partition function in the normalization term
cancels an identical factor in the phase space average in the numerator of Eq. (6).

The fundamental dynamical assumption of TST [3] approximates the reactive flux
through the dividing surface by the forward flux of all trajectories (reactive and
nonreactive). If the reaction coordinate were truly separable, then there would be no
reversals in the reaction coordinate, as long as the potential energy has a negative second
derivative along the reaction coordinate, so the fundamental assumption may be restated
as an assumption that the reaction coordinate is separable and the effective potential
along the reaction coordinate is convex. In this case the characteristic function is replaced
by the TST approximation
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In this approximation it is assumed that trajectories with positive flux at the dividing
surface (i.e. those with )(TST(q, Pp; Z) > 0) are reactive, and there is no need to follow
trajectories of phase points forward and backward in time. The exact classical rate
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constant is independent of the definition of the dividing surface, since every reactive
trajectory must cross any dividing surface separating reactants from products. The
generalized TST expression is not independent of the choice of arbitrary dividing surface
and is written as a explicit function of Z

1
1.2 = G jdqdp exp(— BEDFLST(q, p) (11)

Qnh

TST counts all forward crossings as reactive (each reactive trajectory must cross the
dividing surface with positive flux at least once), and errs by counting as reactive
nonreactive trajectories that cross the dividing surface an even number of times and
overcounting reactive trajectories that recross the dividing surface. Therefore, the
classical TST rate constant is always greater than or equal to the exact classical
equilibrium rate constant, and this fact is the basis for variational TST (VTST) in which
the dividing surface is optimized to minimize the rate constant and thereby give the best
upper bound to it [6,9].

In our most straightforward implementation of VIST for gas-phase reactions, rather
than allow arbitrary orientations of the dividing surface, we consider a one-parameter
sequence of dividing surfaces that are defined in terms of a reaction path [12,13]. This
procedure is applicable to complex problems, and it immediately provides a practical
improvement over the conventional choice of placing the dividing surface at the saddle
point. A robust choice for the reaction path is the minimum energy path (MEP), that is,
the path of steepest descent in the mass-scaled coordinates [14]. The coordinates on this
path are denoted q™E¥ (s) as a function of a progress variable s, and the path is defined by

Vv

d MEP((y — dq
laqV| q=qMEP(s)

L4 = (12)

q(s) =
This equation is integrated along the reaction coordinate s from the saddle point at s = 0
with an initial step along the eigenvector for the unbound mode into the product region
(s < 0) and reactant (s > 0) region. Generalized transition-state dividing surfaces are
constrained to be hyperplanes that are orthogonal to the reaction path and are defined by
their location s along the reaction coordinate. Given the vector, ¢/(s), tangent to the MEP
at point s, the dividing surface orthogonal to this tangent vector is defined by

Z(q,p) =4 ()l[q — " ()] =0 (13)

For s not equal to 0, a dividing surface is called a generalized transition state (to
distinguish it from the conventional transition state where the gradient is zero). With this
choice of dividing surface the generalized TST rate expression given by Eq. (11) reduces
for a bimolecular reaction to

kT Q2'(T, s)
h XD

where VMEP(s) is the potential evaluated on the MEP at s, the zero of energy of the
potential is defined to be the reactant equilibrium geometry (i.e. VMEF(s) at reactants is

zero), and QST(T,s) is the classical mechanical generalized transition state partition

kN(T,s) = k"(T;Z) = o exp[—BVMF(5)] (14)
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function for the bound modes orthogonal to the reaction path at s. Note that this partition
function is defined with its zero of energy at the local minimum of the potentials for the
bound modes orthogonal to the reaction coordinate. The symmetry factor o accounts for
the fact that the generalized transition state partition function is computed for one
reaction path, and for reactions with equivalent reaction paths, this partition function
needs to be multiplied by the number of equivalent ways the reaction can proceed. For
example, in the reaction D 4+ H, — DH + H, D can react with either H atom, so there
are two equivalent pathways and o = 2. The symmetry factor does not occur in the
more general expression for the rate constant given in Eq. (11) because the phase space
average includes all equivalent configurations that lie in the dividing surface. The
interested reader is directed to a more detailed discussion of symmetry factors in TST
by Pechukas [15]. The canonical variational theory (CVT) rate constant is obtained by
minimizing Eq. (14) with respect to s

k&YT(T) = min k& (T, 5) = k&[T, s&" (T)] (15)

where SSVT(T ) is the location of the dividing surface that minimizes Eq. (14) at
temperature 7. Eq. (14) provides a quantitative framework for discussing activation
energy and steric effects, with the former originating mainly in the exponential term and
the latter mainly in the partition function of the transition state.

