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—
I. INTRODUCTION

The H+H, reaction has long been considered an important prototype
for chemical reactions with activation barriers. We have recently reviewed
the history of H, kinetics, with emphasis on experimental and theoretical
studies of the reactive dynamics in the ground electronic state (Truhlar and
Wyatt, 1976). The first step in all such calculations is the Born-
Oppenheimer approximation, i.e., the assumption of a potential-energy
hypersurface (called the potential, the potential surface, or the surface for
short). Thus there has been considerable work attempting to obtain this
potential surface more accurately, especially by calculating the electronic
energy of H, but also in some cases by attempting to fit analytic expres-
sions to results of collision experiments. In particular, such work has
emphasized the region around the saddle point because this region is
thought to be the most important for determining the rate of reaction at
low and medium temperatures (less than about 1000°K). This work on the
potential surface is reviewed here. We also review theoretical and experi-
mental information about other parts of the ground-state potential surface,
about potential surfaces for excited electronic states, about nonreactive
dynamics on the ground-state surface, and about the dynamics of
processes involving excited electronic states. This review and our previous
one cited above, taken together, constitute a review of all work concerned
with gas-phase collisions of H with H,.

II. POTENTIAL-ENERGY SURFACES

A. Ground Electronic State: Saddle Region and Short Range R

The first major contribution to understanding the H+ H, reaction was
made by London (1929). He presented a formula, without derivation, for
the energy of the lowest adiabatic electronic state of H; as a function of
Coulomb and exchange integrals Q; and J;; for each pair ij of atoms. These
integrals depend on the internuclear separation of that pair. This is the
generalization to H,; of the valence-bond approach that Heitler and

" London had used to explain the binding energies of H, using the potential
curve concept, which derives from Born and Oppenheimer’s electronically
adiabatic separation of the electronic and internuclear motions. The first
importance of this formula is that it showed how the energy needed to
cause the reaction could be much less than the energy needed to break an
H, bond. Thus the activation energy of the H+H, reaction can be
understood in terms of internuclear motion governed by one electronically
adiabatic potential-energy surface which is the ground-state fixed-nuclei
electronic energy of H,, including internuclear repulsion. Thus future work
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on the reaction used this Born-Oppenheimer separation and involved the
determination of a potential-energy surface as the first step. The second
importance is that his formula later served as a basis for many semiempiri-
cal potential-energy surfaces that have been used to study the dynamics.

Eyring and Polanyi (1930) used the London formula in a semiempirical
way to treat the reaction H+ H,, showing that the collinear potential-en-
ergy surface as a function of the two nearest-neighbor distances R, and R,
had a saddle point that they correctly interpreted as a crucial factor for
determining the energy of activation. The height of this saddle point, with
respect to the energy of H infinitely far from H,, is called the classical
barrier height, or, for short, the barrier.

The first published derivation of the London equation was made by
Slater (1931), who used valence-bond theory with only the two linearly
independent covalent configurations that can be obtained from a basis of
one 1s hydrogen orbital on each center. Orbital overlap integrals and
multiple-exchange integrals were neglected.

The approximations involved in the London formula and the semiem-
pirical way of using it (as developed by Erying and Polanyi) have been
critically examined many times (see, e.g., Kassel, 1932; Coolidge and
James, 1934; Van Vleck and Sherman, 1935; Hirschfelder et al. 1936,
Glasstone et al. 1941, Hirschfelder 1941, Hirschfelder et al.,, 1954; Aroeste,
1964; Laidler and Polanyi, 1965; Parr and Truhlar, 1971). In particular,
Coolidge and James (1934) critically examined these approximations with
respect to the cancellation of errors that occurs in the London formula. We
should remember their conclusion that the relation of quantum mechanics
“to the semiempirical method of London, Eyring, and Polanyi (LEP
method) is “merely suggestive, rather than justificatory.” In spite of this
and in spite of London’s attitude toward the many uses to which his
formula would be put [Hirschfelder (1966), in reminiscing about this,
commented, “London told me that he was appalled at the way chemists
mangled his formula and still attached his name to the semiempirical
results”], the first studies of H, reaction dynamics were made possible by
the early semiempirical H, surfaces. Thus we will examine this work of this
period in more detail.

The basis of the LEP method is to realize that the Heitler-London
treatment of H,, with neglect of orbital overlap integrals, expresses the
ground-state energy of H, as the sum of Q; and J;;. Thus a Morse curve for
H, gives a semiempirical value for the sum of these integrals at each
distance. Then it was assumed that Q; is always a constant fraction p of
this sum. This scheme was originally motivated by examining Sugiura’s
(1927) calculated values of the integrals. These yielded a roughly constant
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p of 0.14 at large distances. However, in practice p was often treated as an
adjustable parameter. It was given various values at various times: 0.10
(Eyring and Polanyi, 1930; Eyring, 1931), 0.00 (Eyring and Polanyi, 1931),
0.14 (Eyring, Gershinowitz, and Sun, 1935), and 0.20 (Hirschfelder, Eyring,
and Rosen, 1936). For any value of p the method predicts that the
lowest-energy reaction path is linear. For low p the barrier is symmetric
(R,=R,) but much too high. As p is increased the barrier is lowered.
However, for any constant p=>0.07 the symmetric configuration is a local
minimum flanked by twin nonsymmetric saddle points. For example
(Eyring, 1931), for p=0.035 the barrier is symmetric with height 0.91 eV,
but for p=0.10 the local minimum has a nearest-neighbor distance R, of
1.76 a, and is 0.49 eV above the energy of H+H, but the twin saddle
points are 0.07 eV higher. Yet Farkas’s rate experiments (reviewed in
Truhlar and Wyatt, 1976) were interpreted as leading to an activation
energy of 0.17 to 0.48 eV and the surfaces with twin saddle points were
used for comparison to experiment. It is interesting that if p is made an
increasing function of R (in accordance with the Heitler-London treatment
of H,), then the basin results from using too high a value at small R; p may
be large (0.14 or even greater) at large R without making a basin. Such
variable-p treatments are discussed later in this section.

The consequences of the predicted basin were discussed by Eyring
(1932). First he noted that the predicted basin was so unstable that even if
it could be collisionally stabilized it would survive only a few collisions.
But the LEP method is approximate and the actual basin might have been
deeper. Eyring considered a configuration point representing the instanta-
neous geometry of the H, system. He predicted that it moves very slowly
through the first pass and into the shallow basin where it zigzags back and
forth before it finds its way out through the second gap. The three atoms
would then form a quasimolecule in the “sticky” collision. During this
time, if the basin were deeper, the H, complex could be stabilized. To
understand even the qualitative features of the dynamics it was necessary
to have a more reliable calculation of the basic features of the surface.
Thus attention was turned to these and we will consider what has been
learned from ab initio calculations about the reaction-path part of the
surface before returning to the history of the semiempirical work.

The ab initio variation method has also been used to calculate the H,
energy. The first ab initio calculation on the H, potential-energy surface
was performed by Coolidge and James (1934). They studied only one
geometry (linear symmetric H; with R,=1.7a,). They used valence-bond
theory with the two configurations mentioned above; for linear symmetric
H, one may consider instead one symmetry-adapted configuration, which

S’
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~ they did. They obtained an energy of —1.72 eV. (We give the energies of
all ab initio calculations as binding energies, i.., the zero of energy is three
H atoms infinitely separated; but barriers and other positive energies
referring to heights along the reaction path are given with respect to the
energy of H+H,.) They also considered several approximations to this
result in order to study the justification for semiempirical valence-bond
procedures. As mentioned above, they concluded that the approximations
needed to obtain the LEP method are so severe that the justification for
the latter must be wholly empirical. Their ab initio calculation was soon
reproduced by Hirschfelder, Erying, and Rosen (1936), who also showed
that at the same level of approximation a much lower energy can be
obtained for linear symmetric H, by increasing R, to 2.0a, where the
energy is —3.14 eV. Using the experimental binding energy of H,, this
yields a rigorous upper bound on the classical barrier height of 1.61 eV.
This was known to be much too high. It was recognized that a more
reasonable approximation is to compare a calculated H; energy to an H,
binding energy calculated at equivalent levels of approximation. Using a
Heitler-London wave function for H, for comparison with Hirschfelder et
al’s valance-bond result, we obtain an estimate of the saddle-point height
of 0.80 ¢V, still much too large. Hirschfelder et al. (1936) considered three
improved approximations for linear symmetric Hj in which they added
ionic configurations with variable coefficients and /or optimized the orbital
exponents. While these gave considerably lower energies for H,, the
estimated barrier height was not improved. These calculations are
summarized in Table 1 (for comparison we have corrected the diatomic
~_. values Hirschfelder et al. quoted).

Subsequently, further calculations were performed at these same levels
of approximation; they predicted that the saddle point is linear and
symmetric. First, Hirschfelder et al. (1937) calculated energies for nonsym-
metric linear geometries and found that the saddle point for the collinear
reaction is symmetric. Stevenson and Hirschfelder (1937) then showed that
the energy rose on bending. It is interesting to anticipate a result of the ab
initio calculations to be discussed below, i.e., only one ab initio calculation
(Conroy and Bruner, 1967) has ever predicted a saddle-point geometry
other than linear symmetric. That calculation predicted a narrow shallow
basin for linear symmetric geometries which would be far less significant
than the broader deeper basins predicted by the early semiempirical
calculations, and even that shallow basin disappeared in an improved
calculation (Conroy and Bruner, 1967) by the same method. Thus Hirsch-
felder, Diamond, and Eyring’s prediction of a symmetric saddle point has
stood the test of time, and the latest calculations (Liu, 1973) have finally
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established quite firmly that the saddle point on the linear surface is
symmetric so that the “Lake Eyring” of the early semiempirical surfaces
must be an artifact of the approximations involved.

After these calculations were completed there were no more ab initio
calculations of the saddle-point properties until 1951. Since then, however,
the interest has been very strong and the results of the calculations have
slowly improved. In this process most H, calculations have been limited to
the linear symmetric configuration in an attempt to calculate the energy of
the saddle point. We discuss these ab initio attempts next and then we
consider ab initio calculations of other features of the H, surface when all
three atoms are close: nonsymmetric linear configurations, nonlinear con-
figurations near the saddle point, and equilateral H,. Then we consider the
later semiempirical calculations of surface properties near the reaction
path. Finally we consider all kinds of calculations of the very short-range
repulsive forces and of the long-range forces and the region of the van der
Waals’ minimum.

The history of ab initio saddle-point calculations may conveniently be
divided into three stages (or “ages” except that the chronology of the
stages overlaps to some extent). The first stage involved using minimum-
basis sets, that is, three 1s functions centered at the nuclei. The second
stage involved using more than three spherical basis functions centered at
the nuclei. And finally the calculations were performed using more general
bases, especially extended basis sets of nuclear-centered functions includ-
ing polarization functions (e.g., 2po functions in order to better represent
the polarization of the charge distribution). The basis sets and results of all
the calculations are summarized in Table I and we add only a few
comments.

The calculation of accurate multicenter integrals was for decades a
“bottleneck” of ab initio quantum calculations. Thus, for example, the
accurate three-center integrals of Hirschfelder and co-workers (Hirsch-
felder et al., 1936; Hirschfelder and Weygandt, 1938) were used by several
subsequent workers (even over 20 years later). Barker et al. (1954) and
Barker and Eyring (1954) examined the use of Mulliken’s (1949) method
for approximating the three-center integrals in terms of two-center
Coulombic-type integrals. They performed covalent valence-bond calcula-
tions with hydrogen-atom exponents. They found that the energy was
raised from —2.33 eV to —2.00 eV. Using this same approximation
scheme, Snow and Eyring (1957) found this was decreased to —2.62 eV
when the outer orbital exponents and the middle one were optimized
separately. Yasumori (1959), Oleari et al. (1961), and Harris et al. (1965)
performed additional H, calculations using the Mulliken approximation.
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Barker and Eyring (1957) also examined a “distance-normalized” ap-
proximation to the difficult integrals and obtained an energy of —3.17 eV
for the covalent valence-bond wave function when the outer and middle
orbital exponents were separately normalized. When this separate optimi-
zation of the exponents was finally carried out with correct integrals in a
complete-configuration-interaction calculation, the energy lowering was
less than 0.1 eV (Bowen and Linnett, 1966). The results using approximate
integrals are not included in Table I because of the admittedly serious
nature of the approximation. However, the reader should remember that
the history of ab initio molecular calculations is filled with examples of
calculations containing errors due to inadvertent use of incorrect integral
values. No systematic attempt is made here to discuss the accuracy of the
integrals involved in all the calculations. Presumably, however, the in-
tegrals were all evaluated accurately in calculations carried out within the
last 10 years or so. Finally, we should emphasize that progress seen in the
successive ab initio calculations reviewed in Table I and below is due not
only to the cited efforts of the authors of these calculations but also in
many cases to the quantum chemists, including many of these authors but
also others, who devised improved methods for integral evaluation and for
efficient utilization of computers for large-scale ab initio calculations.
These parallel advances interacted strongly with advances in H, computa-
tions, but it is beyond the scope of the present chapter to discuss them in
detail.

The next attempts to use accurate integrals were the ab initio minimum-
basis-set molecular orbital calculations of Walsh and Matsen (1951) and
Griffing and Vanderslice (1955) and the attempts by Ransil (1957),
Meador (1958), and Griffing et al. (1959) to improve these results using
configuration interaction based on molecular orbitals and in one case
allowing the basis functions to be centered off the nuclei. The molecular
orbital method leads to an energy about 0.5 eV higher than the valence-
bond method, whereas the configuration-interaction calculations should be
equivalent to Hirschfelder, Eyring, and Rosen’s (1936) configuration-inter-
action calculations based on the valence-bond formalism. A complete-con-
figuration-interaction (CCI) calculation is one in which the Hamiltonian is
diagonalized in the space of all three-particle functions of the appropriate
symmetry that can be formed from the chosen one-electron basis set. Such
a result is exact within the restrictions imposed by the one-electron basis
and yields the lowest energy that can be obtained with that basis. For three
1s functions a CCI consists in general of eight configurations, but for
linear symmetric H; it may be reduced to four symmetry-adapted config-
urations. The calculation may be carried out equivalently in either the
valence-bond or molecular orbital formalisms or without reference to
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either. Boys and Shavitt (1959) pointed out that the configuration-interac-

tion wave functions of Walsh and Matsen (1951) and of Meador (1958)
include only three of the four linearly independent configurations and that
one of these is not a spin eigenfunction. The minimum-basis-set approach
was later reexamined by Bradley (1964), Bowen and Linnett (1966), and
others. Bowen and Linnett showed that a CCI calculation for a minimum
basis set with separately optimized orbital exponents and the best value of
R, yields an energy of —3.045 eV. This yields a rigorous upper bound of
1.333 eV on the classical barrier height and using the best possible
minimum-basis-set calculation on H, for comparison yields an estimated
barrier of 0.975 eV. Both values are too high to be useful. Rourke and
Stewart (1968) showed that Bradley’s (1964) minimum-basis-set wave func-
tion is not of sufficiently high quality for use with a local-energy method
and that variation-method results are expected to be more accurate for this
type of wave function.

Even before the configuration-interaction calculations discussed in the
preceding paragraph it was very clear that one must go beyond a minimum
basis set and Boys et al. (1956) had already done so. Their calculations
(Boys et al., 1956; Boys and Shavitt, 1959), the first using an extended
basis set, were CCI calculations for two 1s exponential-type functions on
each nucleus. For linear symmetric geometries this involved 34 symmetry-
adapted configurations. They obtained an energy of —3.48 eV and an
estimated barrier of 0.66 eV, still much too large. Their result was affected
slightly by the method used to calculate some of the difficult integrals. It is
now known that the accurate CCI result for this basis with the best value
of R, and optimization of two (but not four separate) values of the orbital
exponents is —3.55 eV (see Table I).

Another extended-basis-set calculation was performed by Kimball and
Trulio (1958). They carried out a complete configuration-interaction
calculation in the space spanned by five 1s exponential functions equally
spaced on a line. Their calculated binding energy (—3.138 eV) is of course
also lower than any calculated with a minimum-basis set.

