C.J. Cramer and D. G. Truhlar, in: “Free Energy
Calculations in Rational Drug Design,” edited
by M. R. Reddy and M. D. Erion (Kluwer, New
York, 2001), pp. 63-95.

Chapter 4

Solvation Thermodynamics and the Treatment of
Equilibrium and Nonequilibrium Solvation Effects
by Models Based on Collective Solvent Coordinates

Christopher J. Cramer and Donald G. Truhlar

Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis,
MN 55455-0431

1. INTRODUCTION

Computing the free energy of solvation is important in rational drug
design for both pharmacokinetics (drug transport to the site of action) and
pharmacodynamics (drug interactions at the site of activity). In the former
case, it is well recognized that bioavailability depends on the availability of a
particular drug to have a favorable interaction with both water (for transport
in the blood) and lipophilic media (for transport through cell membranes).
The solubility and partitioning of a molecule in and between various media
are thus critical physicochemical parameters that correlate strongly with
biological activity.l Even though such effects are nonspecific with regard to
receptor structure, they must be taken into account in rational drug design.
Then, at the receptor, desolvation is a major contributor to ligand-protein
binding, and the estimation of this effect plays an important role in structure-
based drug design.* A third area where solvation effects must be considered
is drug metabolism, since the kinetics and thermodynamics of the enzymatic
biotransformations of drugs may be very dependent on solvation effects.
Both the ability of a drug to survive deactivation and elimination and the
nature of the potentially toxic metabolites of a drug may depend on solvation
effects on kinetics.

For both nonspecific and structure-based approaches, physicochemical
solvation parameters may be used directly, or they may be embedded in
quantitative structure-activity relationships.’ This chapter starts with a
review of the thermodynamic equations that may be used for a quantitative
description of the free energy of solutes in fluid media. Then it provides an

63



64 Christopher J. Cramer and Donald G. Truhlar

overview of statistical mechanical models for solvation effects that are based
on collective coordinates, both macroscopic coordinates such as the electric
polarization of the solvent and microscopic collective coordinates such as
the surface area of the solute-solvent interface. Such models are sometimes
called implicit models (because the individual atomic coordinates of the
solvent molecules are not treated explicitly) or continuum models (because
the fine grained detail of the solvent is replaced by an averaged description
in which the solvent is treated mathematically as a continuous medium).

2. MOLAR FREE ENERGY

An ideal gas obeys the equation of state
PV =nRT ¢y}

where P is the pressure, V is the volume, n is the number of moles, R is the
universal gas constant, and T is the absolute temperature. In convenient
units, R takes a value of 0.08206 L atm mol”’ K.

The chemical potential p of an ideal gas is its molar Gibbs free energy.
In mechanics and thermodynamics, absolute values of energies depend on
how the zero of energy is defined, but physical observables only depend on
energy differences. In order to standardize the tabulation of quantities useful
for the calculation of energy differences, a system of standard states has
been defined. The most common standard state for gases is an ideal gas at
one atmosphere of pressure and the temperature of interest. At 298° K this
corresponds to an ideal gas at a concentration of 0.04089 mol L. This is
not always the most convenient standard state for discussing gases in
equilibrium with liquid solutions. Another useful choice of standard state is
the ideal gas at a concentration of 1 mol L; at 298° K this corresponds to a
pressure of 24.45 atm = 18583 torr. It is always important to understand
what standard state is being used when one uses tabulated thermodynamic
data.

The chemical potential of an ideal gas at temperature T depends on
pressure according to the following relation:

w=u° +RT 1‘{-—1:—] [¥))
P

where p© and PO are the chemical potential and pressure in the standard {
state. The significance of this equation is that if u© is tabulated for a given



Solvation Free Energies Using Implicit Solvent 65

temperature for a known value of PO, we can calculate the molar free energy
of an ideal gas at any other pressure at this temperature by using the
tabulated values. If we change the standard state, i.e., if we change PO, then
a different p° must be tabulated, but the resulting p calculated from
Equation 2 must be independent of the choice of standard state. Consider
two possible standard states 1 and 2. We must have

u°)+RT In =u°@)+RTIn 3
PO(1) P°(2)
from which it follows that
no()=p°Q@)+RT 1n-P—°-Q 4
P°(2)

Let standard state 1 be the 1 atm ideal gas, and standard state 2 be the 1 mol
L' ideal gas. Then, using the values of PO given above we have, at 298° K,

pO(1 atm) = uO(1 M) — RT In 24.45 = pO(1 M) — 1.89 kcal/mol 3)

That is, the magnitude of the chemical potential changes by 1.89 kcal/mol on
going from one standard state to the other.

Eqilaaﬁons 1-and 5 apply only to ideal gases. For nonideal gases one
writes

w=u®+RT ln(-}%) (6)

where f is the fugacity of the gas. The fugacity is defined by Equation 6. In
other words, we keep the simple form of Equation 2 by hiding the
complicated behavior of the real gas (as opposed to an ideal gas) in the
fugacity function.

It is conventional to define fugacity so that in the limit of a dilute gas, it
becomes the pressure. Thus fugacity has units of pressure. When one deals
with condensed phases and with gases in equilibrium with condensed
phases, it becomes convenient to introduce a unitless generalization of
fugacity, which is called activity. The activity is defined by®

a=f/fo @)

-and therefore
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p=p°+RTIna - (&)

At equilibrium, all components of a mixture have the same molar free
energy, i.e., the same chemical potential, in any phase in which they are
present, and they have the same chemical potential as all other components.
However it is not always convenient to use the same standard state for all
components or even for the same component in all phases. Just as Equation
6 defines fugacity, Equation 7 or 8 defines activity. Furthermore, Equations
6-8 define f and a for all substances, not just gases. However we should
keep in mind that we do not use the same standard state for a substance in all
the phases, mixtures, or pure states in which it may occur or for all
components of a mixture.

To proceed we will first summarize the treatment of ideal mixtures.
Then we will consider nonideal mixtures.

3. IDEAL MIXTURES

An ideal mixture is one for which®

fa = fAXA 9)

for every component A, where fa is the fugacity of A in the mixture, X4 is
the mole fraction of A in the mixture, i.e.,

Xp=—2b8 , (10)
na +ng

and f4 is the fugacity of pure A at the same temperature and pressure of the
mixture. Note that one can postulate ideal mixtures of ideal gases, but one
can also postulate ideal mixtures of nonideal components, such as real gases -
and liquids.