The expression in Eq. (14) can be recast into a thermodynamic formulation as [13]

KSN(T,s) = kBTTKO exp[—AGS"(T, 5)/RT] (16)

in which K° defines the standard state and AGST’O(T, s) is the standard state free energy of
formation of the generalized transition state. Minimizing the canonical rate constant as in
Eq. (15) is equivalent to maximizing the free energy of activation with respect to the
location of the dividing surface [13,16].

Throughout this section, all rate constant expressions have had a subscript C to denote
classical mechanics. Consistent with notation used in previous work, no subscript is used
when quantum mechanical effects are included.

5.2.2 Inclusion of quantum mechanical effects

For many reactions, especially those including light atoms, such as reactions involving
the transfer of a hydrogen atom, proton, or hydride ion, classical mechanics is not
sufficient, and quantum mechanical effects on the motion of the atoms must be
included. The inclusion of quantum mechanical effects can also be important when
zero-point energies for modes with high vibrational frequencies change along the
reaction coordinate. High-frequencies can result from heavy-atom vibrations with large
force constants, as well as vibrational modes dominated by light atom motion. In
addition quantum effects may be smaller, but not necessarily negligible, for
rearrangements dominated by motions of heavier atoms. A rigorous quantum
mechanical formulation of TST that employs the fundamental assumption as its only
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approximation has been discussed [17] with the conclusion that no rigorous quantum
version of TST exists that does not require a solution of the full multidimensional
reaction dynamics [18]. Therefore, additional approximations are needed to include
quantum mechanical effects into TST. The standard approach is an ad hoc procedure
[1,19] that replaces classical partition functions by approximate quantum mechanical
ones and then includes correction factors for quantum mechanical effects (such as
tunneling) on the reaction coordinate motion. Replacing the classical partition
functions in Eq. (14) by quantum mechanical ones results in a quantized generalized
transition state rate constant given by

kT QL)
h T

The classical phase-space averages for bound modes in Eq. (11) are replaced by
quantum mechanical sums over states. If one assumes separable rotation and uses an
independent normal mode approximation, the potential becomes decoupled, and one-
dimensional energy levels for the bound modes may be conveniently computed. In this
case, the quantized partition function is given by the product of partition functions for
each mode. Within the harmonic approximation the independent-mode partition
functions are given by an analytical expression, and the vibrational generalized
transition state partition function reduces to

KT, s5)=0o xpl—BVMEP ()] (17)
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where w,,(s) is the harmonic frequency for mode m at location s along the MEP. When
low frequency modes are present, the harmonic approximation is very often not valid,
and methods for including anharmonicity must be considered [20].

Harmonic frequencies for bound modes at stationary points on the PES (i.e. locations
where 9V /dq = 0) are obtained by diagonalizing the matrix of second derivatives
(properly mass-weighted or mass-scaled), which is denoted the Hessian matrix.
Frequencies for modes at other locations along the reaction coordinate require special
attention since the first derivatives are not zero, and diagonalization of the Hessian
would mix the reaction coordinate mode with bound vibrations. Determination of the
bound modes orthogonal to the reaction coordinate can be accomplished in a
straightforward manner by working in a space normal to the tangent to the reaction path
[12] or by projecting out the reaction coordinate motion from the Hessian matrix [21].
The latter method often has the unsatisfactory characteristic that transitional modes
(those that correspond to translations or rotations of the reactants or products in an
asymptotic region but that evolve into or from a hindered rotation or bending vibration
in the interaction region) can have unphysical imaginary frequencies (corresponding to
negative eigenvalues of the Hessian matrix) along the reaction coordinate [22]. The use
of curvilinear internal coordinates is an attractive alternative that helps with this
problem [23].