Krauss (1964) carried out the first calculation including p functions. He
used the molecular orbital (SCF) form of wave function and obtained an
energy of —2.530 eV. However, a molecular orbital potential surface is not
of useful accuracy for H,. Edmiston and Krauss (1965) then used this basis
to carry out their first configuration-interaction calculation. This yielded
an energy 0.41 eV lower than obtained by Boys and Shavitt (1959), but the
calculated barrier was not improved. This was the first calculation using
present state-of-the-art techniques for potential-energy-surface calculations
(they used the pseudonatural orbital method); thus it provides a con-
venient basis for comparison for later calculations. We will abbreviate it
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EK]I. In a similar but improved calculation, reported later (Edmiston and =
Krauss, 1968), they obtained an energy 0.17 eV lower than EKI, but by
that time Shavitt et al. (1968; see also Karplus 1968) had already reported
a result 0.25 eV lower than EK 1. Shavitt et al. performed CCI calculations
for a double-zeta-plus-polarization basis, which is better than the Gaussian
bases of Edmiston and Krauss. This involved 200 symmetry-adapted
configurations for linear symmetric geometries. Their calculated barrier
was only 0.476 eV. Of special interest are the calculations of Conroy and
Bruner (1965, 1967) using a method of Conroy (1964, 1970). They opti-
" mized their trial function by minimizing the energy variance functional
rather than the usual energy functional. This permits extrapolation of the
calculated results to obtain an approximation to the exact energy. This was
combined with a new form of trial function explicitly incorporating inter-
electronic distances and a Monte Carlo-like or Diophantine method for the
evaluation of the integrals. First (Conroy and Bruner, 1965) they reported
a potential-energy surface for linear H, obtained using their extrapolation
procedure. Then (Conroy and Bruner, 1967) they made an improved
calculation for a greater variety of geometries and reported both upper
bounds (see Table I) and extrapolated results (discussed below). A dis-
advantage of their calculations is the relatively large error in the numerical
integration procedure, estimated at +0.03 to *0.05 eV. However, they
also estimated this to be the overall accuracy of their extrapolated energy
surface. Their upper bound energy was 0.33 eV better than the EK1 value.

After their second calculation Edmiston and Krauss concluded “further
improvements will come in very small pieces as a result of more configura-
tions, more pseudonatural orbitals, and more Gaussian basis functions.” - _-
Here and in the discussion of Liu’s results, “orbitals” means the linear
combinations of basis functions used to construct configurations. Gener-
alizing pseudonatural orbitals to whatever set of orbitals is used in the
calculation and the last phrase to “more one-electron basis functions,” we
now recognize from current experience that this conclusion of Edmiston
and Krauss is always true for the last few tenths of eV in large-scale
configuration-interaction calculations of potential-energy surfaces.

Several workers (Michels and Harris, 1968; Shavitt et al., 1968; Linnett
and Riera, 1969) suggested that, in particular, it would be necessary to add
do basis functions. This was done by Liu, who actually used one-electron
bases many times larger than any previous one. In his preliminary report
(Liu, 1971) he used the pseudonatural orbital method and obtained an
energy 0.40 eV lower than EK1. His second set of calculations (Liu, 1973)
differed mainly in the method used to select orbitals and configurations
[for the basis set used in the second set of calculations a CCI would
involve 14,949 symmetry-adapted configurations, compared to, for exam-



oy

H+ H,: POTENTIAL SURFACES AND SCATTERING 153

ple, 35 for the basis of Harris and Michels (1968)]. This involved seven-
configuration multiconfiguration self-consistent-field calculations and divi-
sion of the configuration space into zeroeth-, first-, and second-order parts.
The best energy obtained (Liu, 1973) was —4.302 eV, which is 0.41 eV
lower than EK1. Comparison to the exact result for H, yields a rigorous
upper bound to the barrier of only 0.446 eV, lower than all previous
calculated values based on upper bound calculations even when those were
obtained by subtracting comparable H, and H, calculations. Comparing
Liu’s H, result to his comparable one for H, yields a barrier of only 0.425
eV. Liu estimated the possible errors in his surface in two parts: error due
to truncation of the one-electron basis (0.021 to 0.034 eV) and error due to
not reaching the CCI limit for this basis set (0.001 eV). His calculated
barrier would correspond to an H, energy of —4.323 eV and he estimated
the actual result cannot be below —4.336 eV. Since he is extrapolating to
the exact result from much closer than any previous worker his estimates
are preferred over all others. This leads to —4.323*3%2] eV as the bounded
energy of the H, saddle point, corresponding to a saddle-point height of
0.425*3%21 V. From Liu’s arguments one could estimate with less cer-
tainty an even more closely bounded result. Thus if we assume that the
residual error at the saddle point is at least as large as, but no more than
1.5 times, the residual error in H, at the same internuclear distance, then
the estimated energy is —4.327+0.005 eV, corresponding to a barrier of
0.420+0.005 eV. For comparison with the kinetics literature, these two sets
of bounds can be converted to 9.80* 54 and 9.69+0.12 kcal /mole.

It is interesting to compare these final estimates from Liu’s calculations
to previous attempts to estimate the energy of the H, saddle point on the
basis of ab initio calculations. Edmiston and Krauss (1965) improved their
first H, calculation by including additional configurations in second order
and obtained a binding energy of —3.983 eV. They also performed a
comparable calculation on H,. By assuming that the remaining error in the
H, calculation relative to H, is proportional to the ratio of correlation
energies, they estimated an H, binding energy of —4.23 ¢V. Conroy and
Bruner (1967), in their improved calculation, obtained in extrapolated
energy of —4.411 eV. Hayes and Parr (1967) estimated the errors due to
angular and radial deficiencies in their 99-term wave function and predic-
ted an exact energy (at R,=1.8a,) of —4.180 eV. Shavitt et al. (1968)
assumed the residual error in their H, calculation was no more than 1.5
times the residual error in a comparable H, calculation, which implies that
the energy of H, should be no more negative than —4.338 eV. Shavitt
(1968) used this ab initio surface with one empirical parameter, a uniform
scale factor for the energy profile along the reaction path, to compute
transition-state theory rate constants for the isotopic H+ H, reactions. The
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value of the scale factor that gave best agreement with the high-tempera-
ture experimental rates of Westenberg and deHaas was 0.89, implying an
H, energy of —4.324 eV. After their second calculation, Edmiston and
Krauss pointed out that their H, calculations at three internuclear dis-
tances accounted for 91% of the correlation energy. Thus they assumed
that they were accounting for 91% of the correlation energy everywhere.
This yielded an estimated binding energy of H; of —4.215 V. Thus the
estimates of Shavitt et al. (1968) and Shavitt (1968) agree remarkably well
with those of Liu but none of the other estimates fall within even the wider
of the bounds given above.

By considering the linear symmetric geometry we may also evaluate the
force constant for symmetric stretching of the activated complex. From
this one may calculate the zero-point energy %hr, of this normal mode in
the harmonic approximation. There have been several such calculations
and the results are given in Table 1. [Harris et al. (1965), whose results are
excluded from that table, obtained 0.131 eV.] This quantity, as well as the
zero-point energy %hv,, for a bending normal mode, is important for
transition-state theory and the vibrationally adiabatic theory that are
discussed elsewhere (Truhlar and Wyatt, 1976).

There has been relatively less attention devoted to geometries other than
linear symmetric, but there have been several studies of nonsymmetric
linear geometries (Hirschfelder et al., 1937; Boys et al., 1956; Boys and
Shavitt, 1959; Conroy and Bruner, 1965, 1967; Edmiston and Krauss,
1968; Shavitt et al., 1968; Goddard and Ladner, 1969; Ladner and
Goddard, 1969; Blustin and Linnett, 1975; Liu, 1973). Shavitt et al. (1968)
and Liu (1973) have presented accurate analytic fits to their whole collin-
ear surfaces. For use in one-dimensional tunneling corrections to transi-
tion-state theory it is of interest to calculate the second derivative at the
barrier maximum and express it as the zero-point energy of the upside-
down parabola with this force constant. This is called the imaginary
zero-point energy of the asymmetric-stretch normal mode of the activated
complex, and the few values calculated for it are as follows: 0.084i eV by
Boys et al. (1956) and Boys and Shavitt (1959), 0.087: eV by Harris et al.
(1965), 0.090i eV and 0.096i eV in double-zeta and double-zeta-plus-polari-
zation bases by Shavitt et al. (1968), and 0.094/ eV by Liu (1973) in his
most accurate calculation.

Other important features of the nonsymmetric linear H, calculations are
the position of the minimum energy path, the energy variation along and
near this path, and the description of the bonding changes accompanying
movement along this path. Harris et al. (1965), in CCI calculations employ-
ing a minimum basis set and the Mulliken approximation, mapped out the
approximate position of the minimum energy path through the (R, R;)
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vplane and the energy variation along it. Their results predicted that the

curvature of the minimum energy path was confined to within about 0.44,
of the saddle point and that the full width at half-maximum of the barrier
along the curvilinear minimum energy path was about 2.0a, Conroy and
Bruner mapped out two complete potential-energy surfaces from their two
sets of extrapolated results for the collinear caiculation. In their first
calculation (Conroy and Bruner, 1965) they found twin unsymmetrical
saddle points with (R,, R,)=(1.64a,,1.83ay) and energies of —4.479 eV
and a shallow symmetric depression with R, =1.76a, and an energy 0.054
eV higher. These values appear by comparison to Liu’s (1973) calculation
to be too low by more than their estimated error of +0.05 eV in integral
evaluation. They state that their second calculation (Conroy and Bruner,
1967) led to a linear symmetric saddle point but that calculation gave a
barrier which is extremely flat near the top. It appears that their points
near the top of the barrier are too widely spaced to judge whether a
depression actually exists (Shavitt et al, 1968). Edmiston and Krauss
(1968) and Shavitt et al. (1968) found the approximate position of the
minimum-energy path through the (R,,R,) coordinate system by finding
minima along cross sectional cuts almost perpendicular to the reaction
path. Edmiston and Krauss did not examine points near enough to the
barrier top to judge definitely whether a depression actually exists. The
correct way to do this is to find the position of the minimum for linear
symmetric geometries and then examine a small displacement along the
asymmetric stretch normal mode to see if it is a saddle point or a local
minimum. This has only been done by Harris et al. (1965), Shavitt et al.
(1968), and Liu (1973). All these workers found that the saddle point was
linear symmetric, and there is no longer any serious doubt that this is the
case. Liu (1973) also used the method of steepest descents to start at the
saddle point and find the accurate position of the whole minimum-energy
path in the (R,, R,) coordinate system. (This differs from the minimum-en-
ergy path in a skewed-axis coordinate system.) The minimum-energy path
determined in Liw’s linear calculation approaches the equilibrium- separa-
tion of H, much faster than the path of Shavitt et al. (1968). The potential
encrgies along the five most accurate calculated minimum-energy paths at
the places where they cross various R,=constant lines are compared in
Table II (these results were found by interpolation of the published data).
In addition, we have followed the suggestion of Shavitt (1968) and in each
case scaled the energy profile along the minimum-energy path by a
constant determined to make the barrier correct. (For this purpose Liu’s
barrier is assumed correct.) These results are also shown. First we see that
the barriers of Conroy and Bruner (1967) and Edmiston and Krauss (1968)
are too flat at the top. We also see that the barrier of Conroy and Bruner is
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TABLE II

Energies (in eV) Along Minimum-Energy Path in (Ry, R;) Coordinates System for Given Values
of Ry (Where R, and R, Are the Interatomic Separations of the Two Nearest Neighbors)

Case 1 2
Conroy Edmiston

3

Edmiston Shavitt

4

5

calculation and Bruner, and Krauss, and Krauss, etal, Liu,

1

2

3

4

Rfa) 1967 1968 1968°  1968® 1973 Scaled Scaled Scaled Scaled
Saddle point  0.34 0.58 053 048 042 042 042 042 042
19 033 0.5%° 055 046 041 042 043 044° 041
22 0.28 0.54 053 040 034 036 039 043 035
26 0.16 0.38 037 028 023 020 028 030 025
30 0.05 023 022 017 014 006 017 018 016
34 0.10 007 0.09

2 Extrapolated surface, relative to experimental energy of H+H,.

& Upperbound surface, relative to calculated energy of H+H,.
©These values are slightly uncertain because of the insvfficient number of points calculated

in this neighborhood.

too low at R, >3.0ay; that is, their interaction energy goes below 0.1 eV
(and even below 0.0 eV) much too close to the saddle point. However, the
scaled barrier of Shavitt et al. (1968) is in very good agreement with the

barrier of Liu (1973).

Recently, Baskin et al. (1974), Blustin and Linnett (1974), and
McCullough and Silver (1975) have pointed out that the correct
minimum-energy path through the (R,,R,) plane cannot be obtained by

considering the minima along cuts parallel to the axes. This is implicit in -

all the work discussed above and is also mentioned explicitly in an article
discussed below (Truhlar and Kuppermann, 1971).

Weston (1959) and Shavitt (1968) pointed out that for tunneling correc-
tions to transition-state theory one needs the minimum-energy path not in
the (R,,R,) coordinate system but in normal-mode coordinate systems in
which the axes are scaled and skewed so that the reduced mass is the same
for motion in any direction. Of course, such a coordinate system depends
on the ratios of the isotopic masses of the nuclei. Shavitt replotted the
(R;, Ry)-minimum-energy path in such a coordinate system for the equal-
mass case. Choosing the scaling so the reduced mass is % the mass of H
showed that reaction-path curvature is non-negligible within 0.4a, of the
saddle point and the fullwidth at half-maximum of the barrier is about
1.8a,. Truhlar and Kuppermann (1971) determined the actual minimum
energy path in this coordinate system for the surface of Shavitt et al.
(1968). In addition, they developed an analytic approximation [based on
the rotated-Morse-curve method of Wall and Porter (1962)] to the whole
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collinear surface following Shavitt’s (1968) suggestions for scaling and
found that the minimum-energy path for this surface in normal-coordinate
space for the equal-mass case (Truhlar and Kuppermann, 1972). This
surface is called the scaled SSMK or the Truhlar-Kuppermann surface.

Goddard and Ladner (1969, 1971; Ladner and Goddard, 1969;
Goddard, 1972) provided a quantum-mechanical orbital picture of the
reaction by using the best possible wave function for which the orbitals
have an independent particle interpretation, that is, are eigenfunctions of
one-electron Hamiltonians corresponding to the nuclear attraction and the
nonlocal field of electrons in the other two orbitals. This was called the
spin-coupling optimized group operator (SOGI) method. It provides a
picture of the reaction in which the orbitals of the reactants gradually
delocalize over all three centers, then relocalize to form product states.
This orbital picture was used as a basis for a general theory (the orbital
phase continuity principle) of orbital phase relationships accompanying
bonding changes in reactions. It is a generalization of the valence-bond
method and has certain conceptual advantages over the Woodward-Hoff-
man approach, which has been successfully applied to many molecule-
molecule reactions. According to the latter, the H+ H, reaction might be
considered thermally forbidden [see, e.g., the orbital correlation diagram
given by Hoffman (1968)], but the Woodward-Hoffman rules are actually
not very useful for considering the reactivity of open-shell atoms, like H,
with molecules. Of course, a quantitative understanding of the energetic
changes along the reaction path requires a detailed consideration of the
changes in the correlation energy (defined as the difference between the

— exact energy and that calculated from a molecular orbital or group-opera-

tor wave function) accompanying the reaction. This question, however, is
closely tied to the question of completeness of the basis set since final
convergence of the energy calculations requires simultaneous improvement
of both. Several authors have discussed these problems (see, €.8., Edmiston
and Krauss, 1965, 1968; Michels and Harris, 1968; Gianinetti et al., 1969;
Linnett and Riera, 1969; Liu, 1971, 1973).