Consider an ideal mixture of ideal gases, A and B. Equation 9 yields

Pa= PLXa an

where PA is the pressure of pure A at the same pressure and temperature as -
the mixture. The pressure of the mixture is

P=(n, +ng)RTIV (12)
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Substituting PA = P along with Equations 10 and 12 into Equation 11 gives

P, =n,RTIV (13)

which is the expected result.

Now apply Equation 9 to a liquid solution in equilibrium with its vapor.
We assume that both the solute and the solvent are liquids in their pure state
at the temperature and pressure of interest. Substituting Equation 9 into
Equation 6 yields

FAXA
HA =p3 +RTIn ‘;0 (14)
A

When X4 is unity, the left-hand side becomes the chemical potential of the
pure substance:

nA =p.°A+RTln[%J (15)
A

Note that the standard state fugacity now carries a subscript, because for A it
is defined by the nonideal behavior of A. Substituting Equation 15 into
Equation 14 yields***

M, =U, +RTIhX, (16)

This is independent of standard state, but we can also view it as a version of
- Equation 14 in which we conveniently choose the standard state as the pure
liquid (we shall abbreviate this as lig.s.s. to denote the (pure) liquid standard
state). Therefore

fa (lig.s.s)= fA an

This illustrates the statement made earlier that the most convenient choice of
standard state may depend on the problem. For gas-phase problems
involving A, it is convenient to choose the standard state for A as an ideal
gas at 1 atm pressure. But, where the vapor of A is in equilibrium with a
solution, it is sometimes convenient to choose the standard state as the pure
liquid. Since fA is the same for the pure liquid and the vapor in equilibrium
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with the pure liquid, we may equivalently equate fA(qu.s.s‘) to either the
fugacity of the pure liquid or the vapor in equilibrium with it. In general this
vapor does not have a pressure of 1 atm nor does it have a concentration of 1
mol L. Thus this standard state is not equivalent to either of the two
gaseous standard states mentioned above.

Suppose that the vapor of A in equilibrium with the liquid is an ideal gas.
Then Equation 2 yields

quugmmn% (18)

where Py is the vapor pressure of A in equilibrium with the liquid, and

b =g +RTIn A a9
P

where PJ is the vapor pressure of pure A. Substituting Equations 18 and 19
into Equation 16 yields

P PR
RT ln-;; =RT ln;-g +RT InXa (20)

which simplifies to
Pa= P} X @1

which is Raoult’s law.* Thus Equation 9 may be considered to be a |
generalization of Raoult’s law.” Note that Equations 18-21 are equally
applicable to a solution of one or more solutes B, C, D, etc. in liquid A. |
Raoult’s law says that the partial pressure of each will be proportional to its
concentration.

4. NONIDEAL SOLUTIONS

In actuality, Raoult’s law is only an approximation for real systems. |
Although it is a good approximation for many solvents, for which XA =1if |
the solution is dilute, it is often a very poor approximation for solutes, for
which XA < 0.5. In the limit as X A — 0, though, there is still a linear ‘
relationship



Solvation Free Energies Using Implicit Solvent 69

X
—kp X
Pa Xa =0 A A (22)

but k [i( does not equal PA. Equation 22 is called Henry’s law, and k A)f is
called the Henry’s law constant. For small Xa, the molarity M and
molality ma are linear functions of Xa; thus there is also a linear relation
between P and molarity or molality: '

M
m
Pa ——————-—)mA =0 kama (24)

Equations 23 and 24 are alternative forms of Henry’s law, and k XI and kl'{‘

are alternative forms of the Henry’s law constant.

We can equate the chemical potential of the solute to the chemical
potential of the vapor in equilibrium with it. Assume the vapor is an ideal
gas:

U (solute) =pu A (vapor) = H?\ (g.s.s)+ RT In Py /Po(g.s.s.) (25)
X
=uS(g.s5)+RT n——A— 4 RTInXa 26)
A P°(gs.s.)

where quantities referring to the gaseous standard state are labeled g.s.s. In
this case, it may be convenient to use Equation 8 and let

an =Xa @7

Comparing Equations 26 and 27 to Equation 8 implies a new standard state
(to be denoted as the Henry’s Law standard state or HL s.s.) whose chemical
potential is related to that for the gaseous standard state by

X
ka

o [0}
pa (HLs.s)=py(gs.s.)+RT In
A A'E P°(g.s.s.)

(28)

With the liquid standard state we have
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fa =M +RTIn Xa (29)

or

fa =HA +RTInap (30)

Both Equations 29 and 30 are valid in the region where the limit of Equation
22 holds, but at higher concentrations of A, Equation 29 fails to hold.
However, Equation 30 is a special case of Equation 8 and as such it defines
the activity p for any value of X5 . Thus,

ap #Xa (31
but
3
ap WXA (32)

It is then convenient to define an activity coefficient y 4 such that’
ap = XaXA (33)
at all XA . Equation 31 then implies

VAR50 34

The activity coefficient measures the deviation from ideality. Substituting
Equation 33 into Equation 30 yields

HA =M} +RTInyAXa 35)

Equation 29 implies that qu is the chemical potential of a hypothetical
solution in which X4 = 1, but the vapor pressure over the solution still obeys

Henry’s law as extrapolated from infinite dilution. Thus the standard state is
a hypothetical Henry’s law solution of unit mole fraction.

The numerical value of the activity clearly depends upon the standard
state, and one often encounters other choices for the standard state for
solutes. For example, just as we obtained Equations 29 and 30 from

Equation 22, we could have obtained similar looking equations from |
Equations 23 or Equation 24. However, the derivation requires a mention of '
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one more thermodynamic convention if we wish to avoid nonsensical
logarithms of quantities with units. Notice that Equation 22 implies that k jf

has units of pressure; thus the logarithms in Equations 26 and 28 are well
defined. At first, it might appear that the constants in Equations 23 and 24
have different units. However, the convention that is followed in
thermodynamics is that Ma and mpa are the unitless numerical values of
the molarity and molality; thus one can take their logarithms.