The quantized generalized transition state rate constant equation (17) is a hybrid
expression in which the bound modes are treated quantum mechanically but the reaction
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coordinate motion is treated classically. Consistent quantum mechanical treatments of
reaction coordinate motion rely on the fact that the adiabatic theory of reactions [24,25] is
equivalent to one form of VTST (microcanonical VTST) when the reaction coordinate is
treated classically [13,26]. In the adiabatic theory of reactions, coordinates orthogonal to
the reaction coordinate are treated as ‘fast’ variables. Reaction probabilities P*(n, E) for
a state defined by quantum numbers n at total scattering energy E are obtained by
considering the dynamics on the one-mathematical-dimensional vibrationally adiabatic
potential. In the harmonic approximation the vibrationally adiabatic potential is written

VA(s,m) = VMEP(5) + Zﬁwm(s)(nm + %) (19)

where the sum is over the bound modes of the generalized transition state at s, and the
energy level for state n,, of mode m at location s along the reaction coordinate is given by
the harmonic approximation. The reaction probabilities PA(n,E) are then thermally
averaged to yield the rate constant. When reaction coordinate motion is treated
classically, the adiabatic theory of reactions yields an expression for the thermal rate
constant which is equivalent to that obtained from microcanonical variational theory
even though the approximations in the two theories are very different [13,26]. Since the
one-dimensional scattering problem can be treated quantum mechanically, a multi-
plicative tunneling correction factor for the adiabatic theory of reactions can be obtained,
and the equivalency of microcanonical VTST and adiabatic theory makes it consistent to
use the same correction factor to account for the quantization of reaction coordinate
motion in the variational theory.

The adiabatic approximation is made in a curvilinear coordinate system, and although
the potential energy term is simple, the kinetic energy term is complicated by factors
dependent upon the curvature of the reaction path [21,25,27]. As shown by Skodje et al.
[28], the most successful methods for including the multidimensional effect of the
reaction path curvature in the adiabatic calculations of the reaction probabilities specify a
tunneling path that ‘cuts the corner’ and shortens the tunneling length. Marcus and
Coltrin [29] found the optimum tunneling path for the collinear H + H, reaction by
finding the path that gave the least exponential damping. General multidimensional
tunneling (MT) methods, applicable to polyatomic reactions, have been developed that
are appropriate for systems with both small [28,30] and large [12,31,32] reaction path
curvature, as well as more general methods that optimize tunneling paths by a least-
imaginary-action principle [31,33]. In practice it is usually sufficient to optimize the
imaginary action from among a small set of choices by choosing either the small-
curvature tunneling approximation, or the large-curvature tunneling approximation,
which gives more tunneling at a given tunneling energy; this is called microcanonical
optimized multidimensional tunneling (WOMT), or, for short, optimized multidimen-
sional tunneling (OMT) [32,34].

The quantum mechanical CVT rate constant with the tunneling correction factor,
MT(T), included is given by [35]

KEVT/MT () — (MT () CVT () (20)
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Rather than compute the tunneling through all adiabatic potentials that contribute
significantly to the tunneling correction factor, the tunneling correction factor is
approximated by tunneling through just the ground-state potential [35]

J dE e PEPMT(n = 0, E)
M) = 20

% Q1)
JO dEe PEPo(n=0,F)

where PMT(n = 0, E) is the multidimensional tunneling approximation to the probability

for tunneling through the ground-state adiabatic potential at total energy E and Pq(n =
0, E) is the classical analog, which is zero for total energy E below the maximum of the
adiabatic barrier and one for energy above it. At low temperatures where tunneling
corrections are most important, quantized systems tend to be in the ground state, and this
approach provides a good approximation. As temperature increases, tunneling through
excited-state adiabatic potentials would contribute relatively more, but tunneling
becomes less important and the correction factor decreases until at sufficiently high
temperatures it tends to unity. The ground-state method gives the correct high
temperature limit, and for intermediate temperatures, the tunneling through excited-
state adiabatic potentials is approximated (implicitly) by the tunneling probabilities for
the ground-state potential with the energy scale shifted by the difference in the excited-
state and ground-state energies at the ground-state maximum.

After including variational and quantum effects, the quasithermodynamic variables of
TST, like entropy of activation and energy of activation, may be decomposed into
‘substantial’ contributions that derive from formulas analogous to those of statistical
thermodynamics [36] and ‘nonsubstantial’ contributions deriving from the transmission
coefficient [37].

5.2.3 Improved prescriptions for the reaction coordinate and dividing surface

The formalism summarized above is well suited for bimolecular reactions with tight
transition states and simple barrier potentials. In such cases we have found that the
variational transition state can be found by optimization of a one-parameter sequence of
dividing surfaces orthogonal to the reaction path, where the reaction path is defined as the
MEP. However, although dividing surfaces defined as hyperplanes perpendicular to the
tangent to the MEP (as described in Section 5.2.2) are very serviceable, a number of
improvements have been put forth.