There has been very little work on nonlinear geometries. Stevenson and
Hirschfelder (1937) evaluated 1 hw, (defined above) by taking derivatives of
the energy expression with respect to bond angle. They obtained 0.059,
0.069, 0.052, and 0.067 eV in the four approximations considered by
Hirschfelder et al. (1936) in the order they are listed in Table 1. Thus their
results were roughly the same as the value of 0.056 eV obtained by the
semiempirical method of Eyring and Polanyi with p=0.20. Boys et al.
(1956) and Boys and Shavitt (1959) calculated a value of 0.059 eV;
however, since this value is based on a nonlinear geometry with a 40° bond
angle, the value is probably higher than should be obtained with their basis
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set (Johnston, 1966, p. 74). Harris et al. (1965) calculated 0.061 eV using
the Mulliken approximation. The first reliable calculation was that of
Shavitt et al. (1968), who obtained 0.060 eV in their double-zeta-plus-
polarization basis. Liu and Siegbahn (private communication) have carried
out some calculations for nonlinear geometries but they are not published.
Their value for the harmonic bending zero-point energy is 0.057 eV.
Except for a few calculations related to the equilateral triangle geomerty
(see next paragraph), extensive treatments of the nonlinear geometries have
been published only by Conroy and Bruner (1967) and Shavitt et al.
(1968). Conroy and Bruner studied only isosceles triangle configurations
with bond angles 120°, 90°, and 60°. Shavitt et al. studied systems with
150° and 120° bond angles. For each constant value of the bond angle,
Shavitt et al. determined the minimum-energy paths in the (R,, R,) coordi-
nate system and the associated energy profile and barrier. They obtained
saddle-point geometries with nearest-neighbor distances of 1.784, and
1.81a, respectively, and barrier heights of 0.55 and 0.79 eV. The scaling
suggested by Shavitt (1968) would lower these values to 0.50 and 0.74 eV,
respectively. For comparison, Conroy and Bruner obtained about 0.65 eV
for the saddle-point height for a 120° bond angle. The changes of saddle-
point heights with bond angle are in good agreement.

Siegbahn and Liu (private communication) made calculations for the
following bond angles: 180°, 165°, 150°, 135°, 120°, 90°, and 60°. They
used a basis of nine s, three p, and one d Gaussian-type functions (GTF)
on each center. The nine s functions were contracted to linear-combination

basis functions. This four s, three p, and one 4 hydrogen basis corresponds- -

to 42 functions of ¢’ symmetry and 18 of a” symmetry. Using an ap-

proximate natural orbital transformation, this basis set was truncated to 30
a’ functions and 13 a” functions. A CCI calculation in this truncated basis
involves 14,060 configurations and such a calculation was performed to
give the final H, energy at each geometry. The GTF calculation yields
E,=0.429 eV, compared to Liu’s STO result of 0.424 eV. But the GTF
collinear surface is parallel to the STO surface within 0.001 eV for
R, < R,<4.0a,. For bond angles 150° and 120° the minimum-energy path
of the new surface approaches the equilibrium separation of H, more
rapidly than does the path of Shavitt et al. and this difference is ex-
aggerated compared to the difference at 180°. It appears that the nonlinear
portion of the surface of Shavitt et al. is not as accurate as the linear
portion. Another indication of this is that their bending force constant is
too large by about 15%.

There have been a few calculations on equilateral triangle H, (Hirsch-
felder, 1938; Conroy and Bruner, 1967; Porter et al, 1968; Blustin and
Linnett, 1974). Hirschfelder’s early calculations were at the minimum-basis
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" set CCI level with unoptimized orbital exponents. He showed that the
ground state becomes doubly degenerate and discussed this in terms of the
Jahn-Teller effect. He and Coulson (1935) calculated that the energy was
higher than the energy for three separated H atoms. Conroy and Bruner
(1967), however, found a minimum energy for a distance of about 2.0, for
equilateral H, and that the energy there was about 1.8 to 2.0 eV higher
than linear geometries with the same nearest-neighbor distances or 2.0 to
2.3 eV higher than the linear saddle point. Porter et al. (1968) obtained
qualitatively similar results and obtained 1.9654,, 2.2 eV, and 2.4 eV for
these same quantities using CCI with the same size basis set as Shavitt et
al. (1968) used for other geometries. (For nonsymmetric nonlinear geome-
tries this involves 680 configurations.) Their major interest was the Jahn-
Teller effect at this geometry and their work is discussed further in
connection with excited states.

In relating the saddle-point properties of a potential-energy surface to
experiments on reactive collisions, one must be careful to differentiate
between classical barrier height E, and transition-state theory activation
energy at 0°K (which are properties of the surface) and phenomenological
threshold enmergy E,, and Arrhenius activation energy E, (which are
dynamical properties). The relationships of these quantities are discussed
elsewhere (Menzinger and Wolfgang, 1969; LeRoy, 1969; Truhlar and
Wyatt, 1976). An example of how these distinct concepts have been
confused in the literature is given by the following quotation (Bacskay and
Linnett 1972): “Experimental estimates of the activation energy, defined as
the difference between H; and H,+ H, range between 7 and 10 kcal /mole.
The kinetic experiments of LeRoy et al. (1968) point to an activation
energy of 9.2 kcal/mole whereas the more direct measurements of Kupper-
mann and White (1966) yield a value 7.6+0.5 kcal/mole.” This passage
confuses E,, E,, and E_.

Now we return to the semiempirical valence-bond calculations. After the
early work no new methods were developed until 1955 when Sato (1955,
1955a, 1955b) introduced a modified version of London’s formula contain-
ing a new parameter k and a very approximate form of the H, triplet
curve. He then obtained the Coulomb and exchange integrals by equating
the Heitler-London expressions (including overlap) for the ground and
triplet states of H, to these potential curves. For this purpose the constant
k was treated as if it were the square of the orbital overlap integral
although the real orbital overlap integral is not a constant but depends on
internuclear distance. His modified London formula cannot be derived
from valence-bond theory by letting & be the square of the overlap
integral, and semiempirical values obtained for k are much smaller than
the values of the square of the orbital overlap integral for the distances
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important along the reaction path. The parameter k must absorb all these
inconsistencies plus the inconsistencies that remain from the LEP method
(such as equating the Heitler-London expression to the accurate ground-
state energy rather than the Heitler-London computed one). However,
Sato’s method, commonly abbreviated LEPS, had the advantage of leading
to a symmetric saddle point for all values of k examined. Sato studied the
barrier height as a function of k and suggested k =0.18, which yields an E,
of 0.22 eV, as the “best” value. The Sato procedure was critically analyzed
by Weston (1959; see also Weston, 1967). He found that k=0.1475led to a
vibrationally adiabatic barrier height of 0.35 eV, which he deduced from
experiments as the energy of activation. (The vibrationally adiabatic
barrier height is the transition-state-theory activation energy at 0°K when
the reaction coordinate is treated classically and the other degrees of
freedom are treated quantum mechanically and it is given in the harmonic
approximation by

EJAC=E, + Lhy, + v, — jha,

Lo

where the last term is the harmonic approximation to the zero-point energy

of H,) Weston emphasized the empirical nature of the scheme. The
saddle-point properties of the Sato and Weston surfaces for H, are given in
Table II1 where they are compared with Liu’s accurate values and other
semiempirical surfaces to be discussed below.

TABLE 111
Properties of Several Semiempirical and Analytic Surfaces with Linear Symmetric Saddle
Points

R? E, 1hv, 1hoy 1,

Surface - (ap) (eV) (eV) (eV) V)
Sato (k=0.18) 1.73 0.219 0.133 0.054 0.100i
Sato (k =0.1475) 1.76 0.358 0.131 0.054 0.118i
Sato (k=0.144) 1.75 0.380 0.132 0.055 0.128i
Cashion-Herschbach 1.82 0.468 0.133 0.051 0.152i
Porter-Karplus (No. 1) 1.70 0.373 0.136 0.059 0.143i
Porter—Karplus (No. 2) 1.70 0.398 0.135 0.061 0.137i
Porter-Karplus (No. 3) 1.70 0413 0.135 0.062 0.130¢
Pedersen-Porter (No. 6) 1.79 0.450 0.133 0.072 0.138i
Salomon (No. 4) 1.70 0373 0.128 0.063 0.045i
Salomon (No. 6) 1.7 0.407 0129 0.062 0.053i
Truhlar-Kuppermann 1.765 0424 0.125 — 0.091i
Jones—-Rosenfeld 1.74 0425 0.130 0.070 0.092i
Malcome-Lawes 1.85 0.391 0.136 0.056 0.095i
Yates—Lester 1.74 0.425 0.128 0.067 0.104;
Accurate 1.76 0.425 or 0.127 0.056 0.094;

0.420
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With the new constant (k) set equal to zero, the Sato method may be
reinterpreted as an LEP calculation except with variable p (Weston, 1959).
It was realized by the early workers that the assumption of constant p was
not strictly valid. This was reemphasized by Hirschfelder (1941; see also
Hirschfelder et al, 1954; Weston, 1959; Yasumori, 1959; Eyring and
Eyring, 1963; and Cashion and Herschbach, 1964). The Coulomb fraction,
as computed in the Heitler-London-Sugiura treatment of H,, is near 0.14 at
large distance but drops sharply as the distance is decreased. Eyring and
Polanyi (1931) performed a calculation using this variable p; they obtained
a symmetrical basin 0.52 eV above the energy of H + H,. However, Wall et
al. (1958) calculated a variable-p surface that did not have a basin. It is
often stated that the assumption of constant p is directly responsible for
the existence of a spurious basin in the semiempirical surfaces; unfor-
tunately, the real situation is more complicated. We have already men-
tioned that constant p may or may not lead to a basin depending upon its
value and that the first variable-p treatments gave a basin. Eyring and
Eyring (1963; see also Eyring, 1962) used a distance-dependent p equal to
an adjustable constant times the Sugiura values. The constant was chosen
to be 1.4 to obtain a symmetric basin 0.33 eV above the energy of H+H,
and twin saddle points of height 0.41 eV located about 0.6a, from the
basin. This gives a very wide barrier to reaction; thus the energy is still
0.26 eV above H+H, at a distance 1.7a, from the linear symmetric
configuration (compare Table II). Eyring and Eyring claimed that previous
transition-state theory calculations (e.g., Weston, 1959) had shown that the
Sato barrier is too thin and predicts too much tunneling and that their new
surface was in better accord with experiment than any that had been
obtained so far. Now we know the true surface has a symmetric saddle
point; we will return to the question of the width of the barrier.

A different way of using experimental or theoretical energy curves for
H, to predict the surface for H; is diatomics-in-molecules theory, in-
troduced by Ellison (1963). In this method, matrix elements of the Hamil-
tonian in a basis of valence-bond configurations are approximated by
diatomic potential curves and atomic energies. Using a two-configuration
basis and what they considered to be the most accurate available potential
energies for ground-state and triplet H,, Ellison et al. (1963) calculated a
barrier of about 0.56 eV [later corrected to 0.57 eV (Ellison, 1964)).
Surprisingly, within their scheme, neglect of overlap changes the calculated
energies by less than 4x 107> eV. About the same time Cashion and
Herschbach (1964) proposed a modification of the LEP method in which
the Coulomb and exchange integrals were evaluated by equating the
Heitler-London energy expressions for the ground and triplet states of H,,
neglecting orbital overlap, to what they believed were the most accurate
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available potential curves for H,. They pointed out the sensitivity of their
results to the value of the then poorly known triplet curve energy at the
end-atom-to-end-atom distance of the H, saddle point. They obtained a
barrier of 0.42 eV [later corrected to 0.47 eV (Cashion and Herschbach,
1964a)]. It was pointed out by Elilison (1964) that at least for the case of
linear symmetric configurations the treatments are identical. Actually they
are completely identical (Pickup, 1973). Then the difference in results is
Just the result of the different input potential curves.

Also at about this time, Porter and Karplus (1964) reexamined the whole
semiempirical valence-bond scheme and attempted to remove not only the
constant-p approximation (also removed by Cashion and Herschbach as
discussed above) but also the other three most criticized aspects of the
method: (i) neglect of overlap integrals, (i) calculation of single-exchange
integrals in Hj as if they were the same as in H, at a given interatomic
distance, (iii) neglect of multiple-exchange integrals. The orbital overlap
integrals were calculated using a distance-dependent orbital exponent.
Rather than use the most accurate available H, data they used reasonably
accurate but simple fits to the H, potential curves. They obtained a barrier
of 0.37 eV in their first calculation (No. 1). With a different choice of
parameters (No. 2, explained below) they obtained 0.40 eV. If the latter
calculation is repeated using the corrected potential curves of Cashion and
Herschbach (1964, 1964a), the calculated barrier is lowered to 0.20 eV. If
this calculation and the calculation of Cashion and Herschbach are re-
peated using the now accurately known potential curves (Kolos and
Wolniewicz, 1965), the calculated barriers become 0.31 and 0.57 eV,
respectively (unpublished calculations).

It is important to distinguish two different types of semiempiricism. One
is to use H, potentials and valence theory to predict the properties of H,.
This was attempted using the London equation but the extreme assump-
tions involved prevented this approach from being very fruitful. Thus the
parameters of the LEP and Sato methods were adjusted to give what was
thought to be the correct barrier height for H, with the hope that other
features of the surface would then be reasonable. The investigations
discussed in the previous two paragraphs raised the hope that such em-
piricism might not be necessary if one used more accurate potential curves
or in addition removed the three other most criticized assumptions of the
LEP method. These hopes were vitiated by the extreme sensitivity of the
calculated surfaces to the H, data and, in the Porter-Karplus method, to
the two semiempirical parameters (5 and ¢) they introduced into the
three-center terms needed to remove approximations (i1) and (iii). This
indicates that the three-center terms are very important, and that the
method is still sensitive to its assumptions even when reasonable efforts are

S’
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made to remove the most criticized ones. Thus later workers should have
abandoned the first type of semiempiricism, that is, they should not have
tried to use semiempirical valence-bond theory or diatomics in molecules
to “predict” the surface without using kinetic data or accurately known
surface features to calibrate the method. This predictive approach has been
called the ab initio semiempirical approach. It was abandoned immediately
by Porter and Karplus. Thus while the values of § and ¢ on their surface
No. 1 were obtained by considerations of computed theoretical integral
values, they also presented three additional surfaces (Nos. 2 to 4) in which
8 and € were used to alter the form of the semiempirical surface. These
surfaces provide an example of what we mean by the second type of
semiempiricism. In particular, the values for surface No. 2, which has been
used very often for dynamical studies, were obtained by adjusting the
vibrationally adiabatic barrier height so it agreed approximately with the
Arrhenius activation energy [which Weston (1959) had extracted from the
experimental data] while maximizing the nearest-neighbor distance be-
cause the semiempirical value was less than the ab initio one of Boys and
Shavitt (see Tables I and III). But their surface No. 3 agrees better with
Liu’s.

The Porter-Karplus method was later reexamined by Pedersen and
Porter (1967). They modified the formalism to use H; potential curves and
the Mulliken approximation for removing approximations (ii) and (iii).
They also used different approximations to the orbital exponents. Their
best surface is given in Table III. Jones and Rosenfeld (1973) and Kung
and Anderson (1974) recalibrated the Porter-Karplus method. The former
authors used accurate cubic spline fits to the accurate H, potential curves
and adjusted & and e so that the saddle-point properties are as close as
possible to the scaled values recommended by Shavitt (1968). Thus they
are also close to those for the accurate surface (see Table III). The surface
of Kung and Anderson also uses fairly accurate H, curves but the
parameters were not readjusted and the surface is less accurate.

Salomon (1969) reexamined the question of the width of the barrier. He
modified the Cashion-Herschbach procedure to include orbital overlap
integrals. These integrals were calculated using a distance-dependent
orbital exponent with one adjustable parameter that was varied to obtain a
symmetric saddle point and a wide barrier. The two surfaces he judged
most accurate on the basis of transition-state theory calculations including
tunneling are given in Table III. It is now seen, by comparison of }h», to
the last row, that there was some truth in the claim of Eyring and Eyring
(1963) and Salomon that all previous semiempirical surfaces had a barrier
that was too thin. But Salomon’s surfaces overcompensated and produced
a barrier that was too thick.
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Steiner et al. (1973) have recently extended the diatomics-in-molecules
calculation to include ionic configurations. The method was found to be
stable with respect to addition of ionic terms only if overlap was neglected;
without this assumption they found instabilities due to near linear depen-
dences of the three-electron basis functions. But for H, the effect of ionic
terms was small and did not remove the sensitivity of the barrier to the
triplet curve. More recently Tully and Truesdale (1976) presented a more
stable and consistent way to include overlap in the diatomics-in-molecules
method.