If we take the standard state as the hypothetical 1 molar Henry’s law
solution (sometimes shortened to “hypothetical ideal 1 molar solution,”
where the ideality referred to is Henry’s law ideality in molarity units, that
is, the proportionality of partial pressure and molarity, not Raoult’s law
ideality) we get

uQ (1M sol.s.s)=pQ(g.s.s.)+ RT In k% (36)
A PR (gs.s)

pAng-kRTlnaA (37)

ap =YAMA (38)

YA —————1 (39)

Mp— 0

where 1 M sol.s.s. denotes the 1 molar hypothetical solute standard state.
Furthermore if we take a hypothetical 1 molal Henry’s law solute as the
standard state (1 m sol.s.s.) we get

m
uOA (Imsol.s.s.) = u%(g.s.s-) + RT In o kA (40)
Py (g.s.s.)
BA =Ha +RTInap (41)
ap =YAMA (42)
VA5l “3)

o . 0
One cannot emphasize too often that the numerical values of KA, ap, and
YA depend on the choice of standard state. The usual thermodynamic
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convention is to say what standard state is used in words, not in the equation
itself, but in many cases we have indicated it in the equation for clarity.

Before closing this section we note that even in nonideal solutions we
can use the standard state of Equation 16 for the solute. Since Equation 16
only holds for ideal solutions, one generalizes to obtain®®

uA=u:§+RTln aA (44)
with
ap =yamalm} (45)

where m A is the molality of the standard state. Now, however, y Ao does not
tend to unity as XA tends to 0. However, comparing Equations 44 and 45 to
Equations 34 and 35 yields

0 .
lim YA(lquS)=g[uA(m‘ss) uAl/RT

46
XaA—0 (46)

Thus, ¥ o of Equation 45 tends to a constant value in dilute solutions. This

constant value is sometimes called the limiting activity coefficient v 3.
Consideration of Equations 21 and 22 allows us to evaluate this limit:

YR= lim yadigss)=k/P} \ 47)
Xp—0

Alternatively, we may write:
X oo
ky =PAYA 48)

This shows that knowledge of the vapor pressure of A and ltS limiting
activity coefficient allows us to calculate the Henry’s law constant.’

S. ELECTROLYTES

Electrolytes are solutes that carry an electrical charge As charged
species typically have negligible vapor pressures, it 1s convenient to
introduce yet another standard state for their description.®® In general, the
same conditions of concentration, temperature, and pressure are assumed as
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for a non-electrolyte (e.g., the HLss standard state), but the chemical
potential of an anion is defined as

- =uA+AG® _ (ess. 49
® mA (A/A )(eSS) (49)

A

where AG(CL/A_)(C.SAS.) denotes the standard-state free energy change for

the reaction
Asoly + 1/2 Hy(gy = A™(sol) + H (s01) (50)

In Equation 50 the chemical potential of non-electrolyte A depends on the
usual choice of standard-state conventions described above, and the
chemical potentials of both H,,, and H*;, are taken to be zero (this defines
e.s.s., the electrolyte standard state). By setting the standard-state free energy -
of the solvated proton equal to zero, this standard-state convention

incorporates the absolute potential, AGRHE, of the hydrogen electrode
process producing one proton in solution,

12 Hz(g) ——)e_(g) + H+(sol) (S 1)

into the magnitude of the chemical potential of the electrolyte. In water as
solvent, the absolute potential of this electrode is 4.44 eV."°

For a cation, the analogous equations defining the standard-state
chemical potential for A* are '

=pA +AG°
Ha+ THA (A*/A

) (e.s.s.) (52)

A¥(sol) + 1/2 Hp(g) = Asol) + H(s01) 63

where AG(Z +/A)(e.s.s.) in Equation 52 refers to the standard-state free

energy change for Equation 53.

Note, in using Equations 50 and 53 above, that tabulations of °
thermodynamic data for electrolytes tend to employ a 1 molar ess
concentration for all species in solution. For situations defined to have a
standard-state pH value different from O (which corresponds to a 1 molar
concentration of solvated protons), the standard-state chemical potentials for
anions and cations are determined as
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uA_(e.s.s.;szk):p.A_(e.s.s.)-kRT (54)
Hp+(essspH=k) =} , 4 (e.5.5)+ kRT . (55)

Note the analogy between Equations 54 and 55 and Equation 4.
An example of the use of these standard states for working with solvation
effects on one-electron oxidation potentials is provided elsewhere."'

6. SOLVATION

We are now in a position to consider the difference in chemical potential
between a solute in its (hypothetical) standard state in a liquid solution and
that same chemical species in its gas-phase standard state. This difference is

the standard-state molar free energy of solvation AGSO (also referred to as

the standard state molar free energy of transfer from the vapor phase to a
liquid solution). We define

AG §= poA(solute) - poA( vapor) (56)

where we have used different standard states for each phase. Thus the
superscript on AGSO unlike all previous standard-state superscript in these

notes refers not to a particular standard state of one substance, but rather to
the fact that the dissolution process being considered is a hypothetical one
involving a transfer from one standard state to another. (This may be
compared to the situation for heat of formation, which is the enthalpy of
forming one mole of a substance in its standard state from the elements, each
in their own standard state. In that case, there are different standard states
for different substances in the initial and final states of the transfer process.)
Now substitute Equations 2 and 35 into Equation 56:

AGS0 (HLs.s) = pa(solute) — A (vapor) — RTInyp XA + RTln% &)

where the parenthetical notation on the left-hand side indicates that we are |
using a Henry’s law standard state for the solute. If the vapor is in -
equilibrium with the solution, the first two terms on the right-hand side of
Equation 57 cancel, and we have
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AGS(HL 5.5.) = RT In——2— (58)
P°XAYA
Using Equation 34 allows us to write this as
AGY(HLss)=RT lim In—2— (59)

Xa—0 P°Xa

To evaluate the logarithm, we must measure the vapor pressure Pa of A in
equilibrium with a solution where its mole fraction is X, in the limit where
the solution becomes infinitely dilute. That is, in the limit of infinite dilution
where y is 1, the free energy of solvation can be obtained from

measurement of the solute vapor pressure (in the appropriate standard state
units) over a solution of known concentration.
Substituting Equation 22 into Equation 59 yields

AGY(HLs:s)=RT Ink. / P° (60)

Now substituting Equation 48 yields

AGS(HL s.s.)=RT[ln ;;‘?) +lny°,§] (61)

Thus the free energy of solvation may be calculated from the Henry’s law
constant or from the vapor pressure of the pure substance and the limiting
activity coefficient. Thus, if the deviation of the solution from Raoult’s law
behavior is known, calculation of the standard state free energy of solvation
requires only the vapor pressure of the pure substance (in the standard state

units). For an ideal solution that behaves according to Raoult’s law, ¥y

would be 1, leading to the observation that AG § would depend simply on
the vapor pressure of the pure solute.