It is important to emphasize, in describing these improvements, that the generalized
transition-state dividing surface is defined by the MEP only on the reaction path itself.
The full definition of the transition state dividing surface for VTST calculations is usually
specified by starting with a global definition of a reaction path, after which a one-
parameter sequence of dividing surfaces is defined by the location at which the dividing
surface crosses the path. In our original work [12,38] we took the dividing surface to
locally be a plane orthogonal to the MEP in isoinertial coordinates, but we approximated
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the partition functions in a way [13,26] that provided physical results even when this
surface is unphysical beyond a certain distance from the MEP. The first important
improvement is to use curved dividing surfaces defined in terms of nonredundant [22,23]
or redundant [39] internal coordinates. Because the neglect of anharmonic bend—stretch
interactions is less serious in curvilinear internal coordinates than in rectilinear
coordinates [15,40], a dividing surface defined in curvilinear internal coordinates is
much more physical, and the harmonic frequencies calculated this way provide much
better harmonic approximations to the bound motions in the dividing surface and hence to
Q°N(T, ).

A next higher level of refinement is to optimize the orientation of the dividing surface
rather than assume that it is normal (in either rectilinear or curvilinear coordinates) to the
MEP [40-42]. This variational optimization should in principle improve the rate, just as
optimizing the location at which the dividing surface intersects the MEP improves the
rate. Even more significantly though it allows one [40,42] to carry out VTST calculations
without calculating (or without converging) an MEP, which is often expensive (because it
requires small step sizes to follow it) and/or hard to converge.

The use of curvilinear coordinates and optimization of the orientation of the dividing
surface are important for quantitative calculations on simple barrier reactions, but even
more flexibility in the dividing surfaces is required to obtain quantitative results for very
loose variational transition states such as those for barrier-less association reactions or
their reverse (dissociation reactions without an intrinsic barrier).

In the context of association reactions, an algorithm in which the reaction coordinate
definition is optimized along with the dividing surface along a one-parameter sequence of
paths is called ‘variable reaction coordinate’ (VRC) variational transition state theory
[43,44]. In the last few years there has been considerable progress in optimizing VRCs for
barrier-less association reactions with strictly loose transition states. A strictly loose
transition state is defined as one in which the conserved vibrational modes are uncoupled
from the transitional modes and have the same frequencies in the variational transition
state as in the associating reagents [45,46]. Conserved vibrational modes are modes that
occur in both the associating fragments and the association complex, whereas transition
modes (already mentioned above) include overall rotation of the complex and vibrations
of the complex that transform into fragment rotations and relative translations upon
dissociation of the complex. Progress has included successively refined treatments of the
definition of the dividing surface and of the definition of the reaction coordinate (the
coordinate that is missing in the transition state) [43,46—48], and elegant derivations of
rate expression for these successively improved reaction coordinates [48,49]. A guiding
principle in the choice of reaction coordinate in all these methods is to make the reaction
coordinate correspond to a physical motion that is relatively uncoupled from the motions
orthogonal to it, because the assumption of a separable reaction coordinate is a key aspect
of the fundamental assumption of TST, as mentioned above. The recent variational
implementation of the multifaceted dividing surface (MDS) VRC version of VIST seems
to have brought the theory to a flexible enough state that it is suitable for application to a
wide variety of practical applications to complex barrier-less association reactions of
polyatomic molecules [50].
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5.2.4 Spectroscopy of the transition state

The quantization of transition state energy levels is not simply a mathematical device to
add quantum effects to the partition functions. The quantized levels actually show up as
structure in the exact quantum mechanical rate constants as functions of total energy [51].
The interpretation of this structure provides clear evidence for quantized dynamical
bottlenecks, both near to and distant from the saddle points, as reviewed elsewhere [52].
Quantized variational transition states have also been observed in molecular beam
scattering experiments [53]. Analysis of the reactive flux in state-to-state terms from
reactant states to transition state levels to product states provides the ultimate limit of
resolution allowed by quantum mechanics [53,54]. Quantized energy levels of the
variational transition state have been used to rederive TST using the language of quantum
mechanical resonance scattering theory [55].

5.2.5 Applications

Recent applications of VITST/MT to polyatomic gas-phase reactions that illustrate the
power of the theory include the reactions of chlorine atoms with hydrogen molecules [56]
and the reactions of hydrogen atoms with ethylene [57,58] and methane [59], including
kinetic isotope effects.