A simple type of semiempirical scheme decomposes the binding energy
of H, into a sum of two bonding functions for nearest neighbors and a
triplet repulsion term between end atoms. Lipponcott and Liefer (1958)
applied this to H; and found a barrier of 0.29 eV with attractive basins on
either side. Johnston and Parr (1963; see also Johnston 1960, 1966)
developed a scheme of this type, called the bond-energy bond-order
scheme, which can be used to caiculate the minimum-energy path, the
energy profile along it, and saddle-point properties but, without new
assumptions, not the whole surface. In this method the formation of a new
bond “pays for” the breaking of the old bond in such a way that the sum
of the bond orders (n,+n,) is unity. Pauling’s relation between bond
length and bond order yields the reaction path, and the relation E,_ (n)=
E, .4(1)n? plus a triplet potential curve yields the energy profile. With no
adjustable parameters the original results for the H, saddle point were very
good (Johnston and Parr, 1963: E, =043 eV and R,=1.74a,) and the
minimum-energy path is also good (Truhlar, 1972). Zavitsas (1972) devel-
oped an alternative form of this theory for calculating barriers; he ob-
tained E,=0.51 eV. All three calculations involved very approximate
triplet curves: an exponential in the first and 0.5 and 0.9 times Sato’s
triplet in the latter two. If more up-to-date values were used for the H,
triplet curve or if more up-to-date experimental results are used in the
Johnston-Parr calculation to calibrate p, the results are not as good. These
methods are just as sensitive to the triplet curve as is the diatomics-in-
molecules scheme.

The semiempirical valence-bond model has been used so extensively for
H, that semiempirical molecular orbital models have been somewhat
neglected. An early application of the crude form of Hiickel theory to H,
was not successful since H, was predicted to be bound with respect to
H+H, by 0.83 times the bond energy of H, (Van Vleck and Sherman,
1935; Pearson, 1948). However, Bradley (1966) applied molecular orbital
theory more successfully. He neglected overlap integrals, employed
Pariser-Parr-Pople-type approximations (zero differential overlap and in-
clusion of nearest-neighbor interactions only), and evaluated the non-ne-
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linear symmetric barrier with R,=1.844, and a vibrationally adiabatic
barrier height of 0.56 eV. Gimarc (1970) and Malcome-Lawes (1975) have
applied extended Hiickel theory to H;. The latter adjusted one parameter
so that the transition-state theory rate coefficient with no tunneling correc-
tion agrees with the result of Schulz and LeRoy (1965) at 423°K, but his
barrier is too low (see Table III).

The semiempirical surfaces are usually easily programmed so it is easy to
examine properties other than saddle-point height. Porter and Karplus
(1964; see also Karplus, 1970) presented contour maps of one of their H,
surfaces and profiles of the energy along the minimum-energy path for
several bond angles. Several other collinear contour maps have been
published. Apparently, the only accurately calculated minimum-energy
paths that have been published for semiempirical surfaces are those de-
termined in the (R,,R,) plane by Silver (1972) for four such surfaces and
by Jones and Rosenfeld and Malcome-Lawes for their respective surfaces.
Earlier minimum-energy paths for three semiempirical surfaces reported by
Shavitt et al. (1968; see also Karplus, 1970) showed kinks. These were
apparently due simply to errors in their determinations. A few other energy
profiles have also been published (Bradley, 1966; Shavitt et al., 1968;
Karplus, 1970; Malcome-Lawes, 1975). Malcome-Lawes’s energy profile
agrees remarkably well with that for surface No. 2 of Porter and Karplus.

Four analytical surfaces have not yet been mentioned. Russell and Light
(1971) fitted the unscaled Shavitt et al. surface in natural collision coordi-
nates and Anderson (1973) fitted it to a form suggested by work on bound

- triatomics. Anderson’s fit had a spurious well 0.09 ¢V deep, but is worth

consideration for fitting if augmented by other terms. Yates and Lester
(1974) made an empirical modification of the formula used by Porter and
Karplus and adjusted the parameters to fit Liu’s collinear surface. They
showed that the energy profiles for bent geometries agreed well with the
scaled results of Shavitt et al. But Schatz (1975) has obtained a better fit
using noncollinear points obtained by private communication from Liu.

Many properties of the surfaces are brought out more clearly when they
are replotted in scaled and skewed coordinates that diagonalize the kinetic
energy with the same reduced mass in each direction (Glasstone et al.,
1941; Shavitt, 1968), in three-dimensional persepctive (Parr and Truhlar,
1971; Truhlar and Kuppermann, 1972), in natural collision coordinates
(Jackson and Wyatt, 1973), or using a mapping in which all arrangement
channels are represented even-handedly (Kuppermann, 1975; Ling and
Kuppermann, 1975; Kuppermann et al., 1976).

There have been a few calculations on the very repulsive part of the
potential-energy surface in the region where the atoms are very close. This
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part of the surface is important for the interpretation of high-energy
atom-molecule scattering experiments. The first calculations involved ap-
proximations to the three-center integrals. Margeneau (1944) considered a
single valence-bond configuration with special approximations designed
for small distances. For an isosceles triangle with two sides 1.13a, and one
side 0.89a, he calculated an interaction energy of 26 eV. He also consid-
ered closer separations for which the calculated interaction energy was
even higher. Bauer (1951) obtained a simple spherically symmetric model
potential by an approximate first-order perturbation-theory calculation.
His potential is repulsive for R{H —H,(r.)] less than 1.3a, but for larger
distances contains an attractive well about 1 eV- deep, where R[H—Hy(7,)]
is the distance from an H to the center of mass of an H, at its equilibrium
distance. This well is much too deep and much too close. Aroeste and
Jameson (1959) showed that the second valence-bond configuration ne-
glected by Margenau is important. They performed four-configuration
valence-bond calculations for perpendicular geometries that gave lower
energies than Margeneau’s by about a factor of 3 for 0.5a,< R[H—Hy(7,)]
<0.9a, Trivedi (1970) evaluated the three-center integrals accurately. He
used the two-configuration covalent valence-bond method with a mini-
mum basis set and separately optimized exponents. He evaluated the
energy only for isosceles triangles and found an interaction energy even
lower than Aroeste and Jameson’s. His results are fitted by

V=19.248 eVexp { — 1.804a; 'R[H—H,(r,) ]}

for 0.5a,< R[H—H,(r,)]< 1.75a, There are no reliable experiments to
which these three sets of calculations may be compared. Vanderslice and
Mason (1960) considered distances a little larger. They used a method that
is very much like the LEP method with p=0, but they obtained the
exchange integral by approximating the H, triplet curve as an exponential
for 1.63a, < R[H — H,(r,)] < 40la,. They obtained V=615 eV
exp{ — 1.562a; 'R[H—H,(r,)]} for the spherical average of the interaction
potential. Recently, two more accurate calculations have been performed.
Patch (1973) performed CCI minimum basis set and floating orbital
calculations for linear, scalene, and isosceles geometries for R[H —Hy(~,))
in the range 1.0 to 4.0a,. Norbeck and Certain (1975; see also Norbeck,
Certain, and Tang, 1975) calculated the interaction potential for 2.54,<
R[H —Hy(r,)) < 5.0q, for collinear and perpendicular approach. They used
a valence-bond formalism with an extended basis set and 100 symmetry-
adapted configurations at each geometry. For the collinear geometry at
R{H—Hy(r,)]=3.0a, they obtained an interaction energy of 0.461 eV



eV. At larger distances thejr calculations appear to be more accurate; thus
for R[H - Hz(r,)]==4.0ao, their interaction energy is 0.128 ev compared to

B. GmumElecumicSute:longRange

At large H-H, separations, the attractive induced dipole-induced di-

pole dispersion interaction jn the ground electronic state has the form

C
Fo(Rx)=~—2[1+1p, (cosx)]



168 D. G. TRUHLAR AND R. E. WYATT

TABLE IV
Calculations of Coefficients in the Long-Range H + H, Interaction Potential Given
Approximately by — CoR ~6[1+T P,(cos8)]— CgR ~8
Cs Cs
Reference (auy T (auwy Method, comments
Margenau (1944) 840 — 148  From semiempirical H,
oscillator strengths
Mason and Hirschfelder (1957) 840 0.117 —  C4from Margenau; T’ from
static polarizabilities for H,
Dalgarno (1963) 9.20 — —  From H, oscillator strengths
forced to satisfy sum rules
Karplus and Kolker (1964) 991 0.154 —  From dynamic polarizabilities
from uncoupled Hartree-Fock
calculations
Dalgarno and Williams (1965) 924  — —  From H, oscillator strengths
that satisfy seven sum rules
Langhoff and Karplus (1970) 8.57 —_ —  From bounds on Cj established
with Pade approximants
Victor and Dalgarno (1970) 892 0104 — From semiempirical dynamic
polarizabilities of H,
857 0099 — From bounds on Cgestablished
Langhoff, Gordon, and Karplus with Gaussian quadratures or
(1971) Padé approximants
895 0.111 — Same but corrected for H, vibration

2The atomic unit of energy is the hartree (1 hartree=27.2116 ¢V =4.35981 X 10~ 18 J); the
atomic unit of length is the bohr (1 bohr=1g,=0.529177x10~1% m).

In the studies of Dalgarno (1963) and Dalgarno and Williams (1965),
oscillator strengths from the ground state of H, were modified and
extended so that sum rules were satisfied exactly. In the latter case, the
oscillator strengths were required to satisfy seven sum rules. [See Langhoff
et al. (1971) for other applications of sum rules.]

A different formulation of the dispersion interaction problem was pro-
vided by Casimir and Polder (1948). They showed that C, can be expressed
as an integral over imaginary frequency of the product of the dynamic
(frequency-dependent) polarizabilities of the interacting species. The first
application to the H—H, interaction was provided by Karplus and Kolker
(1964), who evaluated both C¢ and T'. The Casimir-Polder formulation has
also been applied to the H—H, interaction by Langhoff and Karplus
(1970), Victor and Dalgarno (1970), and Langhoff et al. (1971). Langhoff
and Karplus (1970) and Langhoff et al. (1971) have shown how to use
bounds on the dynamic polarizabilities in the Casimir-Polder formulas to
establish upper and lower bounds on the dispersion coefficients. The



H-+H,: POTENTIAL SURFACES AND SCATTERING 169

values of Cg and T listed in Table IV are not in complete agreement, but
the most recent calculations indicate a value of Cg about 9 a.u. with T close
to 0.1. There has been no recent work on the higher-order (R% etc)
interactions.

The shallow van der Waals well in the ground-state potential surface
V(r,R,x) is an important feature in the determination of cross sections for
clastic and rotationally inelastic scattering (Sections III and IV.A) and in
the transport properties of partly dissociated H, (Section IV .D). Margenau
(1944) and Mason and Hirschfelder (1957) attempted to calculate the
surface in the vicinity of the well by adding the first-order exchange forces
(calculated by approximate valence-bond theory) to the second-order
dispersion forces. They obtained well depths of 2 to 3 meV at R=6 to Ta,.
They obtained the result, still believed correct, that the well is deeper for a
perpendicular geometry than for a collinear one. Conroy and Bruner
(1965, 1967), Michels and Harris (1968), Shavitt et al. (1968), and Blustin
and Linnett (1974) all briefly commented on the appearance of shallow
wells at large R in their ab initio H, potential surfaces, but the basis sets
employed were too small to accurately characterize the surface topology
near the well minimum. However, the order of magnitude of the well depth
can be estimated as 0.001 eV from the calculations of Shavitt et al. (1968).
In contrast, the semiempirical Porter-Karplus (1964) surfaces and most
other semiempirical surfaces are repulsive at large R. The characteristics of
several semiempirical and ab initio surfaces have recently been compared
by Norbeck, Certain, and Tang (1975; see also Norbeck and Certain, 1975)
over the range 24,< R < 54, (see Section IV.A). In this region the rota-

- tional anisotropy coefficient V2(R) in the expansion V(R,x)=V(R)+

Vy(R)Py(cosx)+ --- (where r= 1.4ay) changes rapidly. (Note that for
V,>0, the perpendicular approach of H to H, is favored). V, from
Porter-Karplus surface No. 2 is negative at all R and becomes increasingly
negative as R decreases, but ¥, from a new ab initio surface calculated by
Norbeck et al. (1975) is positive near R = Sag, increases to a maximum near
3.5aq, and becomes negative for R <3.1a,

Because of the difficulty of characterizing the van der Waals well and
the long-range potential through ab initio calculations, a number of hybrid
potentials have been proposed that smoothly join one set of potential
expansion coefficients {Vo(R), V(R)} at short range to another set at long
range. For example, Dalgarno, Henry, and Roberts (1966) joined the
Mason-Hirschfelder (1957) potential onto an E4(R,x) long-range attractive
tail. Chu and Dalgarno (1975) joined the Porter-Karplus values of VAR)
and V,(R) onto the same long-range tail that Dalgarno et al. (1966)
employed. (Rotationally inelastic-scattering calculations on both joined
potentials are discussed in Section IV.A) Takayanagi (1957; see also
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Takayanagi and Nishimura, 1960) and Tang (1969) also constructed joined ™
potentials. Tang’s merges into Porter-Karplus surface No. 2 at small R.
This potential was later used in the calculation of transport coefficients
(see Section IV.D). In addition, Shui and Appleton (1971) constructed a
spherically averaged potential V(R) for use in trajectory studies of H+H

+ H,=22H, recombination. The characteristics of a number of spherically
averaged potentials near the well minimum are compared in Table V.

In order to fit the velocity dependence of the total scattering cross
section of H on H,, Stwalley et al. (1969) used several spherically symmet-
ric potentials for which the reduced velocity parameter vo=2eR,,;,/%,
where ¢ is the well depth and R, is the position of the minimum, was in
the range 1.4 to 2.7 km/sec. The reduced velocity parameters for other
proposed Vo(R) potentials are listed in Table V. The potentials used by
Stwalley et al. included those of Browning and Fox (1964) and Tang and
Karplus (1968). To discuss their measurements of the D+ H, total scatter-
ing cross section, Gengenbach et al. (1975) introduced a joined potential
involving Born exponential repulsion at small R, cubic splines at inter-
mediate R, and — C4/ R®— Cy/R?® attraction at long range. Gengenbach
et al. also used a number of older semiempirical H—H, spherically
averaged potentials to predict D+ H, total scattering cross sections. The
Lennard-Jones potential of Clifton (1961), the exp-6 potential of Weissman
and Mason (1962), the Dalgarno-Henry-Roberts (1966) potential, and the
Tang (1969) potential all gave about the same disagreement (in a least-
squares sense) with the experimental data. The Khouw et al. (1969) 12-6
potential with parameters fitted from diffusion data predicted cross sec-
tions in worse agreement with the scattering data than the previous four ._~
potentials. This clearly illustrated that bulk-transport measurements can be
fitted bv a variety of effective spherical potentials, some of which are not
really very accurate.