In our quantum mechanical solvation modeling, “~' we take the standard
state of the vapor to be a 1 molar ideal gas at 298° K and the standard state
of the solute to be a hypothetical 1 molar Henry’s law solute at the same

12-27

. . (8] . .
temperature and pressure. Free energies of solvation, AG g, for this choice

of standard states, may be derived by employing the theory given above.
First, we combine Equations 28 and 36 to get
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M

O (1M sol.s.s) =S (HL RT B
WA sol.s.s) =p s (HL s.5) + n X (62)

A

= uQ (HLs.s.)~ RT InMA (63)

Equation 63 follows from Equation 62 by combining Equations 22 and 23.
Clearly, the ratio of Henry’s law constants is the molarity of the solution in
which the mole fraction of solute A is unity, i.e., the molarity of pure liquid
A. We next note that Equation 56 implies

AG(I M sols.s.) =AGQ(HL s.s.)+ U4 (1M sols.s) —pa (HLss.)  (64)
and using Equation 63 then yields
AGJ(I M sol.s.s.)=AGJ(HL s.s.)— RT In Ma (65)

Combining this with Equations 60 and 61 yields

X
h_ (66)

AGS(1M sol.s.s.) = RT In—
P Ma

and

o (=]

P
AGJ(IMsols.s.)= RT 1n—Ay—§*- (67)
POM%

where, for a 1 M gaseous standard state, P© should be set to 24.45 atm, as
discussed between Equations 1 and 2. Other transformations of standard
states may be accomplished equivalently.

Let’s do a numerical example: 1,2-ethanediol. We will use Equation 67

since y A is known to be 0.8.% The density is® 1.113 g cm’; therefore

_1.113g 103cm® _mol

M.
m> L 62.07g

=1793 (68)

The vapor pressure is* 0.010 kPa; therefore
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P® =0010 kPa—2 __ _9387x1075 (69)

101.325 kPa
Finally, Equation 67 yields (T = 298° K):

-5
_1. (987 x1072)(0.8) _
AG = 0.592 keal mol~'In ¢ =-9.19 keal mol 70

S keal mol 0 45)(17.93) calmol = (70)

Notice that if we had used the Henry’s law standard state for the solute, we
would have obtained -7.48 kcal/mol (which can be derived by .com_bining
Equations 63, 68, and 70). Note that if YA = 0.9, the free energy of
solvation would be less negative by only 0.07 kcal/mol. Thus, when the

solution is nearly ideal (y A = 1), the free energy of solvation is primarily
determined by the vapor pressure.

Note that we previously'® quoted AGSO as 9.6 kcal/mol and as'’ -9.3

kcal/mol. These values differ from the present value by 0.4 kcal/mol
(apparently a math error) and 0.1 kcal/mol (apparently a round-off error),
respectively.

A special case of Equation 67 concerns the “free energy of solvation of A
in A.” Since a solution of A in A obviously satisfies Raoult’s Law, we have

Y& = 1. Then Equation 67 can be used to find the solvation energy of A in
A from the vapor pressure of A and its density.’'

7. SOLUBILITY

Next consider the relationship between the free energy of solvation and
the solubility of a solute. First, in keeping with all the developments above,
we consider a solute that is a liquid in its pure state. By combining of
Equations 55 and 61, we may write

P. k X
AGJ=RT Iy =2 |+ R7| =4 a1
P° Pa
Then Equation 22 yields

A P
AGQ= RT1W & |+ Iim RT | —A (72)
P° | XxXp—0 Pa XA
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Fa
PAXA

= RTln{ Fa J+ RTIn (73)

where X;f refers to the mole fraction of solute in the infinitely dilute regime
in which Henry’s law is obeyed. In the special case of a liquid solute which
is saturated in the solvent at such very dilute concentrations, we must have a
case where the equilibrium chemical potentials of the pure liquid solute, the
solute in solution, and the solute vapor over both of the phases are all equal.
For the vapor over the pure liquid solute, we have

. PX
WA (gas) = pg (gs.s.) + RT ln[ P"(\)] (74)
while for the vapor over the solution we have

o P
WA (gas)= g (g.ss)+RT 1n-;% (75)

Since these two chemical potentials must be equal (given the equilibrium
between the pure liquid and the saturated solution), it must be the case that

PA = Pa, in which case Equation 72 becomes

PA o
AGg=RT 1.{ = }— RT In XZ (76)

This equation has the expected behavior that AG (S) becomes more positive

with decreasing solubility of the solute. However, free energies of solvation
for different solutes cannot be related to their relative solubilities unless the
vapor pressures of the different solutes are similar or one takes account of
this via Equation 76. Furthermore, if the solubility is high enough that
Henry’s law does not hold, then one must consider finite-concentration
activity coefficients, not just the infinite-dilution limit.

The situation is more complicated for saturated solutions of solid solutes,
since there is a free energy of fusion term associated with leaving the pure
solid in order to dissolve into solution (or, in the other direction, we must
take account of the free energy of crystallization). Since this term, like
vapor pressure, will be different for different solutes, it is in general not
appropriate to assign relative solubilities based on relative free energies of
solvation. Furthermore, molecular modeling techniques for estimating
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crystallization energies are not as well developed as those for estimating
solvation energies. For a discussion of solubility of solids in terms of
infinite dilution activity coefficients, see Grant and Higuchi.”

A similar multiphase complication that should be kept in mind when
discussing solutions at finite concentrations is possible micelle formation. It
is well known that for many organic solutes in water, when the concentration
exceeds a certain solute-dependent value, called the critical micelle
concentration (cmc), the solute molecules are not distributed in a random
uncorrelated way but rather aggregate into units (micelles) in which their
distances of separation and orientations with respect to each other and to
solvent molecules have strong correlations. Micelle formation, if it occurs,
will clearly have a major effect on the apparent activity coefficient but the
observation of the phenomenon requires more sophisticated analytical
techniques than observation of, say, liquid-liquid phase separation.