5.3 REACTIONS IN CONDENSED PHASES

Compared to gas-phase reactions, those in condensed-phases systems are more difficult to
treat because of the close proximity of other atoms and molecules to the reacting species;
interactions with the surroundings affect both the energetics and dynamics of a reaction.
Short-range effects, due to atoms and molecules in the immediately vicinity of the
reacting species, can be treated using an embedded cluster approach in which the reacting
species and a finite number of surrounding atoms are included explicitly in calculations of
reaction energies and dynamics using standard approaches used in gas-phase
calculations. A major challenge for condensed-phase reactions arises from the fact that
long-range interactions of the reacting species with atoms or molecules, which are not
directly participating in the reaction, can affect both the energies and dynamics of
reactions thus requiring calculations on much larger systems than the embedded cluster
models. Sometimes such effects can be included by continuum solvent models [60] or by
the use of collective reaction coordinates [61,62], or both.

We first consider the case of a condensed-phase environment in which the atoms have
well defined equilibrium geometries and the fluctuations around these geometries are
small compared to the interatomic distances (e.g. solids). In this type of rigid
environment the long-range effects of the environment are restricted to the reaction
energetics and the dynamics, to the extent that dynamics may be separated
from energetics, can be treated accurately using an embedded cluster model. We then
discuss two approaches to treating reactions in an environment in which the atoms and
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molecules have many local equilibrium structures that are interconnected by small
barriers (i.e. ones that can be easily surmounted by thermal fluctuations). In this type of
fluid environment both the energetic and dynamic effects of anharmonicity and perhaps
also long-range interactions need to be considered.

The average environment that the reacting species encounter in gas phase and
condensed fluid environments is isotropic and translationally invariant. This is not true
for rigid environments with well-defined lattice sites, e.g. the average environment that a
reacting species sees near a lattice site is very different from that near an interstitial site.

5.3.1 Reactions in rigid environments and application to reactions
in crystals or at crystal-vapor interfaces

Solid-state reactions, at least in a crystal, are characterized by the need to consider only
one or a few environments for the reacting subsystem. The reacting subsystem may
interact with this environment by a variety of interactions, including electrostatic and
dispersion forces, hydrogen bonding, and dielectric screening of intramolecular
Coulomb interactions due to the electric field lines passing through the environmental
medium. These effects must be included in the Hamiltonian. One also needs to
consider effects such as relaxation of the lattice around the reacting subsystem or
reconstruction of a surface in absence and presence of the reacting subsystem. These
considerations also apply to the calculation of equilibrium properties in the solid state,
but a question that arises only when one considers dynamics is the inclusion of
medium degrees of freedom in the dividing surface, or medium participation in the
reaction coordinate.

As mentioned above, these effects can all be included by an embedded cluster
approach [63]. In this method one starts with a large but finite rigid lattice representing
the crystal and adds the reacting substance as a substitutional impurity, defect, or
interstitial in the solid (absorbate) or on its surface (adsorbate). The origin is defined in
some convenient way to be at or near the center of the reacting substance. All lattice
atoms within a distance R, of the origin are fully included in the Hamiltonian, that is,
they are treated dynamically on an equal footing with the atoms of the absorbate or
adsorbate.

The other atoms in the lattice are held rigid. As such they enter the Hamiltonian and
they help to enforce the macroscopic habit on the environment of the reacting substance,
but they do not participate dynamically. In principle, both the size of the lattice and the
value of R, are increased until the results converge.

This kind of treatment requires only minor changes in a VTST computer program. The
most significant changes are that there are no translational or rotational partition
functions or coordinates to project out of the Hessians. Reactants have 3N vibrations,
rather than 3N — 6, and transition states have 3N — 1 vibrations rather than 3N — 7.

Examples of applications that have been studied by this method are surface diffusion of
hydrogen atoms on metal surfaces [63—66], bulk diffusion [64,66], subsurface-to-surface
transport [66], and dissociative chemisorption [67].
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5.3.2 Reactions in fluid environments with a single reaction coordinate

The prescription for using VIST for gas-phase and solid-state reactions relies on locating
saddle points and reaction paths. For reactions in fluids, there are many saddle points that
are close in energy and that differ significantly only in the configuration of solvent
molecules [68]. Similarly, the PESs of large clusters often have multiple minima, often
separately by low barriers [69], and when a molecule reacts on or with a large cluster,
these minima lead to multiple saddle points. The multiple saddle points may be
considered to result from the large anharmonicity of the solvent (i.e. of the liquid-phase
solvent or the large-cluster microsolvent), and their treatment requires special
consideration. As in the case of solid-state reactions, VTST including quantum
mechanical effects can be applied to an embedded cluster model, which contains solvent
molecules as well as the reacting subsystem; however, unlike the solid-state case where
the remainder of the system is fixed in a rigid configuration, it is important to sample over
configurations of the remainder of the solvent or to use a mean-field representation that
includes an average over solvent configurations.