C. Excited Electronic States

Van Volkenburgh et al. (1973) recently pointed out that, “Since Hj is the
simplest polyatomic molecule but one, several of its electronically excited
states should be reasonably well known theoretically. This is by no means
the case... .” Ab initio and semiempirical studies of H; excited states are
summarized in Table VI, which shows that they have been limited to the
lower surfaces at or near selected geometries (D5, Cy,, or D) over small
ranges of internuclear distances. In the first study of H; excited electronic
states, Hirschfelder (1938) calculated a correlation diagram that illustrates
how the energies of the X2X}, 22}, and “Z} states of symmetric linear H,
change as the system is bent (with the constraint that R, = R, for atoms



.Ao?ﬂwﬂvmisA __Mm :uix%\_ :renuarod g-zj “A

A ¥
SE“

vln.ixxxu:auﬁ

0

9

L ?\Il.wv.; =(¥)°4 :fenusied 9-dxa ,

Y/ (" ya)r =% 81 Q0OPA [EIpRI PoONPas YL, Q=g Oy my 1V ‘wnunuUIW oY jo uomsod 3y sf (“y 10) My puw yidap [em o 81 7,

UON998 55010 Suianess (¥101 S + (31 O1 ULsOYO

(sLe1) seteuso]

siorewesed (g y%) —g_ ¥9) —)/sunds/uommdas 'dxs  08'8 WT 1L PES  PET pue ‘uyeH ‘yovqualuen
©18p AN1800814 11 O} UISOYD s13jewered (9-7] LTS T  E¥S ¥8Y 6LT (zL61) Jeaysyorig pue Busy)
uonBuIqWO0l TH + H + H JO $9Iprus K10109fes ut pasn fesiopy — 8 EF9 #5'S  LTE (1L61) uojdiddy pue myg
BIBp UOISNJJIP 1Y 0} pasnipe samowrered f9-21  OL'L 96’ EL'P 6EP TE'L  (6961) WIyos pur ‘veBlow ‘mnoyy
¥18p OISNJIP 1Y) 03 paisnfpe sinowresed f9-dxs  9€°9] WL LEL 8K L (6961) 3s1m pue Jo10UBS
9’6 $50 WL 19 90 (6961) Bue],
o 981y 3% renuatod (9961) s1saqoY-AIusp-ousuSec]
pue ¥ [1ews 12 enuiod (p961) snidrey-19u0d 01 14
97’6 'l ¥89 L09 6T (8961) snjdrey] pue Buey,
¥ [reuts 1 [enuajod (9961) sueqoy pue
(L561) Sp[oJyoRIH-uOsTI 03 1Y) ‘9-dxd 97’6 'L ¥8'9 L0 6T ‘Aausy ‘owrwdieq
BIED AJISOISIA SZA[UUE O3 pIsn
isuonwnaed (pp61) savuslie 011y ‘9-71  60°8 99T  18s 8IS $8T (¥961) X0 pus Sujumosg
SUOHBIND[ED (pp6) neusBiepy ) 1) t9-dxs (b8 WE 099 08 1 (2961) uosey pue vewssiopy
suonBINIEd (pp6l) neusbieW 01 1y ‘ozt HTII €0 S09 6£S TI'E (1961) 81
SUONBINS[UI (pp61) NeuslIB 011 (9-Z1  $0'8 19T 8¢ Ors 8LT (1961) woyID
sjmaWwod ,‘renunod jo uog () (oes/wy) () (%) (pow) WUY
‘U 0q Ez Ox 2

oABNUN04 PaSEIsAY AlTEoLoyds ZH —~ H U} Ul sONSHI0RIBYD) [[2A SEBM 9P UBA

AdTEvVL

171



\ ‘
_\.\ A
“(#961) snidsey pus 193104 JO POTRI 5
‘suopioung adKi-ueissnen ‘A LO ‘suonouny adfi-penusuodxs ‘19 {(oSIMINNO PABIAPUL §8 1d29x2) 191U YOI UD,
“UONoBISUL-UONEINSIIUOO ‘1D {[HIQIO JB[MNIF[OU ‘O {SIMDIOUW-U-BIIWOIRIP ‘WId ‘Proq 5UIBA ‘GA SUONEIAIGAY ,
H+(%o8) 50 H +(CZH (£L61) ‘o 12 uBanquaNIoA UBA
H{ .uw_ X)CH +(gmu) { 30} uonoesaiul s8uel-Juo| aAnoBIY usAI® Jou/ Wi Ul patonb {(paysyqndun) Afin g,
V"1, (GO H +([Z)'H pue i,
VT 12, ¢ 12 110) vonERL0D ) Mg g
By i 8 .NN« .nwu ‘I 009>y > 0p7 10} ¥ @ dmewWAg WO1E UO § INOJ H[NIOU JO JNUW Y1
T Wy ‘B X O0g> ¥ >O1 d0j ¥5q 0 ud 0n) ‘od O} s N0} :419/10 pus ONW (0L61) PAvIA
SOOULING 1SIMO] OM) JO] UONY[LI0D Nye-tq¥*q ud 5uo ‘od U0 ‘s OM} (g961) snidiey
29%ds IPOW-[PLLION UI UONOISINUY 189U §9081NS ( muv.aQ ;13 /0niul qe pue ;g A [BoLIdWRImLg pUe ‘SUdANS ‘IoLI0d
5y W2
+H+H+ +
H+H+H A.wwnv H+H (Y@ '3,)°H ssed01d jo uolssNIBI] Auo uossnasIp aAnenenb /gA (p961) Aousrug
(&RJyH+H
e o NNN gy 13, uoneaLI0d Zq¥get®g Kfuo uossnIsp/Ansmuoyo wmjuenb sa1-utdg (#961) uosiBN
A1uo suoneInByjuod Jesuy (£961) 19184 pue

‘91838 T, 159MO] OM) J0] §918I3US Jo 31qe]

s1/NIA
wole uo dg <

‘Jjny ‘vosiy

(zZ=u)H +( NN_ XVH g, vy :Auo %) ‘a[nos[ow JO JYUSD YO8 U0 ST :LLH/EA (0961) 215901y puE uosswef
Ty IR, 1T 1%y ' 1T, ruresup uonsppuos Vg ¥ q
¥, W, T, Ty Opg > ¥ > %7 10} *a s1 :413/8A (8€61) 9PIPJYISHH
palpms sainowods /ssoeing Aue ji ‘siseq/ POPON 0UAJPY

soymg dtuox0a[g PaIXd FH JO SIPMIS

IATT9VL

172



| |

H+H,: POTENTIAL SURFACES AND SCATTERING 173

labeled a-b-c). In this correlation, the X2=} and I states of the linear
D, geometry form the degenerate 2£ level of the equilateral triangle D,
geometry while the 45+ excited state correlates with the %4, state in Dy,
The variation of the energy of these states (and excited 24, and %4, states
as well) was also studied as a function of internuclear distance for Dj,
geometries. Correlation diagrams for the D ,—>Cy—D3 deformation
have also been discussed by Smirnov (1964), Matsen (1964), Porter,
Stevens, and Karplus (1968), Frenkel (1970), and Van Volkenburgh et al.
(1973). Only the two lowest states, which originate as X2s) and % in
D, Were considered by Matsen (1964) and Porter et al. (1968).

The topology of the intersection between the two lowest electronic
surfaces at the D, geometry depends upon what coordinates are used. For
example, if the a-b-¢ angle is fixed at 60° and the two surfaces are plotted
as functions of R,, and Ry then intersection occurs along the diagonal
“ridge” where R,,= Ry (see Porter and Karplus, 1964 and Porter et al.,
1968). However, if energy contours are plotted in the (91,90 normal-mode
space for the equilateral triangular geometry (where g, and ¢, correspond
to asymmetric stretch and bending deformations), then the lower and
upper surfaces join at the vertices of two cones (the vertex for the lower
cone points “up” at the descending cone of the upper surface). Pictures of
both surfaces near the intersection were shown by Porter et al. (1964),
while Matsen (1964) displayed only the lower cone. [A perspective picture
of the intersection in natural collision coordinates was displayed by Jack-
son and Wyatt (1973).] The ridge or conical intersection between the two
lowest H, surfaces in the D, geometry gives rise to Jahn-Teller instability

~— (all nonlinear nuclear configurations for an electronically degenerate state
of a polyatomic molecule are unstable), which is relieved as the linear
geometry is approached and the degeneracy is removed.

In addition to the two lowest surfaces that intersect as the 2F state with
D, geometry, Frenkel (1970) calculated a correlation diagram for several
states (B, A, for C,, geometries) that correlate with H(X'Z;)+ H (n=
2). It was found that veveral such states (>4, and ’E) possess deep minima
near the D,, geometry. Jameson and Aroeste (1960) also calculated a C,,
correlation diagram for states that dissociate to Hy(X ')+ H(n=2). In
unpublished studies, J. C. Tully (quoted in Van Volkenburgh et al., 1973)
found that excited states correlating with H (n=2)+ Hy (X ‘2; ), H+
Hy(b’Z]) or H;'(B*£})+H are attractive at long range. A number of
features of the H, excited-state correlation diagram for doublet states have
been discussed by Van Volkenburgh et al. (1973) (also see Section IvV.0).
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II. ELASTIC AND TOTAL SCATTERING CROSS
SECTIONS

The final process competing with reaction, dissociation, and other in-
elastic scattering processes in H +H, collisions is elastic scattering. In fact,
elastic scattering often dominates the integral total scattering cross section
for H+H,, where “integral” refers to the integration of the differential
cross section over all scattering angles and “total” refers to a sum over all
processes. Elastic scattering dominates when the large-impact-parameter
small-angle scattering dominates the total scattering cross section and is
itself mainly elastic scattering. Then measurements of the elastic scattering
and the total scattering provide similar information and can be used to
Jearn about the interaction potential. In addition, the differential elastic
scattering cross section is needed to interpret other experiments such as the
hot-atom experiments discussed elsewhere (Truhlar and Wyatt, 1976). For
H+H, there have been four kinds of experiment on elastic or total
scattering: (1) high-energy measurements of H-beam attenuation by H,
gas, which yield the magnitude of the incomplete total scattering cross
section S (0, E.p) as a function of relative translational energy E,, where
“incomplete” means the integral over scattering angles @ excludes the
region 8 < 8,; (2) low-energy measurements of H-beam attenuation by H,
gas, which yield the relative magnitude of the integral total scattering Cross
section S(E,,) as a function of E,; (3) a few low-energy measurements of
the magnitude of S(E,) at selected E;; (4) low-energy measurements of
the relative magnitude of the differential nonreactive scattering cross
section do,./df (E,,) as a function of 6.

The first experiments were at high energy because it is easier to produce -
a beam of H atoms at very high energies. The beams involved in the
high-energy experiments had laboratory energies of 196 to 7000 eV. Thus
E, is 131 to 4667 eV. This is high enough (the de Broglie wavelength is of
the order of 10~ %a,) and 6, should be large enough (0.1° to a few degrees
in relative coordinates) for a classical description of the scattering and for
the measurement to be sensitive to the repulsive region of the potential and
not at all to the long-range van der Waals’ attraction. But 0, is also small
enough that the interaction energy during a collision that scatters at angle
0, is only a small fraction of E,, and is of the order of magnitude of 1 eV.

The first high-energy experiments on H+H, were by Amdur and
Pearlman (1940; Amdur, 1943, 1949) and were repeated by Amdur et al.
(1950). More recently, high-energy experiments on H+H, were reported
by Belyaev and Leonas (1967), whose results disagree with those of Amdur
and co-workers. Using the same techniques, Belyaev and Leonas (1967)
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~also reported results for other systems including He+H,. A disadvantage
of the small valye of 8, used in these experiments is that the results are
sensitive to the analysis of the data in terms of an effective angujar
aperture, which depends on beam size, length of the scattering chamber
over which collisions occur, and detector aperture. Jordan apd Amdur
(1967) pointed out that the apparatuses used by Amdur and co-workers

co-workers and to accept as essentially correct the experimental resylts of
Belyaev and Leonas.

For most cases (usually atom-atom scattering) studied by Belyaev and
Leonas, a log-log plot of S (0, E_) versus £, was linear. Byt for H+H,
this was not the case. They attributed this anomalous energy dependence

the lowest CRergy part of their curve in terms of ap effective spherical
interaction potential. For 1.89q, < R[H-HZ(R,)]< 2.344,, they obtained for
this potential

V=128V q415/ gais
For R=2.0q, this s 0.72 ev.
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Wartell and Cross (1971) have concluded that if electronic excitationv
and dissociation do not occur, high-energy scattering measurements may
be interpreted in terms of a spherically symmetric potential and this
potential is the average of the true potential over orientations evaluated at
the equilibrium internuclear separation of the target. Wartell and Cross
also added the proviso that the anisotropy and vibrational dependence of
the potential must not be too high. Since H+H, is reactive, their conclu-
sion is not necessarily applicable to H+H,. For H+ H,, elastic scattering
may not dominate rotationally and vibrationally inelastic scattering at a
few hundred eV at the angles involved in the Amdur-type measurements.
Nevertheless, it is interesting to attempt to compare the derived potential
to theoretical calculations of the spherically averaged potential. The calcu-
lation of Mason and Vanderslice (1958) yields 2.70 eV for the spherical
average of the potential at 2.0a,. The large difference from experiment is
not surprising in view of the crudeness of the theoretical method (see
above). The spherical average of Porter-Karplus surface No. 2 at 2.0q, is
1.13 eV (Tang and Karplus, 1968), in better agreement with the experi-
ment. The spherical averages of the potentials of Yates and Lester (dis-
cussed above) and Gengenbach et al. (discussed below) are more repulsive
than the spherical average of Porter and Karplus’s surface No. 2 (see
comparison in Choi and Tang, 1975a).

Because of the Heisenberg uncertainty principle, the elastic differential
cross section is flat for # less than a small angle that is inversely propor-
tional to velocity. Thus at low energies 8, can be made small compared to
this angle and the complete integral total scattering cross section can be
measured. The first such measurement was made by Harrison (1962). He -~
used a thermal H beam and a mass spectrometer detector. The mean
relative velocity of these experiments corresponds to E,, in the range 0.20
to 0.29 eV. In this range Harrison found S(E,) constant within experi-
mental error and equal to 196 a3. Fluendy et al. (1967) used an H beam
that was velocity selected in an inhomogeneous magnetic field and for
detection they used a Pt bolometer. They measured only the relative cross
section and found an E,_*% dependence over the energy range 0.04 to 0.39
eV. Since S(E,,) is essentially a measure of the range over which the
interaction is strong enough that the classical deflection of the particle is
greater than its quantal uncertainty, they and all subsequent workers have
assumed that is is reasonable to interpret S(E ) in terms of an effective
spherical interaction potential V' (R). The dependence measured for
S(E,.) is weaker than the E_;°*° expected for scattering from an R ~°
potential, which indicates that the van der Waals’ attraction is so weak that
even at the lowest energy the scattering is caused mainly by the shorter-



H+H,: POTENTIAL SURFACES AND SCATTERING 177

~-“range repulsive forces. In this way one obtains a bound eR<<0.024 €V a,
where ¢ is the well depth and R,, the H to H, distance at the minimum of
the well. Using a modified apparatus, Stwalley et al. (1969) remeasured the
dependence of S(E,,) on E,, in the range 0.19 to 1.0 eV. They concluded
the previous measurements for E,,<0.08 ¢V were unreliable. The data
were not sufficient to determine a potential. But the two recent experi-
ments described next, when combined, have been used to determine a
V (R) although its uniqueness and its precise meaning have not been
established. Bauer et al. (1975) measured the E,,, dependence of S(E,) for
the range 0.007 to 0.93 eV for H+D, and 0.007 to 0.63 eV for H+H,.
Their cross sections are in good agreement with those of Stwalley et al.
(1969) in the region of overlap. By comparing to results calculated for
various central potentials, they obtained ¢R,, equal to 0.016 ¢V a, from the
H+ D, data and 0.020 eV a, from the H+H, data. The difference is within
the uncertainty of the determination. They compared this to a value of
0.016 eV a, obtained from semiempirical combining rules used for analyz-
ing data on other systems. Gengenbach et al. (1975) measured the absolute
value of S(E,) for D+H, at E equals 0.31 eV and 048 eV with
estimated accuracy of 1.5%. They obtained 14242 at both energies. They
used these results to normalize the data of Bauer et al. and used the
normalized data to obtain a multiparameter ¥ (R). At 2.0a,, their potential
is 2.18 eV but their experiment probably is not too sensitive to R values
this small. Their potential has eR,, equal to 0.014 eV a, with ¢ =0.0023 eV
and R,=5.93a, They compare it to many of the available theoretical
potentials for distances greater than about 21a, More recently, Toennies,

_ Welz, and Wolf (unpublished, see Welz, 1976) have measured the integral
cross section for H+H, down to E, equals about 0.001 eV. Analysis of
this experiment yields e=0.0026 ¢V and R,,=6.56 4.