8. MODELING: EQUILIBRIUM PROPERTIES

The reason we prefer to use 1 M for the standard state in both the gas
phase and in liquid solution is that using the same concentration in the gas
phase and solution eliminates an entropic term in the statistical mechanical
free energy and allows us to focus on the interaction terms coupling the
solute to the solvent.** In particular, using the standard state of Equation
67, we can write> > the free energy of solvation of a rigid, non-rotating
solute as

AG ‘S’(x) = —RTln>exp(— B/ ET)( an

solvent

where x denotes the set of vibrational coordinates of the solute, k is
Boltzmann’s constant, B is the potential energy of interaction between the
solute and the solvent, and () 1 ene denotes an average over all possible

solvent configurations. In practice we are interested in the free energy of
solvation of a nonrigid, rotating solute, and this is given by

8Gg =(AGS())_+ AGinm (78)

where (-~-)x denotes an average over vibrational coordinates, G, is the

internal (i.e., conrovibronic, i.e., conformational-rotational-vibrational-
electronic) free energy of the solute, and
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AGint = Gipi(sol.) = Ging(8)- (79)

In practice we often neglect the distinction between AG (S) and AGS (x),

although sometimes it is important to optimize the geometry in solution®* or
to at least include the conformational part.14 (If one did try to include the
rotational part, one would run into the problem that the 3 gas-phase rotations
are converted in liquid solution into low-frequency librations that are
strongly coupled to low-energy solvent motions). In the rest of this section

we focus on AG%(x).

There are two main approaches to calculating Equation 77. In the brute-
force or atomistic approach the solvent molecules are treated explicitly, and
the average is calculated by using Monte Carlo® or molecular dynamics *
methods to sample the solvent configurations. In the so-called continuum
approach, the solvent is modeled by a field, i.e., a collective solvent
coordinate, that does not depend on the instantaneous positions of the
nuclei.'” > #"# The advantages of the atomistic approach are that it provides
a detailed picture of the solvent and it can readily be applied to arbitrary
systems provided a potential energy function is available. The advantages of
the collective-solvent-coordinate model are lower cost, and earlier route to
including quantum mechanical effects, and elimination of the need for
potential energy functions for individual solute-solvent interactions. Since
the atomistic approach is treated in a separate chapter of this text, the present
chapter will only consider collective-solvent-coordinate approaches.

In general, collective-coordinate approaches separate AGSO (x) into two

parts: bulk electrostatics (henceforth called just electrostatic or AGelec) and
the rest. This is an extrathermodynamic distinction, and there is no unique
way to separate the two kinds of effects in either thermodynamics or
statistical mechanics. In the most accurate collective-coordinate approaches,
is modeled by self-consistent reaction field (SCRF) AGelec theory.'> 132
¥4 The reaction field is the field acting on the solute due to the electric |
polarization of the solvent induced by the solute. The electric polarization of
the solvent partially cancels the electric field lines emanating from the
charges and partial charges of the solute, thereby reducing the self-energy
and charge-charge interactions within the solute. This favors higher partial
atomic charges in molecular solutes as compared to their gas-phase charge
distributions. .

If the solute were simply a collection of point charges surrounded by a
continuous dielectric medium with the bulk dielectric constant € of the
solvent, the self-energy and the strength of charge-charge interactions in the
solute would be reduced by a factor of €. This is called dielectric screening.
However, the solute itself occupies a finite volume, and solvent is excluded
from this volume. This reduces the dielectric screening and is called
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dielectric descreening. In the early days of solvation modeling, the solute
was represented as a sphere or ellipsoid;** such a model provides only a
crude accounting for dielectric descreening. Modern theories represent the
solute as a superposition of atomic spheres centered at the nuclei; this is
much more realistic.

The electric polarization of the solvent has three components: electronic,
“atomic” (i.e., translational and vibrational), and orientational. The
polarization of a nonpolar solvent is almost entirely electronic; this leads to
€=2. Polar solvents can have much larger dielectric constants, e.g. € is
13.9 for 1-pentanol, 37.7 for methanol, and 78.3 for water.”

The electrostatic contribution to the free energy of solvation is one half
the interaction energy of the solute with the reaction field. The factor of one
half comes from the fact that the free energy cost of polarizing the solvent is
one half of the favorable interaction energy that one gains; the simplicity of
this result is a consequence of assuming linear response of the solvent to the
solute 2" 443

The chief uncertainties in calculating G, are (i) the charge distribution
of the solute and (ii) the location of the boundary at which one switches
between solute screening and descreening. We will consider these in order.
In molecular mechanics modeling, one associates standard partial charges to
the various atoms of common functional groups. This is only satisfactory
for zero-order estimates. Better charges may be obtained from quantum
mechanical electronic structure calculations employing a self-consistent field
(SCF), i.e., in which each orbital is optimized self-consistently in the field of
the others. If the orbitals are optimized not only in the field of the other
occupied orbitals but also self-consistently with the reaction field, one
obtains the SCRF method. In our own most recent work, the charges used in
the SCRF calculations are obtained from the orbitals by what is called a
class IV mapping.”' This mapping contains semiempirical parameters that
makes up for the lack of complete electron correlation and other deficiencies
of the electronic structure method. Our most recent set of mapping
parameters is called Charge Model’> * (CM2).

In most of our own solvation models,'>"™ '** the interaction of the solute
partial atomic charges with electric polarization of the solvent dielectric
medium outside the overlapping spheres representing the solute is calculated -
by the generalized Born*> ***" (GB) approximation. We have also developed
a semiempirical model”’ based on the conductor-like screening model™
(COSMO), which uses the € =co limit of the Poisson equation and then .
scales the results to finite €. (We have also used a pairwise descreening
model'® discussed below.) The COSMO model uses the continuous solute !
electron density function p(r) rather than replacing it by a set of partial |
atomic charges.'* ** % In principle this allows a more accurate treatment of
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lone pairs and atomic dipoles, but it cannot take advantage of the
improvement in accuracy afforded by the class IV mapping.

