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Chapter 9

Multilevel Methods for Thermochemistry
and Thermochemical Kinetics

Benjamin J. Lynch and Donald G. Truhlar
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of Minnesota, Minneapolis, MN 55455-0431

This chapter presents an overview of the performance of
current multilevel methods for computational thermochemistry
and thermochemical kinetics. Multilevel methods extrapolate
to the exact solution of the electronic Schddinger equations by
using calculations carried out with two or more levels, where a
level is a combination of a specific form for the many-electron
wave function and a specific one-electron basis set. This
chapter compares the performance for thermochemistry and
thermochemical kinetics of several multilevel methods,
including scaling-all-correlation (SAC), complete basis set
(CBS) methods, multi-coefficient correlation methods
(MCCM), and Gaussian-3 extended (G3X) methods. It also
compares these methods to hybrid density functional theory,
and additional calculations are presented to test the importance
of diffuse basis functions on hydrogen. In order of decreasing
cost, the G3SX(MP3), MCG3/3, MC-QCISD/3, CBS-4,
mPWIPW91/MG3S, and SAC/3 methods are shown to
provide especially good performance-to-cost tradeoffs.
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Introduction

Computational thermochemistry and computational thermochemical
kinetics are based on the Bom-Oppenheimer approximation and the use of
quantum-mechanical electronic structure theory to calculate potential energy
surfaces. The electronic structure methods may be based on interacting-electron
wave functions or on density functional theory. The present overview is
primarily concerned with the former approach. The starting point is Hartree-
Fock (HF) theory. In HF theory, the electrons occupy a set of molecular orbitals,
which are an orthogonal set of one-electron functions typically constructed from
linear combinations of atom-centered basis functions. In HF theory, each
electron moves in the average field of the other electrons, and so the correlated
motion of the electrons is ignored. This is sometimes called a single-
configuration method, and explicitly correlated wave functions based on an HF
starting point are called single-reference methods. The error in energy due to the
HF approximation is called the correlation energy (7). Neglect of the correlation
energy leads to many systematic errors in the predicted thermochemical and
dynamical properties at the HF level. The cost and poor performance of HF
calculations have engendered the development of a variety of more cost-efficient
semi-empirical methods. Two very popular semi-empirical methods related to
HF theory are AM1 (2,3) and PM3 (4). These methods remove the most
expensive parts of a minimum-basis-set HF calculation, and they introduce 15
empirical parameters for each element. The empirical parameters effectively
estimate the parts of HF theory that are ignored, and they also implicitly account
for effects due to extended basis sets and correlation energy. Methods like AM1
and PM3 tend to outperform minimum-basis-set HF for most problems of
chemical interest.

Although semi-empirical methods like AMI and PM3 are fairly accurate,
especially considering their low cost, we need to pursue higher levels of theory
to attain chemical accuracy (~ 1 kcal/mol) in calculating quantities such as bond
strengths, electron affinities, ionization potentials, and reaction barrier heights.
To achieve higher accuracy, we can use larger basis sets and explicitly account
for electron correlation. Full configuration interaction (FCI) accounts for all
electron correlation energy within the limitations of the one-electron basis set.
This type of calculation is prohibitively expensive for all but the smallest of
systems, and it is even more expensive to converge the calculation with respect
to the size of the one-electron basis set. Therefore we introduce empirical
parameters or we extrapolate, or both. For example, we can employ partial
treatments of electron correlation, and then use empirical parameters to
extrapolate from two or more incomplete levels of calculation to the exact
solution. Such calculations, based on two or more levels, are called multilevel
methods. All of the multilevel methods presented here include explicitly
correlated, extended basis set, post-HF calculations, and so the empirical
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parameters in these methods need only to account for high-level electron
correlation and the remaining basis set effects. By using extended-basis-set post-
HF calculations as our starting point, we can attain higher accuracy than is
possible with AM1 and PM3 semi-empirical methods. A disadvantage though, is
that the popular post-HF methods scale as N°, N° or N’ (for large N) as the
number of atoms N is increased (5), and the coefficient of N* becomes larger as
the number of basis functions on each atom is increased. (We will give the
scaling exponent a for various methods in section 3.)