To generalize the procedures of Sections 5.2 and 5.3.1 to the liquid phase, one can start
from the full microscopic description of the system. The Hamiltonian for the whole
system is partitioned into a gas-phase component, as given in Eq. (1), for a reactive
embedded molecule or embedded cluster (note: an embedded cluster is often called a
supermolecule) in the absence of the solvent, and a solvent component that includes
coupling between the solvent and reactive subsystem:

2 2

H(q* P, X, P\) = p_ + VC(q) + & + VS(X7 q) (22)
2u 21

where q and p are coordinates and conjugate momentum of the embedded molecule or
cluster (henceforth called the solute), x and p, are the solvent coordinates and conjugate
momentum, Vc(q) is the PES for the isolated solute, and Vg(x,q) is the PES for the
solvent including the solvent interactions with the solute. We first consider the classical
mechanical expression for the rate constant for this model

1
Qmh)N N @(T)

k(T3 2) = dqdp J dxdp, exp(—BH)FR>' (q,p,x,p,)  (23)

where 3Ng is the number of degrees of freedom of the solvent, and the normalization
factor @(T) includes the partition function for both the solute and solvent. The reactive
flux is explicitly written as a function of solvent coordinates as well as those of the solute.
However, if the dividing surface is only a function of the solute coordinates and
momentum, Eq. (23) takes on a simpler form

2

GT .7y — 1 J _al P TST
keps(T; Z) = 2O dqdpexp[ 3(2M+W(Q))]FR (q,p) (24)
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where the potential of mean force (PMF) [36] W(q) is defined by

2

1
expl—BW@)] = o | dxp, exp[ —B( 2 V@ + Vsta, x))] (25)

The normalization factor can also be rewritten in terms of the PMF

2

1 p
o) = j dqdp exp[~l3(-2—; + W(q))]e(—a 26)

so that the rate constant takes the form of the gas-phase expression with an effective,
solvent-averaged potential. Classically, the only approximation is the fundamental
dynamical assumption of TST, with the restricted choice of dividing surface to not
include any of the solvent coordinates or momentum. We use the subscript ES on the rate
constant to denote an equilibrium solvation model, in which the only influence of the
solvent is to modify the interaction potential. It has long been realized that the effect of
equilibrium solvation can be included in TST using the PMF [5,70—74]; however, most
previous calculations of equilibrium solvation contributions to the TST rate constant
express the PMF as a function of a single coordinate—the reaction coordinate. Eq. (24)
differs by the fact that the rate constant is written as a function of a multidimensional
equilibrium solvation PES.

Although W(q) may be defined entirely in terms of condensed-phase averages, as in
Eq. (25), it can also be defined with reference to gas-phase calculations, in which case it
equals the gas-phase free energy of activation plus the free energy of solvation [60,
74-77]. Thus, the equilibrium solvation rate constant given in Eq. (24) takes the
thermodynamic form for the rate constant (as given in Eq. (16) for the gas phase)

kEEs(T, 5) = %1K°exp[~AG‘éTE*‘g’(T, 5)/RT] @7)

where the equilibrium-solvation standard-state free energy of activation is expressed as

AGERUT, 5) = AGE™T, 5) + AGoL (T, 5) — AGS(T) (28)

solv

and AGS[O(T,s) and AGN)(T) are the free energies for solvating the generalized
transition state at s and reactants, respectively.

If the reaction path and dividing surface are optimized in the gas phase, but the rate
constant is calculated with the equilibrium solvation Hamiltonian, the resulting rate
constant is called separable equilibrium solvation (SES) [57]. However, if the reaction
path and dividing surface are optimized with the equilibrium solvation potential, the
result is labeled equilibrium solvation path (ESP) [57,78].