A third class of solvation models is based directly on the Poisson
equation for finite €, based either on p(r)* “ or its multipole
expansion.*” ¢ The approach based on p(r) is usually called polarized
continuum model (PCM). It is unclear if the extra accuracy of using the
Poisson equation is sufficient to offset its chief disadvantage, which is
sensitivity to the portion of the solute charge that lies outside the set of
overlapping solute spheres. This results in a spurious contribution to the
solvation energy is variously called outlying charge error or escaped charge
error.®® The outlying charge error is usually compensated by a
renormalization procedure,® but it can still be severe, especially for anions.
The use of a truncated multipole expansion eliminates the outlying charge
error in principle, but suffers from the fact that the multipole expansion is
slowly convergent for large molecules. :

An alternative to the GB, COSMO, and Poisson electrostatic calculations
is to model the solution to the Poisson equation in terms of pair potentials
between solute atoms; this procedure is based on the physical picture that the
solvent screens the intra-solute Coulombic interactions of the solute, except -
for the critical descreening of one part of the solute from the solvent by
another part of this solute. This descreening can be modeled in an average
way to a certain level of accuracy by pairwise functions of atomic
positions.'® * ¢ Onpe can obtain quite accurate solvation energies in this
way, and it has recently been shown that this algoritbm provides a
satisfactory alternative to more expensive explicit-solvent simulations even
for the demanding cases of 10-base-pair duplexes of DNA and RNA in -
water.%

The electrostatic methods just discussed suitable for nonelectrolytic |
solvent. However, both the GB and Poisson approaches may be extended to
salt solutions, the former by introducing a Debye-Hiickel parameter(" and
the latter by generalizing the Poisson equation to the Poisson-Boltzmann
equation.®* The Debye-Hiickel modification of the GB model is valid to -
much higher salt concentrations than the original Debye-Hiickel theory
because the model includes the finite size of the solute molecules. ‘

Perhaps the most widely discussed source of uncertainty in electrostatic
calculations is the location of the solute/solvent boundary. The most
common treatment is to place the boundary at the surface of a set of
overlapping spheres centered at the nuclei. But what radius should one use
for those spheres? One common answer is van der Waals radii times 1.2.%
In our own quantum mechanical solvation models,’>?” and those of several
others™ %, these radii are empirical parameters. Recently Barone et al.”
have modified the PCM to use charge-dependent united-atom spheres
instead of all-atom spheres, and they optimized the electrostatic radii for a
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particular normalization scheme, known as the ICOMP = 4 scheme. The
resulting model is called the united-atom Hartree-Fock (UAHF) model.

The “correct” radii for electrostatic solvation calculations have been
debated for over 50 years. But there can be no correct answer. The model
that the dielectric constant changes from unity to € at a definite point is
wrong. The solute boundary region fluctuates as a consequence of solute
vibrations and solvent motions, and the dielectric constant, to the extent that
it is even defined in a microscopic space, also fluctuates and changes
gradually over this region. The latter aspect of solvent polarization is
sometimes treated as a form of dielectric saturation, i.e., one notes that at
high enough fields (e.g., close to a polar or changed solute), the permittivity
(dielectric constant) of the solvent is not constant, it is reduced and depends
on the field." > Thus we believe that it is futile to hope to find the “best”
radii by considering only electrostatics. Instead we recommend finding
reasonable radii that clearly define a bulk electrostatic contribution, however
arbitrary, and then concentrating on making the non-electrostatic term '
(mentioned above) be consistent with this choice. In our work, we do this by
parameterizing the non-electrostatic term against experimental data.

Some of the physical effects that must be included in the non-
electrostatic term are:
1) cavitation, i.e., the free energy cost of making a cavity in the solvent to
allow room for the solute;

2) dispersion, i.e., the change in solvent-solvent dispersion forces and the
introduction of solute-solvent dispersion forces when the solute is placed in
the cavity (the change in solvent-solvent dispersion forces due to having
made the cavity are in principle in the cavitation term, but one can see that
the effects are not neatly separable);

3) exchange repulsion of solute and solvent and the change in intrasolvent
exchange repulsion (Exchange repulsion is ultimately due to the Pauli
exclusion principle which prevents the charge clouds of atoms from
overlapping significantly without a large energy penalty. Those who
appreciate advanced %uantum mechanics realize that, due to the Hellmann-
Feynman theorem,””” all such quantum effects can still be calculated by
electrostatics, i.e., once you know the wave function, everything is
electrostatics. That is one reason why, when we speak carefully, we say that
the so called non-electrostatic term is actually a measure of the deviation of
the solvation energy from a bulk electrostatic model):

4) the deviation of other solute-solvent interactions from bulk electrostatics,
e.g., the fact that a hydrogen bond is not explainable in terms of bulk
electrostatics;

5) other changes in solvent structure due to the introduction of the solute,
e.g., those changes that are responsible for the hydrophobic’*®* effect.



84 Christopher J. Cramer and Donald G. Truhlar |

When the non-electrostatic terms are semiempirical, they also make up in an

average way for systematic deficiencies in the treatment of electrostatics, |
e.g., for the truncation of the distributed multipole representation of the !

solute charge density at the monopole term on each center.

There are three popular ways to treat the nonelectrostatic effects: (i)

ignore them, (i1) combine specialized models for cavitation, dispersion,
exchange repulsion, and so forth,**** ™
tensions.'>*" #*% I the third approach, which is the most accurate in an
empirical sense, one writes®> >’

I

AG(S)(X)-‘-Gelec(X)‘*‘% DR 0 ki A ki) fii (XS5 CONS

where 0,5 is an empirical atomic surface tension, A (x) is the solvent-

accessible surface area of atom k corresponding to effective solvent radius |

T, f(X) is geometrical factor, and S§ is a solvent descriptor. The use of

(iti) employ atomic surface

more than one effective solvent radius allows a more physical treatment of -
the various separate effects (e.g., dispersion forces extend only a short

'distance into the solvent whereas solvent structural perturbations may
penetrate into the solvent over a longer length scale), the geometrical factor |

takes account of chemical functionality (e.g., an H bonded to C is
hydrophobic whereas an H bonded to O is not), and the use of several
solvent descriptors is key to obtaining a universal model that works in any
organic solvent. We believe that the solvent descnptors should include
measures of the solvent’s acidity, basicity, macroscopic surface tension,
electronic polarizability (as indicated, e.g., by its index of refractlon n),
halogenic character, and aromaticity.”” Descriptors representing these
solvent characteristics may be thought of as collective solvent coordinates
that interact with the solute through Equation 73.