One of the first methods to take advantage of the systematic nature of the
errors in explicitly correlated ab initio methods and extrapolate toward complete
configuration interaction (CCI, which is the combination of FCI with a
converged one-electron basis set) is the scaling external correlation (6) (SEC)
method. This method scales the correlation energy calculated from a multi-
reference wave function. Although it has been shown to be very accurate, the
calculation of the correlation energy from a multi-reference wave function is
computationally expensive and technically difficult. The scaling-all-correlation
(7-11) (SAC) method was therefore developed as a simplified method that only
requires the correlation energy to be calculated with a single-reference wave
function. Though it is less accurate than SEC, SAC is much more cost-efficient.

MCCM methods (11-18) are the general class of methods that use a linear
combination of explicitly correlated ab initio calculations with two or more
basis sets and two or more levels of electron correlation. The linear
combinations extrapolate the correlation energy and the basis set to the CCI
limit. One example of an MCCM is MCG3/3 (/8), which has been shown (18)
to calculate bond energies with less than 1/10® the error of CCSD(T)/aug-cc-
pVTZ (19,20) at less than 1/100™ the cost. (All “costs” in this paper are based on
gradient calculations as explained below.) This comparison is especially striking
because the CCSD(T) method is sometimes called “the gold standard,” due to its
high accuracy. Furthermore, the accuracy of MCG3/3 in calculating reaction
barrier heights is only achieved by ab initio methods that are about 100 times
more expensive (/8).

Increasing either the basis set or the explicit level of correlation greatly
increases the cost of ab initio calculations. If high-level correlation effects could
be accurately estimated with a small basis, and large-basis-set effects could be
estimated with a low level of correlation, then a large-basis high-level-
correlation calculation would be unnecessary. Methods such as Gaussian-2 (27-
23) (G2), Gaussian-3 (24,25) (G3), and G3 extended (26) (G3X) use such an
additive approximation to reduce the cost of explicitly correlated calculations. In
particular, starting with a modest ab initio calculation, various high-level and
larger-basis-set contributions are estimated separately and assumed additive.
Furthermore, an empirical correction, called the high-level-correction (HLC), is
added to account for missing higher-level effects and nonadditivity, which may
also be considered a higher-level effect. As an example, consider the G3 and
G3X methods. In these methods the 6-31 G(d) basis is used to calculate the
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energy with quadratic configuration interaction with double and single
excitations and quasipertubative connected triples (QCISD(T)) (27), and larger-
basis-set effects are added on by calculations with lower levels of electron
correlation. This effectively approximates a large-basis-set calculation at the
QCISIX(T) level of theory. Finally, a HLC that is a function of the number of
valence electron pairs and unpaired electrons is added in an attempt to
extrapolate to CCI. The G2, G3, and G3X methods all have the disadvantage of
discontinuous potential energy surfaces because of the form of the HLC. In
response to this problem, the MCCM-style methods G3S (15) and G3SX (26)
were developed. These are similar to G3 and G3X, but they scale various energy
components (as in SAC and MCG3) rather than assuming separability and
correcting systematic errors with a HLC. The same group (26) has also
developed less expensive methods in which MP3 or MP2 calculations are
substituted for more expensive calculations in certain steps; we will consider
two such methods, namely G3SX(MP3), and G3 SX(MP2).

The CBS methods of Petersson and coworkers (22,25,28-30) extrapolate the
basis set and add empirical terms to extrapolate to experiment. Two especially
powerful versions of the CBS approach are CBS-4 (30) and CBS-Q (30). For
CBS-Q, the empirical terms are based on the overlap matrix and the spin
contamination (which arises in some partial treatments of the electron
correlation). CBS-4 also includes these terms plus a term based on the number
of electrons in the system.