The assumption of equilibration of the solvent at all geometries of the solute neglects
the coupling of solvent dynamics with solute dynamics. For example, if the solute
dynamics are rapid with respect to the solvent motion, the solvent will not have time to
equilibrate as the solute rearranges. Fluctuations of solvent molecules can induce
recrossings of the dividing surface and a breakdown of the fundamental dynamical
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assumption of TST. This type of influence of the liquid on the reaction rate is often
referred to as a nonequilibrium or dynamical solvent effect [5,70,71,73,79].

Formulating TST in terms of an approximate flux through a dividing surface reveals a
means to mitigate the effects of this breakdown. Variational optimization of a dividing
surface that is a function of solvent coordinates as well as the coordinates of the
embedded cluster will minimize the recrossings induced by solvent reorganization.
However, this procedure leads to more complicated calculations of the ensemble
averages in Eq. (23) because they are constrained to configurations lying on the dividing
surface. Evaluations of averages over solvent degrees of freedom for fixed configurations
of the solute, as required when the dividing surface is a function of only solute
coordinates, are standard in PMF calculations [75], whereas evaluations of ensemble
averages for more general dividing surfaces are much more complicated. (The
formulation of classical TST for arbitrary dividing surfaces [80] is related to the
formulation of potentials of mean force for constrained molecular dynamics [81] and to
PMF calculations for more complicated reaction coordinates [82].)

This use of arbitrary reaction coordinates also allows [62] inclusion of nonequilibrium
solvation effects in VIST by using the solvent energy-gap reaction coordinate that first
arose [83] in weak-overlap charge-transfer theory. In electron transfer kinetics,
nonequilibrium effects are often studied by a spin boson model [84] in which two
diabatic states of the electronic wave function are linearly coupled to a harmonic bath.
The coupling constant is a parameter of the model. A more general model, the
generalized Langevin treatment [71,85], also involves a linearly coupled harmonic bath,
but it has the advantage that the friction coefficient is related by the fluctuation-
description theorem [86] to the time autocorrelation function of the force exerted on the
system by the bath. In classical mechanics, the time autocorrelation function can be
obtained from a molecular dynamics simulation, and one can use this kind of friction
estimate to model nonequilibrium solvation [87,88]. This is accomplished by describing
solvent frictional effects by a collection of harmonic oscillators that are linearly coupled
to the solute degrees of freedom. In the limit of a continuum of oscillators, the classical
dynamics for this model are equivalent to the generalized Langevin equation for solute
dynamics [89]. When the reaction is treated as a reaction coordinate coupled to a
harmonic bath, harmonic TST with a dividing surface at the saddle point that includes
dependence on the harmonic solvent coordinates yields the Kramers [90] and Grote—
Hynes [91] theories, as reviewed elsewhere [92,93]. This simple model of a reaction in
solution is surprisingly robust for describing dynamical solvent affects, even for systems
for which the reaction dynamics appear to be controlled by anharmonic solvent
reorganization [94]. In an attempt to develop a widely applicable practical scheme for
estimating the conditions under which nonequilibrium solvent effects are important and
to increase physical insight, the friction has also been further approximated in terms of
effective diffusion constants [78,95]. This has the advantage that it neither assumes the
validity of classical mechanics nor requires large-scale simulations. We have presented
VTST treatments of multidimensional embedded cluster models linearly coupled to
harmonic solvent coordinates, including variationally optimizing the dividing surface
(including both harmonic solvent and embedded cluster coordinates) and quantum
mechanical effects [73,87,95]; and these treatments can be viewed as a generalization of
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Grote—Hynes theory to include multidimensional, anharmonic (in the embedded cluster
coordinates), and quantum mechanical effects.

The treatment of quantum mechanical effects, particularly tunneling, is especially
challenging for reactions in liquids. Comparisons of calculations using VTST methods
including multidimensional tunneling corrections for gas-phase reactions, as outlined in
Section 5.2.2, with benchmark calculations for a model reaction in solution (a reaction
coordinate linearly coupled to a harmonic bath) have shown that the methods are
capable of quantitative accuracy for these types of systems and that the largest
deficiencies arise from the approximate treatment of anhamonicity, not tunneling [96].
A general prescription for treating tunneling in the presence of a bath, based upon a
multidimensional tunneling approximation using the PMF, has been given [97] and
applied [76,95,98]. VTST has been used to study the effect of nonequilibrium solvation
on quantum mechanical tunneling in models of hydrogen addition to benzene [78] and
hydrogen abstraction from methanol [95] and to examine the importance of
multidimensional tunneling for a model of a proton transfer reaction in explicit
solvent [88].