Because surface curvature depends on radius and different atoms have

different sizes, and because the atomic surface tension depends on atomic :

number, the atomic surface tensions also include surface curvature effects,
which has recently been studied as a separate effect.” Local surface
curvature inay also correlate with nearest-nexghbor pl'OXll'nlty and thus may

be implicitly included to some extent when semiempirical atomlc surface :

tensions depend on interatomic distances in the solute.

It is actually possible to create a model based entirely on atomic surface.; %
tensions, and, at least for species with no net charge, it does quite |
well. 22 ¥:8 guch a model can be quite useful for drug design because of |
its speed and simplicity, but it is somewhat unsausfactory theoretlcally'

because the correct physics is not manifest.

In drug design one often uses an organic solvent as a surrogate for a cell ‘
membrane or for the blood-brain barrier in designing the pam\uomng‘h ‘
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properties that are essential to bioavailability. For example, partitioning into
1-octanol, n-hexadecane, and chloroform have all been used to correlate or
predict bioavailability. Table 1 indicates that these three solvents span a
range of hydrogen bonding acidity, basicity, and polarity (as measured by
Abraham’s hydrogen bonding descriptors® o and B and the dielectric
constant €, respectively), but have very similar indices of refraction n and
macroscopic surface tensions Y . Also included in Table 1 are estimated
values for solvent descriptors to characterize phosphatidy! choline (PC) if it
were to be a pure liquid (these previously unpublished estimates derive from
analysis of various related molecules, long chain esters, phosphates, etc.)
Note that, if we assume that partitioning into a PC bilayer (which would
represent a reasonable model for a biomembrane) can be well modeled by.
the solvent descriptors in Table ! in the same way that solvent/solvent
partitioning can be, PC does not really look much like octanol, chloroform,
or hexadecane. That is, it is not clear that any one of these solvent/solvent
partitioning models should be expected to be terribly predictive of
bioavailability when that property is tied to membrane crossing of drug
molecules.

A better idea may be to develop specific effective solvent descriptors by
using data on actual membranes.”” Experimental partitioning data are
available for the case of water/phosphatidyl choline bilayer for a variety of
organic solutes.”>*® If we assume that the dielectric constant of the
phosphatidyl choline bilayer is 5.0 (an estimate based on the dielectric
constant of 1-octanol) and that the o value is zero (there are no hydrogen
bond donors for this molecule), and regress the experimental partition
coefficients on the remaining three solvent parameters n, y, and B, the
regression provides values of 1.40, 25, and 1.15 for these parameters when
using the AM1/SMS5.4 model'™ ° for computing solvation free energies. The
similarity between the estimates given above for these descriptors and the |
values obtained from regression speaks to the physicality of the model . The
regression itself has an R value of 0.9 over 19 reasonably diverse solutes,
which is high enough that one might anticipate useful performance for
screening. The virtue of this approach is that it i1s quite general. Given any
particular membrane model and some initial data for partitioning, one can

Table 1. Solvent descriptors.”

n a B Y et
1-octanol 1.43 0.37 0.48 39 10
chloroform 1.45 0.15 0.02 38 5
n-hexadecane ‘ 1.43 0 0 39 2
phosphatidy! choline® 1.37 0 0.9 27 5

‘Otand f are Abraham’s For# and T B} | respectively. "In Tables 1-3, dielectric constants are rounded to nearest
integer to highlight major trends, but unrounded values were used for all calculations. “Estimated.
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Table 2. Free energies of solvation (kcal/mol) of three solutes in eight solvents.

Solvent (dielectric constant)

ethyl butyl tributyl

Solute CyeHss  CCly  ether HCCl; acetate phosphate 1-octanol water
@) 2) 4) %) (5) (8) (10) (78)

1-butanol -3.5° —4.72 -5.7 -53 ~5.2 -6.3 -5.7 -4.7
36" 46 54 -5.1 -53 -6.4 -6.3 —4.8

butylamine -3.6 4.3 4.4 -53 NA® —4.3 -5.4 -4.3
-3.7 -4.6 —4.6 -4.9 —4.3 —43 =53 —4.1

aniline -54 -6.1 -6.5 -6.9 =73 -7.6 -6.7 -55
-54 —-6.4 -6.7 -6.5 -7.6 -7.3 -6.9 -5.1

*upper value: experiment; "lower value: SMS.2R/MNDO; “not available

design model-specific descriptors to help evaluate the bioavailability aspect
of further drug design efforts.

How well can continuum solvation models distinguish changes in one or
another of these solvent properties? This is illustrated in Table 2, which
compares solvation energies for three representative solutes in eight test
solvents. Three of the test solvents are those shown in Table 1, one is water,
and the other four were selected to provide useful comparisons on the basis
of their solvent descriptors, which are shown in Table 3. Notice that all four
solvents in Table 3 have no acidity, which makes them more suitable, in this
respect, than 1-octanol or chloroform for modeling biomembranes. Table 2
shows that the SM5.2R model, with gas-phase geometries and semiempirical
molecular orbital theory for the wave function, does very well indeed in
reproducing all the trends in the data.

Table 3. Descriptors for more solvents.

n a B Y €
ethyl ether 1.35 0 041 24 4
butyl acetate 1.39 0 0.45 36 5
tributyl phosphate 1.42 0 1.21 28 8
carbon tetrachloride 1.45 0 0 38 2
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9. NONEQUILIBRIUM PROPERTIES

Self-consistent reaction fields (SCRF) methods'” ®! and other methods

that predict the thermodynamic free energy of solvation are based on the
assumption of thermodynamic equilibrium. This is certainly the correct
model for calculating free energies of reaction, molecular partition
coefficients of stable molecules, molecular solubilities, and ionic solubility |
products. There are, however, two types of problems where nonequilibrium :
effects may manifest themselves, namely spectroscopy and chemical |
dynamics. Nonequilibrium effects in these areas are discussed in two recent -
reviews.”" ®® and the status of current understanding is summarized in the
rest of this section. Understanding the differences between equilibrium
solvation and solvation effects in spectroscopy is important for designing !
structure-property relationships, and understanding solvation effects on |
dynamics is important for modeling reactivity in general. For example, the |
fate of a drug lead in an aqueous biophase or the factors controlling
transition state stabilization in a catalyzed reaction may depend significantly
on nonequilibrium solvation effects.