A qualitatively different approach to the problem of treating electron
correlation is provided by the Kohn-Sham implementation of density functional
theory (DFT) (3/,32) and the empirically more successful hybrid DFT (32-34).
Although this is not the primary focus of the current paper, hybrid DFT results
will be presented for comparison to the multilevel methods. In hybrid DFT, the
correlation energy and a portion of the exchange energy are accounted for by a
density functional. Very useful hybrid DFT functionals include B3LYP (35,36),
mPWIPW91 (37), MPWIK (38), and PBEIPBE (39,40) which are functionals
based on the density and magnitude of the local gradient of the density. (We
note that mPW1PW91, MPWIK, and PBEIPBE are sometimes called MPW25,
MPW42.8, and PBEO, respectively.) Like other methods that do not explicitly
account for electron interactions, hybrid DFT is not systematically improvable.
Increasing the basis set can often improve the quality of the results (47,42);
however, just as for ab initio methods, there is no guarantee that it will.

Section 2 describes the methods used and the experimental test data used
for comparison. Section 3 presents results and discussion, and Section 4 gives
conclusions.

Methods and Test Data

All electronic structure calculations in this paper were performed with
GAUSSIAN9S (43). All calculations use the spin-restricted formalism for closed
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shells and the spin-unrestricted formalism for open-shell systems. The four basis
sets explicitly discussed and used in calculations are 6-31G(d)(44), 6-3 1G(2df,p)
(44), MG3 (14,45), and MG3S (42). We note that the MG3 basis is identical to
6-3114++G(3d2f,2df,2p) (44,46) for atoms H through Si, but is an improved
version of this basis for atoms P-Cl; it includes a diffuse s function on H and a
diffuse sp shell on Li through Cl, and it is a modification (/4) of the G3Large
basis (24) of Curtiss et at. MG3S is the same except the diffuse functions on H
atoms are deleted (42). Several other basis sets are used as part of the multilevel
techniques, and they are as described in the original papers.

For all results in this paper, spin-orbit coupling corrections have been added
to open-shell calculations from a compendium given elsewhere (10); we note
that this consistent treatment sometimes differs from the original methods
employed by other workers, e.g., standard G3 calculations include spin-orbit
contributions only for atoms. In the SAC and MCCM calculations presented
here, core correlation energy and relativistic effects are not explicitly included
but are implicit in the parameters (i.e., we use parameters called versions 2s and
3s in the notation of previous papers (/1,16,18)).

The hybrid DFT methods used here are B3LYP (35,36), PBEIPBE
(39,40,47), mPW1PW91 (37), and MPWIK (38). The ab initio methods
discussed in this article include HF, MP4SDQ (44), and QCISD(T) (27). We
consider only one pure DFT method, namely BLYP (48,49).

The cost function used in all tables and figures is the sum of the time to
calculate an energy, gradient, or Hessian (as stated in each case) for the two
molecules, 1-phosphinopropane and 2,2-dichloro-1-ethanol, with a single
S00MHz R14000 processor on a Silicon Graphics Origin 3800 with the
GAUSSIAN9S (43) electronic structure package normalized by dividing by the
sum of the times for MP2/6-31 G(2df,p) gradient calculations on the same two
molecules with the same program on the same computer. The test molecules
were chosen to give a balanced cost at a variety of levels and sizes of basis sets.
The cost for calculations with basis sets such as aug-cc-pVTZ (20) will be
dominated by the cost of 1-phosphinopropane, which has nine hydrogen atoms,
because aug-cc-pVTZ includes a very large number (23) of basis functions for
each hydrogen atom. The cost of calculations using the MG3 or MG3S basis set
will tend to be dominated by the cost of 2,2-dichloro-1-ethanol, which has two
second-row atoms, because these basis sets weigh more heavily on 2™ row
atoms rather than hydrogen.

The test set used for most comparisons in the present paper is Database/3
(18), which was introduced elsewhere. It consists of 109 atomization energies
(AEs), 44 forward and reverse reaction barrier heights (BHs) of 22 reactions, 13
electron affinities (EAs), and 13 ionization potentials (IPs). There are a total of
513 bonds among the 109 molecules used for AEs, where double or triple bonds
are only counted as a single bond. Note that all ionization potentials and electron
affinities are adiabatic (not vertical), i.., the geometry is optimized for the ions




158

as well as the neutrals. Our tests in the present paper will also include 2 data for
LiH (see below) and 22 values AE,.,., Which are the zero-point-exclusive
energies of reaction for the 22 reactions in the database. All mean unsigned and
root-mean-squared errors in the tables and text are unweighted averages over the
specified data.