The differential cross section for nonreactive scattering has been
measured by Fite and Brackman (1964, 1965) and Geddes et al. (1972)
using thermal beams. The second measurement makes the first one ob-
solete. The differential cross section is forward peaked and drops by a
factor of about 20 from 10° to 45° then flattens out. These measurements
were not in absolute units and were therefore normalized to the measure-
ment of Harrison (1962) but they have now been renormalized by
Gengenbach et al. (1975). The differential cross section has not yet been
measured with velocity-selected beams. :

There have not been many calculations of the elastic scattering. We
consider first the thermal and low-energy range. Almost all published
calculations (Tang and Karplus, 1968; Stwalley et al., 1969; Gengenbach
et al., 1975) are based on spherically symmetric approximations to the
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potential. One interesting result is that Gengenbach et al. (1975) showed ™~
that their multiparameter potential, obtained from analyzing integral total
cross sections, yields a differential cross section for nonreactive scattering
in good agreement with the experiment of Geddes et al. (1972). McCann
and Flannery (1975, 1975a; see also Flannery and McCann, 1975) and
Schatz and Kuppermann (1976) have peformed distinguishable-atom
elastic scattering calculations that do include the anisotropy of the poten-
tial. McCann and Flannery used both a “multichannel semiclassical orbital
treatment” and a multistate eikonal treatment for their calculations. The
anisotropy seems to lower the pure elastic differential cross section at large
angles. Schatz and Kuppermann calculated the differential and integral
elastic scattering cross sections at E ,=0.70 ¢V using potential energy
surface No. 2 of Porter and Karplus (1964). Their calculated integral total
cross section (2214?) is considerably larger than experiment because of the
inaccuracy of the potential surface so the results cannot be compared
. quantitatively to experiment. But they tested the assumption of a spheri-
cally symmetric potential by comparing their results to a calculation
involving the spherical average of the potential. They found that the
integral total cross section was affected only 0.1% by the anisotropy and
that for center-of-mass scattering angles 8 less than 30° the elastic differen-
tial and total differential cross sections were both essentially identical to
that computed with the spherical approximation. Schatz and Kuppermann
also found that the effect of particle indistinquishability on the elastic
differential cross section was small (less than 10% for 30° <8 <90°).
Toup and Russek (1973) performed some caiculations for energies in the
1 to 10 keV range. They are discussed in Section IV.A. —

IV. INELASTIC SCATTERING CROSS SECTIONS AND
TRANSPORT PROPERTIES

A. Rotational Energy Transfer

There are no experimental measurements of cross sections for rotation-
ally inelastic nonreactive scattering of H+ H,, but there are several quan-
tum-mechanical calculations for this scattering process in the ground
electronic state. These calculations are described in this section. An earlier
discussion was given by Takayanagi (1973).

For rotational excitation it is convenient to represent the interaction
potential as an expansion in Legendre polynomials as

V(r,R,x)= 02 op(r, R)Py (cosx)
A=0,2,...
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~where r is the H, internuclear separation, R is a vector (of magnitude R)
from the molecular center of mass to the atom, and x is the angle between
the internuclear axis and R. The coefficients v, (r, R) can be calculated by
expanding one of the potential functions v (r,R,x) discussed in Section 11
or they may be approximated directly. The interaction potential is thus
specified by the set {oa(r,R), A=0,2,...}, and several such sets have been
used for dynamical calculations. Cross sections for rotational inelastic
transitions (j—j 2,/ x4 -) have been shown in these studies to depend
primarily upon the first rotational anisotropy term, v,(r,R), and upon the
spherical term ve(r,R), which may serve to “shield” v, (r,R) at certain
values of R. Norbeck et al. (1975) have recently compared the v)(r,,R)
anisotropy coefficients on several H, surfaces; they also presented results
of a new ab initio calculation of v,(r,R). In most scattering calculations
the rigid-rotor approximation has been used; that is, r was set equal to r,
(the H, equilibrium distance) in both the vo(r, R) and vy(r,R) coefficients
so they become functions v,(R) of R alone. An examination of the
breakdown of this approximation has been presented recently by Wolken
et al. (1972). Before proceeding to results for H+ H,, we note that Secrest
(1973) has presented an extensive review of the theory of inelastic energy
transfer.

The first approximate calculations of cross sections for H+H, rotational
inelastic processes were presented by Takayanagi (1957). He used the
distorted-wave formalism to study the j=0—j =2 process. An approxi-
mate fit [og(R) approximated as a shallow Morse curve and oy(R) as an
exponential repulsive term) to the early Margenau (1944) potential was

—used. In order to simplify the calculations, the modified-wave-number
approximation was used; this involves replacing the transition probability
for nonzero orbital angular momentum () at relative translational energy
E,; by the s wave ({=0) probability evaluated at a modified (lower) energy
E=Eq-1U+1)r?/ 2uR2, where R, is at (or near) the classical turning
point in the relative motion. These calculations were then extended (within
the modified—wave-number—distorted—wavc framework) by Takayanagi and
Nishimura (1960) to include transitions out of initial rotor states i=2,4,
and 6. Thermal rate coefficients for temperatures up to 5000°K were then
calculated.

‘Choi and Tang (1975) recently presented extensive calculations of H—
H, rotational inelastic processes on three different model potential surfaces
for translational energies in the 0.05 to 0.25 eV range. They compared their
results with a number of earlier calculations, both approximate and ac-
curate, that employed these potentials. We first briefly discuss the different
potentials with the notation of Choi and Tang; then we compare the
scattering results.
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(a) DHR potential. Dalgarno, Henry, and Roberts (1966) defined a —
model H+ H, potential that smoothly joined the short-range (exponential
repulsion) Mason-Hirschfelder (1957) potential to a long-range R ~6 attrac-
tive tail; the long-range component of the vg(R) term was based upon
Dalgarno and Williams’ (1965) study, and the long-range part of o,(R) was
computed from static electric polarizabilities (Hirschfelder et al., 1954). In
contrast to the potentials considered below, v,(R)>0 for all R in the DHR
model; that is, the perpendicular approach of H to H, is favored over the
collinear one for fixed » and R.

(b) PK potential. This is calculated from surface No. 2 of Porter and
Karplus (1964). The resulting spherical potential vg(R) is considerably
softer than the DHR spherical term. Also, the PK anisotropy term is
negative at moderate to large R, meaning that the collinear approach of H
to H, is preferred.

(c) TANG potential. Tang (1969) defined a potential [containing ve(R)
and v,(R) terms] by smoothly joining the Porter-Karplus surface No. 2 at
small R onto the DHR potential at large R. In this potential, vo(R) has a
small van der Waals well at large R (unlike the spherical average of the PK
surface). Also, v,(R) in the TANG potential contains a negative region at
moderate R and a positive region for R >3.6a, In the negative vy,(R)
region, the collinear geometry is preferred. Shavitt (private communica-
tion) has emphasized that a potential which favors the perpendicular over
collinear approach for fixed r and R might still favor the collinear
approach over a bent approach at fixed R, and R, Thus a detailed
comparison is necessary to determine how calculations at fixed R; and R,
compare with the Legendre expansions discussed here. However, Norbeck —
et al. (1975) have shown that the sign change of the TANG potential is
qualitatively consistent with the diatomics-in-molecules potential of Steiner
et al. (1973), with a potential obtained by combining Liu’s (1973) collinear
calculation and the spherically symmetric component determined by fitting
beam measurements (Gengenbach et al. 1975), and with their own ab initio
valence-bond calculations for two different basis set sizes.

In addition to the potentials discussed above, other Legendre-expanded
potentials have been proposed for H+H, at various times. Thus, for
example, Tang and Karplus (1968) considered not only the Legendre
expansion for the H+H, potential with the H, distance fixed but also the
spherically symmetric effective potential obtained under the assumption
that the molecule adiabatically follows the incoming atom. They aiso
considered a modified version of this adiabatic potential that includes a
long-range attractive term. Of course, such spherically symmetric poten-
tials do not lead to rotational excitation. Micha (1969) has used a different
adiabatic approximation to obtain an effective potential that is nonspheri-
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cal and complex (i.e., it has a negative imaginary component). Micha’s
starting point was a Cashion-Herschbach-like potential; his final potential
has apparently not been used for scattering calculations. The TANG
potential is not the only attempt to match the Porter-Karplus surface No. 2
at short range to a long-range attractive potential. An alternative version of
such a potential has been presented by Wolken et al. (1972). The hybrid
potential of Wolken et al. just consists of joining the PK values of vy(R)
and v,(R) at small R to the DHR values at the positions [R=4.6a, for
vo(R) and R =17.0a, for v,(R)] where these curves cross. Thus the major
difference between the hybrid potential and the PK potential is in vg(R).
Although the resulting potential has cusps at the connection points, they
do not directly affect the scattering. The hybrid potential of Wolken et al.
will be abbreviated the WMK hybrid potential. Another attempt to make
an analytic Legendre-expanded surface that is accurate at both small and
large R was made by Ioup and Russek (1973); see below.

We first consider scattering calculations using the DHR potential.
Dalgarno et al. (1966) used this potential in distorted-wave Born approxi-
mation (DWBA) calculations for the j=0-/'=2, 2—4, and 13 transi-
tions in H+ H, collisions, and in studies of the 0—2 transition in H+ D,.
Differential cross sections, integral cross sections, and rate coefficients (up
to 5000°K) were computed. In a later study, Allison and Dalgarno (1967)
studied the 0—2 rotational transition in the close-coupling (CC) formula-
tion. For translational energies up to 0.30 eV, the DWBA results were
slightly larger than the CC cross sections. In their recent close-coupling
studies, Choi and Tang (1975) obtained good agreement with the Allison-
Dalgarno results for this potential.

We now turn to several calculations of rotational inelastic cross sections
that employed the TANG potential. Tang (1969) first reported a series of
DWBA calculations, then Hayes et al. (1971) reported CC results; they
also compared their results with those of Tang. Integral cross sections for
the 02 process agreed well with Tang’s DWBA results; differential cross
sections also agreed well, with strong forward peaking predicted in both
calculations, Choi and Tang (1975) also obtained CC results for this
potential; excellent agreement was obtained with the earlier results of
Hayes et al.

Calculations of rotational inelastic processes on the PK potential include
the CC results of Wolken et al. (1972), Choi and Tang (1975), and Schatz
and Kuppermann (1976). Unlike all the other workers, Wolken et al.
(1972) and Schatz and Kuppermann did not make the rigid rotor assump-
tion. Integral cross sections for all three calculations are in good agree-
ment, although many oscillations reported by Wolken et al. in the 0—2
differential cross section (particularly for scattering angles #:<90°) were
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not reproduced in the other calculations. Schatz (private communication) ~
has compared the unpublished phases of his and Kuppermann’s scattering
matrix elements to the published ones of Wolken et al. There is good
agreement for the detailed channel-to-channel 0—2 probabilities as a
function of total angular momentum J and for /=J +2 there is good
agreement for the phases. But for I=J the phases differ by #. Thus it
seems likely that these oscillations are spurious and are due to phase errors
in the scattering matrix elements of Wolken et al. For both the PK and
DHR potentials, the low-energy (relative translational energy E 4<0.5 eV)
02 differential cross section is generally backpeaked with very smooth
behavior in the backward direction (for 8:=90°); the TANG potential
predicts forward peaking at similar energies. In the calculations of Choi
and Tang and of Wolken et al. the effect of higher anisotropy coefficients
0, (R) A>2) was demonstrated to be very small, even for the 04
transition. In contrast to the other calculations mentioned so far, Schatz
and Kuppermann (1976) included closed vibrational channels and allowed
the anisotropy terms to have explicit 7 dependence (as well as R depen-
dence) to produce vibrational coupling. However, it is interesting to note
that the Wolken et al. calculations, which employed a single vibrational
channel in their CC expansion, predicted 0—2 integral cross sections in
good agreement with that of Schatz et al. Thus for low-energy integral
cross sections for 0—»2 rotational excitation on this surface, closed vibra-
tional channels do not seem very significant (but this comment is not true
for reactive scattering). Wolken et al. found that the rigid rotor approxima-
tion was unsatisfactory; it led to partial (fixed total angular momentum)
integral cross sections as much as 25% less than the fully vibrationally
averaged potential. The calculations by Schatz et al. allowed for simulta-
neous reactive and nonreactive j—j’ excitation, so that antisymmetrized
scattering amplitudes and cross sections were constructed to allow for
interference between the direct and reactive amplitudes. The antisymme-
trized 0—2 differential cross section has symmetry oscillations mostly
confined to low angles, but the amplitude of the oscillations becomes
larger as the relative translational energy increases from 0.5 to 0.7 eV.
[Antisymmetrized cross sections had been computed previously by Saxon
and Light (1972) and Shatz and Kuppermann (1976a) for coplanar H+H,
scattering. In addition, antisymmetrization was explicitly included by
Wolken and Karplus (1974) in their formulation of the H, reactive scatter-
ing problem. Their results for the 0—»2 transition probability, when com-
pared with purely nonreactive (W olken et al., 1972), clearly show the effect
of reaction at higher energies.]

Cross sections for 0—2 excitation differ greatly on these three potentials.
Above threshold, the ordering is oo(DHR)> 6,(PK) > 0(TANG). Choi
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> and Tang (1975) have qualitatively discussed why [in terms of the range
and hardness of vy(R) and the sign and shape of vy(R)] the three potentials
are expected to produce such different integral and differential cross
sections. Wolken et al. (1972) found that their hybrid potential led to
significantly more rotational excitation than the unperturbed PK potential
at E=0.1 eV, although the results were similar at £=0.25 eV. This also
shows that vy(R) is important for the magnitude of Gy

Choi and Tang (1975) also compared DWBA and CC calculations on
these surfaces; the DWBA results were generally quite favorable at low
energies, and they were obtained with about 1% of the computer time
required for full CC calculations.

As the total energy increases, the number of rotational channels required
in a quantum close-coupling study increases very rapidly. For this reason,
channel-decoupling methods have recently been employed to decrease the
number of coupled equations to be solved. Chu and Dalgarno (1975)
employed the effective-potential method (Rabitz, 1972; Zarur and Rabitz,
1973), which eliminates dependence of the potential on m; quantum
numbers for a space-fixed z-axis. They used the WMK hybrid potential.
After testing the effective close-coupling method at a total energy E of 1.0
eV, they computed elastic and inelastic cross sections for total energies up
to 1.5 eV. McGuire and Kruger (1975) used a different decoupling method,
the body-fixed centrifugal decoupling approximation, which is based on
neglect of coupling between different components of total angular
momentum along the z-axis of a coordinate system that rotates with the
three-body system (Pack, 1974; McGuire and Kouri, 1974). They used a

- Spherical potential that was estimated in recent scattering experiments
(Gengenbach et al., 1975) along with the 0,(R) term of the PK potential.
This will be called the MK potential. The 0—2 inelastic cross sections are
lower than the results of Chu and Dalgarno (who employed a different
potential). The 0—2 differential cross section gradually shifted to the
forward direction as E increased from 0.5 to 1.5 eV. At each energy, it was
observed that as the amount of rotational energy transferred in the
J=0-j" collision increased, the differential cross section was more back-
peaked. An information-theory analysis of the McGuire and Kruger 0—2
cross section for H+H, and D+H, has been presented (Levine et al,,
1976).

Most recently, Choi and Tang (1976) performed CC and DWBA calcu-
lations at E=0.5 eV for the WMK hybrid potential, for the MK potential,
and for a potential (called potential I) that consists of the vo(R) of
Gengenbach et al. (1975) and the 0,(R) of Norbeck et al. (1975). For the
WNMK hybrid potential their CC results for the integral cross sections were
in good agreement with effective close-coupling results of Chu and
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Dalgarno for low j but there were very large errors at high j. DWBA ~
results were slightly in error (by up to 26%) at low j but were more
accurate for Aj=2 transitions at high j. The effective close-coupling
method did not predict the differential cross section very well but the
DWBA did. The CC calculations for the MK potential were compared
with the calculations of McGuire and Kruger (1975). The comparison
showed that the body-fixed centrifugal decoupling approximation and the
DWBA are much better than the effective close-coupling approximation
for the 0—2 transition. However, the body-fixed centrifugal decoupling
approximation also predicted the 0—4 and 0—>6 integral within 24% but
the DWBA is not useful for Aj>2. Both approximations were fairly good
for the differential cross section for 8 > 10°.