5.3.3 Reactions in fluid environments with an ensemble of reaction coordinates

For some reactions in solution, it may be necessary to include a large number of saddle
points and reaction paths. These reaction paths might differ primarily in the conformation
of the bath. One can always attempt to model this situation, as in Section 5.3.2, by using a
single reaction coordinate and a mean field representation of the bath, but this will not
always be valid, and it requires considerable physical insight to properly include solvent
motion in the reaction coordinate, when that is necessary.

In order to treat this kind of system more reliably, ensemble-averaged VTST [99-101]
has been developed. In this method, the calculation is divided into two stages. In stage
one, one uses a predefined chemical reaction coordinate z to calculate a one-dimensional
PMF. The maximum value of this PMF defines the stage-1 free energy of activation,

AGY = AG*°(z,) (29)

at location z,.. In carrying out this calculation, we quantized the vibrations perpendicular
to z by a new method developed for this purpose [102]. Because of this quantization, the
resulting free energy is not completely classical and we call it quasiclassical. In the
process of calculating this stage-1 quasiclassical free energy of activation we sample a
large number of systems with z, — 8, = z =< z, + 6,, where §, is a small numerical
tolerance (in principle 8, should be zero). The equilibrium ensemble corresponding to
this small range of z is called the stage-1 transition state ensemble.

In stage 2, one calculates a transmission coefficient for the stage-1 rate constant. This
transmission coefficient is calculated by an ensemble average over CVT/uOMT
calculations for various reaction paths (labeled a = 1,2,...,N,) that pass through N,
samples from stage-1 transition state ensemble. In particular, the final ensemble-averaged
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VTST with multidimensional tunneling (EA-VTST/MT) rate constant is given by

k(T) = y(T)k—IZZKOexp(—AG( Y /RT) (30)
where
N,
D kel DIWT)
_ o=l
T) = — N (31

«

In stage 1, all atoms are treated on an equal footing. However in stage 2, the system is
divided into N, primary-zone atoms and N, secondary-zone atoms. For each «, the N,
secondary-zone atoms are frozen and the N; primary-zone atoms are optimized to the
nearest saddle point, then a MEP is calculated, again with N, atoms frozen. In both steps,
the secondary-zone atoms are not neglected; they provided an effective potential field that
is included in the Hamiltonian. Continuing in this fashion, we calculate a free energy of
activation profile AG,(T) for the primary subsystem in the effective field of the secondary
subsystem; this is reminiscent of the method in Section 5.3.1. Then

[(T) = exp{ — [AG(T) — AG"(T)]/RT} (32)

Finally one calculates a transmission coefficient k,(7T’) that accounts for tunneling and
nonclassical reflection, and we use this in Eq. (31) to calculate the overall transmission
coefficient y(T).

Some points should be noted about this treatment. The first is that the transmission
coefficient and the quasithermodynamic free energy of activation are not independent. If
we choose a poor reaction coordinate for stage 1, then the I, values in stage 2 may be
very small. The second is that the procedure used for step 2 allows the secondary
subsystem to participate in the reaction coordinate. In other words, since each
conformation of the secondary subsystem has its own reaction path, the reaction path
does depend on the coordinates of the secondary subsystem.

It is also possible to include a third stage in which the secondary zone is relaxed as a
function of s for each o [99]. Although this is more expensive, it is not necessarily more
accurate because the transition state passage might be well modeled by an ensemble
average of essentially fixed secondary-zone structures [93].

EA-VTST/OMT has been applied successfully to several enzyme reactions, as
reviewed elsewhere [100,103].

5.4 SUMMARY AND CONCLUSIONS

“It is no criticism of a chemical theory to call it ‘approximate’ or ‘limited’. The value
of a theory is measured by the strength of its predictions within its restricted range
of applicability” [104]. TST is an approximate theory with a very broad range of
applicability, covering elementary reaction rate constants for virtually all kinds of
chemical reactions, provided that the reactants are in local thermal or microcanonical
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equilibrium, and it can even be extended to certain questions in state-selected chemistry.
It provides a language for discussing and analyzing activation energy, steric effects, and
solvent and other environmental effects. When the transition state is variationally
optimized and quantum effects, especially vibrational zero point energy and tunneling,
are included, it provides a quantitative theory as well. It seems unimaginable that it can
ever become obsolete, and we expect that research on its application to more and more
complex processes will continue to abound.
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