Database/3 and the other data used in this paper consist entirely of zero-
point-exclusive data, which allows for direct comparisons with calculated Born-
Oppenheimer potential energy surfaces, i.e., the sum of the electronic energies
and nuclear repulsion. Although the G3X and CBS families of methods have
standard geometry and frequency calculations associated with them, in this
paper only the potential energy surfaces are required to compare with
Database/3. The geometries used are optimized QCISD/MG3 geometries for all
calculations in this paper.

One additional system, namely LiH, is discussed in this paper. The heat of
formation and electron affinity of LiH are taken from the G3/99 (50) data set.
The zero-point-exclusive atomization energy (D,) was obtained from the heat of
formation using the method described elsewhere (/0). The electron affinity is
converted into a zero-point exclusive electron affinity by removing the neutral
and anionic zero-point energies calculated at the mPWI1PW91/MG3 level and
scaled (/8) by 0.9758.

Discussion

Diffuse functions are often omitted on hydrogen because hydrogen has a
lower electronegativity than many elements of general interest (C,N,O,F, S,
Cl), and there is very little electron density around hydrogen. Hydrogen is the
most numerous atom type in many systems of interest (e.g., amino acids and
carbohydrates), and for methods to be cost-effective it is important not to use too
many basis functions on such a common atom. The MCG3/3 and MC-QCISD/3
methods have no diffuse functions on hydrogen for any component of the
calculation, and they perform very well compared to multilevel methods that use
diffuse functions on hydrogen for one or more components (CBS-4, CBS-Q,
G3X, G3SX, MCG3/2, MC-QCISD/2). It is desirable to test the limits of this
observation, and the calculations presented next are designed to do this. If
diffuse functions are required for systems where hydrogen is bonded to a less
electronegative atom, then a metal hydride system, such as LiH (which is not in
Database/3) may be poorly treated. Tables 1 and 2 test this hypothesis. Table 1
presents calculations of the electron affinity (EA) and atomization energy (AE)
of LiH by methods that do not include diffuse functions on H, and Table 2
presents calculations of these same quantities by methods that do include diffuse
functions on H. It can be seen in Table 1 that MCG3/3 and MC-QCISD/3
perform very well on the LiH AE and EA. On average they outperform MCG3/2



Table 1. Atomization energies and electron affinities (kcal/mol)

for LiH at QCISD/MG3 geometries for methods that do not

involve diffuse functions on hydrogen.

Method AE” EA® MUE*
Experiment 574 7.9
QCISD(T)/MG38 559 6.6 14
MCG3/3 58.0 7.9 03
MP4SDQ/MG3S 554 6.5 1.7
MC-QCISD/3 57.8 6.9 0.8
MC-UT/3 57.3 6.5 0.7
MC-CO/3 54.5 59 24
B3LYP/MG3S 58.3 9.7 1.4
PBEIPBE/MG3S 52.7 9.6 32
mPWIPW91/MG3S 532 9.7 3.0
MPWIK/MG3S 52.8 9.6 3.1
BLYP/MG3S 579 7.5 0.5
SAC/3 498 52 5.1
AMI 58.7 -15.1 12.1
“ atomization energy

® electron affinity

“ mean unsigned error in AE and EA

Table 2. Atomization energies and electron affinities (kcal/mol)

for LiH at QCISD/MG3 geometries for methods that involve

diffuse functions on hydrogen.
Method AE’ EA" MUE*
Experiment 574 7.9 o
QCISD(T)/MG3 55.9 6.8 1.3
G3SX 57.9 7.8 04
G3X 57.3 8.8 0.5
CBS-Q 57.6 6.8 0.7
G3SX(MP3) 58.0 k. 0.3
G3SX(MP2) 57.6 712 0.5
G3X(MP3) 57.0 9.5 1.0
MCG3/2 58.1 9.0 0.9
MP4SDQ/MG3 55.4 6.7 1.6
CBS-+4 55.3 9.5 1.8
MC-QCISD/2 57.5 8.6 04
B3LYP/MG3 583 9.8 1.4
mPWIPW91/MG3 53.1 9.8 3.1
“ atomization energy
b electron affinity