The integral cross sections obtained by Choi and Tang (1976) by
converged CC calculations for potential I were over an order of magnitude
smaller than those obtained for the other potentials for the 0—2 transition
and were about 2-to-3 orders of magnitude smaller than those obtained
with the other potentials for the 0—4 and 0—6 transitions. The differential
cross sections for potential I, however, had very similar shape to those for
the TANG potential. Hopefully, the question of which of these potentials,
if any, is qualitatively correct will be answered when the calculations of
Siegbahn and Liu become available.

The WMK hybrid potential was employed by McCann and Flannery
(1975, 1975a; Flannery and McCann, 1975) in a “multistate semiclassical
orbital treatment” (this is sometimes called the classical path method) of
H + H, rotational inelasticity over the total energy range 0.5 to 1.5 eV. This
time-dependent formulation treated translational motion classically, but
allowed coupling between this motion and the quantum rotational states of
H, through an “optical potential.” Integral cross sections agreed well with
the results of Chu and Dalgarno. The semiclassical differential cross
sections averaged out quantum oscillations for 0 >90°. McCann and
Flannery (1975a) also considered the use of the Rabitz-Zarur effective
potential formalism in conjunction with their multistate orbital treatment.

In an approximate study based upon the (high-energy) Born approxima-
tion, Ioup and Russek (1973) computed integral and differential cross
sections for several nonreactive pure rotational and vibrational-rotational
transitions for energies between 1 and 10 keV. They derived analytic
formulas for differential and integral cross sections in terms of a parame-
trized potential. For H+H, calculations, they employed the ab initio
surface of Shavitt et al. (1968) to adjust their parameters. In the Born-ap-
proximation calculations, the target molecule was treated as a harmonic
oscillator, while relative atom-molecule motion was described by a plane
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wave; electronic nonadiabaticity, ionization, and molecular dissociation
were neglected. The stress in this paper was on development of a fast
approximate method that could eventually be used to extract potential
surface information from experimental cross-section data in the keV range.

B. Vibrational Energy Transfer
Heidner and Kasper (1972) measured the rate coefficient at 299°K for

H+ Hy(n, =0)—H,(n,=1)+H

where n, and n, are the initial and final vibrational quantum numbers.
However, quasiclassical trajectory histogram calculations (Karplus and
Wang, unpublished, quoted by Heidner and Kasper, 1972) indicate that
the nonreactive contribution is negligible with respect to the reactive one.
Thus this is not a measure of the rate coefficient for nonreactive vibra-
tional energy transfer. In fact, there is no measurement available for this
process and hardly any theory. The little theory that does exist is reviewed
in this section.

Clark and Dickinson (1973) performed collinear calculations of vibra-
tional excitation probabilities for the H+ H, mass combination using an
exponential repulsion interaction potential between the incoming H and
the nearest H of H,. Because the important rotation-vibration coupling is
missing in such a calculation, it is difficult to assess its relevance to
experiment. Quantum-mechanical (Truhlar and Kuppermann, 1972) and
quasiclassical and semiclassical (Bowman and Kuppermann, 1973) calcula-
tions of collinear nonreactive vibrational excitation probabilities have also
been carried out using the more accurate potential-energy surface of
Truhlar and Kuppermann.

Smith and Wood (1973) reported both collinear and three-dimensional
quasiclassical trajectory calculations in H+H, where H, is initially in its
first or second excited vibrational state. They used a semiempirical poten-
tial-energy surface similar to the Weston (1959) surface. They used the
histogram method to interpret these trajectories in terms of cross sections
for energy transfer, but they included only those trajectories for which
R, < R, or R,< R, at some point in the trajectory (where R, and R, are the
interatomic distances that initially are infinite and R, is the other inter-
atomic distance). This may be a serious approximation and it is not clear
how much reliance can be placed on their results. It is also probable that
even if their approximation were not made and a more accurate surface
were used, the quasiclassical trajectory histogram method would not yield
an accurate result for the vibrational excitation cross section for H+H,
except at fairly high energies (at least a few eV).
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Gengenbach et al. (1975) estimated a crude upper limit of 107¢ A? for
the cross section for vibrational exciation at a relative translational energy
of about 0.5 e¢V. This was based on an analogy to available data for
He+H,; and Li* +H,.

If one excludes from consideration the out-of-data calculation by Bauer
(1952), no three-dimensional quantum-mechanical calculations have yet
been reported for nonreactive vibrational excitation cross sections in
H+H, collisions at energies below 1 keV. The calculations of Ioup and
Russek (1973) at energies 1 to 10 keV are discussed in the previous
subsection. Schatz and Kuppermann (1975a) reported calculations on the
potential energy surface No. 2 of Porter and Karplus (1964) of the reactive
vibrationally inelastic probability for zero total angular momentum at
E,<0.83 eV. They also calculated (Schatz, private communication) the
corresponding nonreactive probability and found (in contrast to the quasi-
classical result) that both reactive and nonreactive vibrationally inelastic
probabilities and cross sections are comparable in magnitude for this
surface. ‘

Shui (1973) made a classical trajectory calculation on the same Porter-
Karplus surface of the one-way equilibrium transition-rate kernel of inter-
nal energy changes for H+ H, collisions at 3000°K.

C. Electronic Energy Transfer and Other Processes
Involving Excited Electronic States

In this section, collisional processes involving electronically excited H
atoms interacting with H, are reviewed. H atoms in the 2s state have an
excitation energy of 10.2 eV and are metastable; in vacuum the population
of this state decays by a two-photon process to H(ls) with an extremely
long natural lifetime of about 1/8 sec. By contrast, H(2p) has a radiative
lifetime of 2% 10~2 sec and decays via a one-photon process to H(1s) with
emission of Lyman-a (L)) radiation. If H(2s) is in the presence of an
electric field (either external or from gas in the apparatus), 2s-2p mixing
occurs with subsequent emission of L, radiation. This mixing occurs quite
readily because the energy separation of these states is less than 1 cm™".
The following processes involving collisions of metastable H(2s) with H,

have been studied:
2s—2p

H(2s)+ Hy —> H(2p)+ Hy»>H(1s)+ Hy+ L,

2s—ls
H(2s)+ H, —> H(ls)+ H,
2s associative-
ionization

HQ2s)+H, —> Hj+e

~—
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" The H-atom interconversion rate coefficient k,,_,,, in the presence of H,
was first studied by Fite et al. (1959), who produced metastable H by
electron impact on H and measured L, emission as a function of the
concentration of the added quenching H, gas. The measured rate
coefficient was converted to a cross section o, ,5,, presumably by the
common approximation of dividing by the mean relative speed. For a
mean “atom speed” of 8x10° cm/sec, the interconversion cross section
was first reported as 70 A?%; however, an erratum later indicated that the
cross section should be increased by 50%. The interpretation of this
experiment is complicated by the need to konw the polarization of the L
emission; the value originally assumed has now been corrected but revised
quenching rate coefficients were not presented (Fite et al., 1968; Ott et al,,
1970). A recent re-evaluation (Czuchlewski and Ryan, unpublished, quoted
by Van Volkenburgh et al., 1973) yields o,,_,,, =120 A2

The associative ionization process was studied in a mass spectrometer by
Chupka et al. (1968). This process is about 1 eV exothermic. Assuming that
the excited H atoms they produced by photodissiciation were in the 2s
state, they obtained an associative ionization cross section of about 1 f\z,
which decreased by a factor of about 1.8 as the kinetic energy of H(2s) was
increased from 0.07+0.10 eV to 0.18+0.16 eV. If their excited H atoms
were in the 2p state, then the above analysis does not apply. Associative
jonization was also observed by Comes and Wenning (1969). The reverse
of the associative ionization process is electron recombination with HJ'; it
is discussed in Section V.

The cross section o,,_,,, for 2s—2p interconversion and its ratio to the
cross section o,,_,,,, for nonradiative destruction of the 2s state can also be
measured by producing H(2s) by photodissociation in a bulb, determinimg
the fraction of H atoms formed in the 2s state, and measuring the L,
flourescence intensity and its ratio to the photodissociation cross section.
(Note: the nonradiative process is generally assumed to be the 2s—ls
process.) Since photodissociation at a given wavelength produces excited
atoms of known kinetic energy, these cross sections may be obtained as a
function of relative kinetic energy. This technique was first applied by
Comes and Wenping (1969, 19692, 1970), who found a,,_,,,=60 to 70 A?
and o,, ,,, =50 A’ at a mean relative speed of 3.5X10° cm/sec. At the
same mean relative speed, deuterium substitution for H and H, increased
0,,_,5, by a factor of 2. As the mean relative speed increased to 8 x10°
cm/sec, 05,3,/ 62,.,, Was found to increase to 2 and the total destruction
cross section 0y, 5, + 0, ,, increased to over 150 A2. Mentall and Gentieu
(1970) made similar measurements and they found that oy ,5,/05 ,,
increased from about 2 1 to 3 as the mean relative speed increased over the
same interval.
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Dose and Hett also used photodissociation to produce H(2s) and D(2s) -

of known velocity. They measured the sum of the elastic scattering cross
section and the total cross section for destruction by measuring the
exponential decrease of H(2s) intensity in a flight-timed beam as a func-
tion of molecular H, target gas thickness. For metastable H, their
measured cross section over the speed interval 3.5% 10° to 8 10° cm/sec
decreased from about 120 A? to 85 AL As the mean relative speed further
increased to 3 10° cm/sec, their cross section decreased to 55 to 60 A2,
Very similar results were obtained for metastable D. Especially at high
speeds, these results are obviously inconsistent with the bulb experiments
discussed in the previous paragraph. Similar but unpublished beam experi- .
ments by Czuchlewski and Ryan are quoted by Van Volkenburgh et al.
(1973).

In principle, one can also measure cross sections for collisions of H(2p).
In fact, measurements of the quenching of L, radiation might be interpre-
ted this way. But in fact (as illustrated by the large interconversion cross
sections discussed above), small perturbations may easily mix the 2s and2p
states and L -quenching measurements have also been interpreted as
referring to some mixture of n=2 states. The first such quenching
measurements involving H, as collision partner were carried out by
Wauchop et al. (1969). They measured quenching of L, fluorescence in an
optically thick discharge-flow system with added H,. Their total rate
coefficient for all processes that quench H(2p) was 2.4X 10~ 12 ¢m®/(molec
-sec), from which they calculated a cross section of about 0.03 A% This
value is much lower than subsequent measurements, possibly because of
the difficulty of the analysis involving radiation trapping in their optically
thick system.

The collisional deactivation of L, fluorescence was next studied by
Braun et al. (1970) in an optically thin discharge-flow system. From their
measured rate coefficient at 300°K they calculated the quenching cross
section to be about 84 A2, Then Van Volkenburgh et al. (1973) studied the
quenching of H(n=2) and D(n=2) by H, and D,; they measured rate
coefficients in the range 1.9 to 2.5X 10~° cm?/(molec-sec) at 295°K for
the four isotopically different processes. Dividing these by the average
relative thermal speed they obtained the quenching cross sections 84 AZ for
H(n=2) by H, or D,, 89 A? for D(n=2) by D,, and 91 A? for D(n=2) by
H,. These quenching cross sections include all processes that deactivate
H(n=2) and D(n=2) including associative ionization, reactive electronic
energy exchange, nonreactive transfer of the excitation energy to elec-
tronic, vibrational, or rotational degrees of freedom or to relative transla-
tional energy, and dissociative deexcitation. Using dc ion-collection tech-
niques, the cross section for associative ionization was measured as 1.11 A2
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" for the H(n=2)+H, case with value from 0.82 to 1.06 A? for the three

isotopically substituted cases. In addition, by observing simultaneous L,
fluorescence from D(n=2) and H(n=2). the cross section for near-reso-
nant reactive electronic energy transfer in the reaction H(n=2)+D,—»HD
+D(n=2) was found to be 0.28 A2, Branching ratios in other channels
were not measured. However, the diatomic electronic excitation channel
has been observed by Chow and Smith (1970), who saw fluorescence of the
Lyman bands (B'E} —X'2}) of H,, which they interpreted as caused by
the reaction

H(Q2p)+ H,(X'2},0")»H (Is)+ H, (B Zr.0)

where v” and ¢’ are vibrational quantum numbers. Energetic considera-
tions showed that v” > 2 was required for this process to occur.

It is unfortunate that some experimenters measured rate coefficients but
presented only derived cross sections and confused relative speed and
atomic speed in presenting their results. This leads to some confusion
concerning their experimental results.

Two semiclassical calculations have been made for the 2s—2p intercon-
version cross section involving H, collision partner. Gersten (1969) com-
puted elements of the S matriX, Sy, .2, (Where jm and j'm’ are the
initial and final H, angular momentum and magnetic quantum numbers)
from approximate time-dependent perturbation theory. An instantaneous
atomic dipole-molecular quadrupole interaction was assumed, with classi-
cal relative translational (straight-line trajectory) and quantum or classical
molecular rotational motion assumed. The calculated probability of
quenching diverged at small impact parameter and so it had to be cut off
at unity. Using classical rotational motion, averaging over the impact
parameter, and assuming a relative speed of 8 X 10° cm/sec, a cross section
of 76 A? was obtained. Further assuming a large moment of inertia so the
molecule does not rotate during the collision yielded a simpler formula
that predicts a5, =87 Al at the same relative speed and a velocity
dependence of =23, In a similar treatment, Slocumb et al. (1971) also
assumed a dipole-quadrupole interaction. They used the Born approxima-
tion with semiclassical approximations to evaluate S-matrix elements and
transition probabilities and a cutoff at small impact parameters. Their final
cross-section formula is similar to the large-moment-of-inertia formula of
Gersten, differing only in a numerical coefficient that is smaller by a factor
of 37!/3; thus they predicted a5, ,,,=63 A2 at the same relative speed.
Dose and Hett (1971) used the treatment of Gersten, taking “correct”
account of rotational motion, to calculate the cross section for D(2s)+H,
—D(2p)+H, over the relative-speed interval 3.5 10° to 8.0 10° cm/sec.
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The calculated values agreed very well with their experiment over this

whole range.

Frenkel (1970) discussed the interconversion, the quenching, and the
associative ionization processes in terms of his calculated excited-state
potential surfaces.

Less quantitative theoretical work has been done by others on the L,
quenching process. Comes and Wenning (1970) argued that their measured
D/H isotope effect could be explained by the smaller rotational spacing of
D, compared to H, if the D, and H, molecules are rotationally excited in
collisions with the excited atoms. Braun et al. (1970) argued that the large
quenching cross sections might be explained in terms of a virtual electron
jump from H(n=2), which has an ionization potential of only 3.4 ¢V, to
H,. Chow and Smith (1970) interpreted the electronic energy-transfer
process they observed in terms of an avoided crossing of two potential
surfaces and an H; intermediate. They predicted that an isotopic experi-
ment would reveal the process occurs with atom exchange. Slocumb et al.
(1971) claimed the 2s—1s deexcitation cross section should be less than 1
A?, but this is contradicted by the experiments already discussed. Van
Volkenburgh et al. (1973) discussed the quenching results in terms of
electronic correlation diagrams linking asymptotic electronics states to
equilateral triangle geometries of H, and H; . They concluded that quench-
ing occurs by the following mechanism:

H(n=2)+ H,(X'Z} ) H (1s)+ H, (V%))

where the b3Z} is strongly repulsive and hence dissociative and that there
is little likelihood of

H(n=2)+H,(X'2})—H (15)+ H, (X 'Z], vibrationally excited)

They also concluded that the lowest-energy *4” potential surface provides
a likely route for reactive electronic energy exchange and they rationalized
associative ionization in terms of vibronic coupling between a Rydberg
state and the electronic continuum of the ion.