In spectroscopy we may distinguish two types of process, adiabatic and
vertical. Adiabatic excitation energies are by definition thermodynamic
ones, and they are usually further defined to refer to at 0° K. In practice, at
least for electronic spectroscopy, one is more likely to observe vertical
processes, because of the Franck-Condon principle. The simplest principle
for understandings solvation effects on vertical electronic transitions is the
two-response-time model in which the solvent is assumed to have a fast
response time associated with electronic polarization and a slow response
time associated with translational, librational, and vibrational motions of the
nuclei.”” One assumes that electronic excitation is slow compared with
electronic response but fast compared with nuclear response. The latter
assumption is quite reasonable, but the former is questionable since the time
scale of electronic excitation is quite comparable to solvent electronic
polarization (consider, e.g., the excitation of a 4.5 eV n — m* carbonyl
transition in a solvent whose frequency response is centered at 10 eV, the
corresponding time scales are 10™° s and 2 x 10" s respectively). A theory
that takes account of the similarity of these time scales would be very
difficult, involving explicit electron correlation between the solute and the
macroscopic solvent. One can, however, treat the limit where the solvent
electronic response is fast compared to solute electronic transitions; this is
called the direct reaction field (DRF). “*** The accurate answer must lie
somewhere between the SCRF and DRF limits;** nevertheless one can
obtain very useful results with a two-time-scale version of the more
manageable SCRF limit, as illustrated by a very successful recent treatment
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of the vertical excitation of acetone in nine solvents.” In this treatment,
solvent electronic polarization is treated by SCRF theory, but solvent nuclear
polarization is frozen on the time scale of the electronic transition.

In chemical dynamics, one can distinguish two qualitatively different
types of processes: electron transfer and reactions involving bond
rearrangement; the latter involve heavy-particle (proton or heavier) motion
in the formal reaction coordinate. The zero-order model for the electron
transfer case is pre-organization of the nuclear coordinates (often
predominantly the solvent nuclear coordinates) followed by pure electronlc
motion corresponding to a transition between diabatic electronic states.”
The zero- -order model for the second type of process 1s transition state
theory (or, preferably, variational transition state theory ) in the lowest
adiabatic electronic state (i.e., on the lowest-energy Born-Oppenheimer
potential energy surface).

Nonequilibrium considerations for electron transfer are similar to those
for vertical photoexcitation discussed above, except that the pre-organization
of the solvent prior to the electron transition makes the effective gap at the
time of the electron transfer smaller, and thus the assumption of rapid
electronic response of the solvent is even better.

It is generally believed that equilibrium solvation is a reasonable
assumption or zero-order point for most reactions involving rearrangement
of bonds. The most difficult case is probably the case of adiabatic reactions
involving rearrangement or transfer of charged species; this includes proton
transfer, SN2 and Sn1 reactions, electrocyclic reactions, etc. In this case the
equilibrium SCRF treatment is very reasonable for electronic response, and
it should often be approximately valid for the nuclear solvent response as
well. The reason for the latter statement is that the solute reaction coordinate
motion is slowed down at the critical dynamical bottleneck region (a particle
crossing a barrier is moving most slowly when it is at the top of the barrier),
whereas the critical solvent motlons appear to be very fast, with a time scale
on the order of 10400 fs.”® In recent years there has been cons1derable
effort devoted to trymg to understand these nonequilibrium effects.” A
general consensus is that they seldom (if ever) exceed a factor of 10, and
more typically they contribute a factor of at most 2 or 3, and sometimes
considerably less. We should keep in mind that factors of 10, 3, and 2 in the
rate correspond to changes of 1.4, 0.6, and 0.4 kcal/mol, respectively, in the
phenomenological free energy of activation at room temperature so these
effects may become significant when this level of accuracy is required.

There are two major approaches to including nonequilibrium effects in
reaction rate calculations. The first approach treats the inability of the
solvent to maintain its equilibrium solvation as the system moves alon, §9
reaction coordinate as a frictional drag on the reacting solute system.”

The second approach adds one or more collective solvent coordinate to the
nuclear coordinates of the solute.’'”” When these solvent coordinates are
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at their classical equilibrium position, the solvent is at equilibrium. But
these collective coordinates can couple into the reaction coordinate and take
on nonequilibrium values. It can be shown that the two approaches are
equivalent.'”™ """ The generalized-solvent-coordinate approach has been used
successfully to explain kinetic isotope effects for H and Mu addition to
benzene in water,'™ to predict the aqueous acceleration effect on the reaction
of H with CH30H in water,'® and to explain the frictional effect on the rate

of contact ion pair dissociation in water.'” The chief uncertainty in
estimating such nonequilibrium effects is predicting the effective solvent
time constant and the relevant “force constants” coupling the solute -
coordinates to the collective solvent coordinates. Two general approaches !
may be distinguished. One approach centers on the electrostatics of solvent
polarization and therefore makes a strong connection between this process
and the frozen—nuclear-?olarization approximation in the theory of vertical |
photoexcitation.'®'® '® The other approach attempts to obtain the relevant
parameters from macroscopic solvent descriptors such as macroscopic |
viscosity or macroscopic diffusion coefficients.'®'% This latter approach |
may be useful for rough and ready estimates of the approximate size of the
nonequilibrium effect but ultimately suffers from uncertainty as to whether -
the macroscopic frictional forces involved in diffusion or viscosity are the
same as those that operate on atomic motions over very short time and
distance scales.

Nonequilibrium solvent effects can indeed by significant at the kcal
level-maybe even at a greater level, but so far there is no evidence for that
when the reaction coordinate involves protonic or heavier motions. Our goal
in this section has been to emphasize just how powerful and general the
equilibrium model is. In addition, in both the previous section and the
present section, we have emphasized the use of models based on collective
solvent coordinates for calculating both equilibrium and nonequilibrium
solvation properties.
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