“ mean unsigned error in AE and EA
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and MC-QCISD/2, both of which have a component calculation that involves
diffuse functions on hydrogens (and therefore these methods are in Table 2). On
the whole, the accurate multilevel methods in Table 1 (MCG3/3, MC-QCISD/3)
and the hybrid DFT methods mPWIPW91 and B3LYP do not have
systematically higher errors than the methods in Table 2. Therefore, since metal
hydrides are seemingly a “worst case” for omitting diffuse functions on H, it
appears to be confirmed that diffuse functions on hydrogen have little
importance for most thermochemical calculations. Tables 3, 4, and 5, which are
discussed next include errors on the two LiH test cases in the “All data” rows.

Table 3 shows the errors for the muitilevel methods that scale (5) as N,
where N is the number of atoms (in this table and in Table 4 the methods are
arranged in order of decreasing cost for gradient calculations). Table 3 also
shows one single-level method, namely QCISD(T)/MG3S. All of the multilevel
methods in Table 3 have similar mean unsigned errors, in the range (all errors
quoted in the text are mean unsigned errors for all data) of 0.84-1.20 kcal/mol.
However they have gradient costs varying by over an order of magnitude, from
45 to 460. Thus they have a broad range of performance-to-cost ratios. G3SX is
both the most expensive and the most accurate among these methods. However
if gradient calculations are required, MCG3/3 and G3SX(MP3) are only about
one tenth the cost of G3SX, and the increase in MUE is less than 15% as
compared to G3SX. The MCG3/3 method not only has a relatively low cost for
gradients, it also has a relatively low cost for energies. Furthermore, the single-
level method in Table 3 is not competitive in terms of either cost or accuracy.

Table 4 gives the errors for the multilevel methods with much lower costs.
These methods are ideal for geometry optimizations or frequency calculations
on many systems and for energy calculations on very large systems. These
methods are, however, still much more accurate than any ab initio method of
similar cost. To illustrate this Table 4 also gives the results for a single-level N®
method for comparison. We also note that MC-QCISD/3 has an error only 27%
larger than CBS-Q, but a gradient cost 14 times less. The CBS-4 method has an
error 44% larger than MC-QCISD, but a gradient cost 2 times smaller. SAC/3
method has a mean unsigned error 2.5 times larger than CBS-4, but the cost is 9
times lower yet. If one considers larger systems, eventually the N° methods
become the winner because in the limit of large N their cost rise more slowly
than the other methods in Tables 3 and 4.

Table 5 gives the errors for a DFT method, four hybrid DFT methods, and
AMI. Although hybrid DFT is very affordable, it lacks the accuracy of multi-
coefficient semi-empirical methods based on explicitly correlated wave
functions. Nevertheless the mPWIPW91/MG3S and AMI methods have
performance/cost characteristics that put them near the envelope of best
performance in Figure 1. AMI is valuable for larger systems where the other
methods in the figure are not affordable.

Figure 1 is a scatter plot of the MUE over Database/3 versus the cost of a
gradient for all methods in tables 3-5. Notice that the abscissa spans seven
decades of cost.
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Figure 1. Mean unsigned error over all 203 data vs. gradient cost for AMI (m),
ab initio (0), CBS (a), G3 (O), MCCM (®), DFT (), and hybrid DFT (»)
methods. The figure includes all the methods that are included in Tables 3-5.
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Conclusions

The comparisons in this paper indicate that diffuse functions on hydrogen
atoms have little effect on the performance of multilevel methods. Furthermore,
tests against 209 data show that multilevel methods provide very attractive
performance levels for a given cost for applications requiring thermochemical
calculations. We also note that some multilevel methods have performance-to-
cost ratios that rise above the rest of the crowd of even the very select group of
highly efficient methods considered here. Among N’ methods, G3SX(MP3) and
MCG3/3 methods have very favorable costs and only mild loss in accuracy as
compared to the most accurate levels. MC-QCISD/3 has the best performance
among N® methods, with a MUE over all data of 1.5 kcal/mol. Another N
method with notable performance is CBS-4, which has an error over all data of
2.2 kcal/mol.
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