D. Transport Properties of Partly Dissociated H,

The temperature dependence of viscosity and diffusion coefficients for
H-H, mixtures has provided information about the effective spherically
averaged (orientation-independent) interaction potential Vy(R) between H
and H,. The first measurements on transport coefficients involving H-H,
were Harteck’s (1928) results on the viscosity of H-H, mixtures. The
viscosity of the mixture 7, was determined from the Poiseunille equation
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" following measurement of the pressure drop for H-H, mixtures flowing
through a capillary tube. The relative viscosity (1,,x/my,) Was reported at
—80, 0, and 100°C, but the lowest-temperature results may have been
affected by ice formation on the inner walls of the U-tube viscometer.
Later, Browning and Fox (1964) measured viscosities of H-H, mixtures
over the same temperature range. Their viscosity data are in good agree-
ment with those of Harteck, except at the lowest temperature. In order to
analyze the data, Browning and Fox partitioned the total viscosity into
contributions from H-H interactions (n,), H,-H, interactions (7,), and
H-H, interactions (,,). (The term 7,, has no direct physical significance,
but it can be imagined as the viscosity of a hypothetical pure substance
whose mass is twice the reduced mass of an H-H, pair.) Values of the
multicomponent viscosity coefficient n,, were extracted from the data by
assuming a theoretical value for 7,. Information about V(R) can be
extracted from 7,, by fitting the parameters in an assumed form of V(R)
[the Lennard-Jones (12-6) or modified Buckingham (exp-6) forms have
usually been used] so that the theoretical 7,, values agree well with the
experimental values. Collision theory provides the result that 7j,~
T2 /Q&D* where T is the temperature and Q3?* is a (reduced) collision
integral, which can be evaluated from the assumed form of V(R) (Hirsch-
felder, Curtiss, and Bird, 1954, pp. 523 to 528). The experimental 9,, values
were fitted by Browning and Fox with a 12-6 potential but a three-parame-
ter exp-6 potential could also be fitted to the data. Parameters in spheri-
cally averaged potentials deduced from transport data are listed in Table
V.

. Cheng and Blackshear (1972) have recently remeasured the viscosity of
H-H, mixtures between —72 and 100°C. They extracted 7,, from the data
on 7, and found that the temperature dependence was fitted by a 12-6
potential. The previously measured values of %,; provided by Browning
and Fox are somewhat lower the Cheng and Blackshear values; the
discrepancy may be due to violation of the constant-flow-rate assumption
(for the mixture versus pure H,) used by Browning and Fox.

In addition to the viscosity measurements, several determinations of the
multicomponent H-H, diffusion coefficient D, (T), where the tempera-
ture-dependence is explicitly indicated, have been reported. Wise (1961)
measured the steady-state distribution of H atoms diffusing along a cylin-
der toward a catalytically active surface where recombination occurred.
The steady-state distribution results from a compromise between diffusion
away from the source and removal on the surface. [The diffusion equations
for this experimental arrangement had been previously considered by Wise
and Ablow (1958). In addition, Wise (1959) had used the steady-state
method to measure the diffusion coefficient of H through Ar/H, mixtures.
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See also Wise and Wood (1961).] These measurements provided relative
diffusion coefficients D,,(T3)/ D,(T,). From the collision-theory expres-
sion D,(T)=T'/?/Q;D*, where Q{;"* is another reduced collision in-
tegral [which can be computed from the deflection function for the H-H,
spherically averaged potential (Hirschfelder, Curtiss, and Bird, 1954, pp.
523 to 528).] Wise fitted the temperature dependence of the experimental
diffusion coefficient ratios with a 12-6 potential (see Table V). In a later
study, Sancier and Wise (1969) measured the absolute value of D,(T) at
one temperature, 298°K. Two types of measurements (of the relative atom
concentration as a function of the distance from the source under steady-
state conditions and of the relative atom concentration as a function of
time just after the source, which produced steady-state conditions, was
removed) were combined to produce D (7). The previous relative diffu-
sion coefficients of Wise (1961) were then converted to absolute values
(over the range 298 to 719°K). Parameters in an exp-6 potential were then
adjusted so that the collision-theory prediction for D (T) agreed with the
experimental temperature dependence. '

A second direct determination of D ,(T) was reported by Khouw et al.
(1969). They studied the lower temperature range 202 to 364°K. They too
measured the concentration of H atoms in a flowing H-H, mixture that
was in contact with a catalytic sink. The H-atom concentration was
determined by introducing small amounts of NO into the stream and
measuring the HNO emission. A 12-6 potential, when used to compute the
Q%D collision integrals, produced D,(T) values that reproduced the
experimental temperature dependence. However, the authors were careful
to point out that potentials involving other parameter sets also reproduced
the experimental temperature dependence.

All of the D, (T) coefficients that have been directly measured or
inferred from viscosity data are plotted in Fig. 1. Notice that the recent
direct measurements of Khouw et al. (1969) are in good agreement with
the results inferred by Cheng and Blackshear (1972) from viscosity data.
An earlier discussion of the use of viscosity data to predict diffusion
coefficients is given by Dalgarno and Henry (1964).

In analyzing the experimental studies discussed above, parameters in a
model spherically symmetric potential wrere determined such that the
temperature dependence of the experimental viscosity or diffusion
coefficients, as calculated from the potential and the collision integrals,
was reproduced.- The properties of the various derived potentials are
compared in Table V. From this table it is apparent that these potentials
are not in close agreement, but as a group they do provide approximate
limits on the effective spherically averaged H-H, interaction.
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Fig. 1. Temperature dependence of mutual diffusion coefficient Dyu, (or Dyy) in
cm?/sec at | atm from theory and experiment. A Amdur (1936), from analysis of Harteck’s
(1928) viscosity data; [@ Weissman and Mason (1962); computed from 12-6 potential fit t0
Margenauw’s (1944) calculations; O Browning and Fox (1964); computed from 12-6 potential
fit to Margenau’s (1944) calculations; @ Khouw, Morgan, and Schiff (1969), direct measure-
ment; §§ Sancier and Wise (1969), direct measurement; A Cheng and Blackshear (1972);
computed from 12-6 potential inferred from viscosity data; @ Tang and Wei (1974);
computed from Tang (1969) potential.

Other attempts have been made to extract potential parameters from the
experimental transport data. The earliest was Amdur’s (1936) reevaluation
of Harteck’s viscosity data. He assumed that H and H, are each “yan der
Waals gases” (hard elastic spheres with R ™! attraction), and then calcu-
lated D for the H-H, mixture. His results, shown in Fig. 1, are somewhat
lower than the other D, values. A second calculation of Dy from
Harteck’s data On 7y, Was the study of Weissman and Mason (1962). They
employed 2 theoretical calculation of m, from the best available H
potential curves, and also calculated the collision integral (A% (which is
related to 1,,) from 12-6 or exp-6 potentials fitted to Margenau’s (1944) H;
calculation. They then extracted Dy from Harteck’s Nmix data. Their
results, also shown in Fig. 1, are about 30% greater than Amdur’s earlier
estimates.

In a later theoretical study of the transport coefficients for H-H,
mixtures, Clifton (1961) used a 12-6 potential to calculate high-temperature
(1500 to 5000°K) values for M, and D,, and for the coefficient of thermal
conductivity (Clifton, 1962). The 12-6 potential used by Clifton was
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parameterized by fitting it to a weighted average of Margenau’s (1944)
early H, potential for parallel or perpendicular approach of H to H,.
Vanderslice et al. (1962) computed the transport properties (coefficients of
viscosity, diffusion, thermal conductivity, and thermal diffusion) of dis-
sociating H, as a function of the mole fraction in the mixture over the
temperature range 1000 to 15,000°K. The H-H, H-H,, and H,-H, interac-
tions were all considered, but ionization and electronic excitation were
neglected. The spherically symmetric exponential repulsive potential of
Vanderslice and Mason (1960) was used. At high temperatures, the colli-
sion integrals 2" and Q%2 for H-H, are smaller than the corresponding
values for H-H, or H,-H,. The Vanderslice and Mason potential was also
used by Estrup (1964) in a study of the cooling of hot T atoms in D,.

Tang and Wei (1974) have recently computed D,, from what is probably
a much more accurate spherically symmetric H-H, potential than was used
in the previous studies. In earlier work, Tang (1969) smoothly joined the
Porter-Karplus (1964) potential No. 2 to the Dalgarno-Henry-Roberts
(1966) attractive long-range R =6 potential. (Rotationally-inelastic-scatter-
ing results obtained with this potential are discussed in Section IV.A)
Tang and Wei used a fit to this joined potential to evaluate the colliston
integrals that are required to compute 1, and D, (see Fig. 1 for their D,
results). Their computed D, values are somewhat higher than the experi-
mental values of both Cheng and Blackshear (who extracted D,, from
viscosity measurements) and of Khouw et al. (who directly determined
D).

In an interesting study, Belov (1966) examined how the kinetic proper-
ties of dissociating H, are influenced by the H+H, exchange reaction at
temperatures over 1000°K. At high temperature the differential reaction
cross section for reactive scattering becomes forward peaked in scattering
angle 0 (see Truhlar and Wyatt, 1976). Belov therefore argued that the
effective cross sections for diffusion and viscosity, which weight the
differential cross section by (1—cos'8) (where / is 1 and 2 for diffusion or
viscosity, respectively) before integration over sinfdf, are much smaller
than the diffusion and viscosity cross sections due to nonreactive scattering
computed, for example, by Vanderslice et al. (1962). The reactive process
would make a much greater contribution for a given mtegral cross section
if the differential reaction cross section were isotropic. It is important to
reexamine this question with more accurate estimates of the reactive
differential cross sections.

Now that the potential energy surface for H, can be accurately calcu-
lated by ab initio electronic structure caiculations and accurate calcula-
tions of rotational-vibrational transition probabilities and elastic scattering
in atom-diatomic systems are possible, it is finally possible to test the
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assumptions of spherically symmetric potentials and no inelasticity that
have been used to calculate transport coefficients in H-H, mixtures. In an
early approximate quantum-mechanical treatment, Dalgarno and Henry
(1964) estimated that rotationally inelastic processes contributed 7.5% of
the H+ D, diffusion cross section and 5.4% of the viscosity cross section at
a relative translational energy of 0.0625 eV. More accurate calculations
could now be made by integrating the more accurate differential cross
sections now available (see Sections 11l and IV.A). It is now possible to
compute accurate elastic scattering and rotational excitation differential
cross sections, to integrate them to obtain transport cross sections, and to
make a thermal average to obtain viscosities and diffusion coefficients as
functions of temperature. This has not been done.

E. Other Processes and Applications

Rotational excitation of H, by collisions with H followed by emission of
radiation has been considered as a possible mechanism for cooling of
interstellar clouds in regions of neutral hydrogen, but the most recent work
indicates it is not the most important mechanism for such cooling
(Hollenbach et al., 1976). Takayanagi and Nishimura (1960} and Dalgarno
et al. (1966) calculated rate coefficients for rotational excitation in H-H,
collisions from their approximate quantum-mechanical cross sections.
Their cross sections agree within a factor of 2.2, but it now appears that
the DHR interaction potential used by Dalgarno et al. (1966) leads to
rotational excitation cross sections that are much too large (see the work of
Choi and Tang, 1975, discussed in Section IV.A). Hydrogen molecules
formed on grains in interstellar space may leave with excess kinetic energy
greater than the thermal average of the surrounding gas. To understand the
loss of kinetic energy it is also necessary to know the differential cross
sections for nonreactive collisions, especially elastic scattering (Chu and
Dalgarno, 1975).

The rate of interconversion of o-H, and p-H, is very important in
interstellar space because of the different radiative rates for these species
(Takayanagi and Nishimura, 1960; Field, 1966) and observations of the
ratios of o-H, to p-H, are important because their interpretation provides a
clue as to the physical conditions in interstellar space. The mechanisms for
this interconversion have been discussed most recently by Dalgarno et al.
(1973), who conclude that the H+H, reaction, involving thermal or hot
atoms, is probably not too important for this interconversion in interstellar
space.

The pressure-induced vibrational absorption coefficient of H, is needed
for various radiant heat-transfer calculations. At high temperatures, such
as encountered in gaseous-core nuclear rockets and late-type stars, there is
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appreciable dissociation of H,, and H+H, collisions become almost as
important as H, + H, collisions. The only theoretical or experimental work
on absorption due to H+ H, collisions is the work of Patch (1973, 1974) in
the region of the fundamental vibrational absorption. The collision-
induced dipole moment was found by CCI calculations with a minimum-
basis set for small H-to-H, separations of 1 to 44, and from the quadru-
pole-induced dipole in H at separations greater than 6a,. The ab initio
calculations were performed with floating orbitals and with two sets of
exponents for nuclear-centered orbitals. The latter choice with optimized
exponents was judged best and yielded dipole moments in the range 0.0062
to 1.0 D. Unfortunately, the energies were not very accurate, so the
induced absorption calculations were based on an interaction potential
computed from the calculations of Mason and Hirschfelder (1957) for
H-to-H, separations greater than 4.334, and from Porter-Karplus surface
No. 2 for smaller separations. The H+ H, collisions accounted for 32% of
the absorption calculated, including both H+H, and H,+ H, collisions at
5500 cm !, 3750°K, and 1 atm pressure.

The simplest inelastic event in H+H, collisions is change of the hyper-
fine state of the H atom. This process has been measured (Gordon et al.
1975), but since it gives information about the reaction probability it
should have been included in our review of reactive collisions.

V. RECOMBINATION OF H; WITH ELECTRONS

Several beam studies aimed at producing H, by recombination of Hy
with electrons have been carried out.

The electron-ion recombination rate a(7T) for e-Hj collisions was
measured by Leu, Biondi, and Johnson (1973) by using a microwave
afterglow technique to measure the time rate of decay of electron density
in a plasma containing Hy. The recombination rate coefficient decreased
from 2.9% 107 cm?®/(molec-sec) at 205°K to 2.0x 10~7 cm*/(molec-sec)
at 450°K and varied as 7 ~'/? over this temperature range. In an incline-
beam experiment, Peart and Dolder (1974) measured cross sections ¢ for
dissociative recombination of electrons with Hy with negligible vibrational
energy over the relative translational energy (£, range 0.38 to 4.0 eV.
The cross section varied from 23.8 A2 at 0.38 eV to 2.7 A” at 4.0 eV with
an E %% energy dependence. Peart and Dodler then converted the recom-
bination rate coefficients of Leu et al. o cross sections with the usual
approximate relation a(T)={v) 0, where (v) is the mean speed of the
thermal beam (at temperature T'). The cross sections obtained in this way
from the Leu et al. data at low relative translational energies (£,,<0.1 eV)
are about 200A% and are in excellent agreement with cross sections
extrapolated from the higher-energy beam measurements.

Caudano et al. (1975) used merged electron-ion beam techniques to



H+ H,: POTENTIAL SURFACES AND SCATTERING 197

measure the relative recombination cross sections for 0.05 eV < E <4 eV
with better initial energy resolution than Peart and Dodler. Their results
are consistent with Peart and Dodler’s but show structure in the energy
dependence that was attributed to “the resonant nature of the recombina-
tion process.”

The first direct attempts to generate H; were the merging-beam experi-
ments of Devienne (1967, 1968, 1968a) in which an H; beam was passed
through H, to generate a neutral H; beam by charge exchange. The neutral
beam was then merged with an He* beam to reform H3', which was then
detected. In a later double-chamber experiment, Devienne (1969) first
passed an H; beam through D, in a charge-exchange chamber. The ions
were deflected, and the neutral beam (presumed to be H,) was passed into
a collision chamber containing D,. Mass-spectrometric analysis of ions
formed in the collision chamber showed that Hi, Hy, and H™ were all
produced from ionization of the neutral beam that entered the second
chamber. In a different set of experiments, Gray and Tomlinson (1969)
passed an He/H, beam through an rf discharge. The resulting ion beam
was directed through a charge-exchange region containing H, and D, and
the ions were deflected from the beam. A fraction of the remaining neutral
beam was reionized, but mass analysis did not show evidence for H, (or
isotopic variants) with lifetimes the order of 10~% sec (the transit time of
the beam past electrostatic deflector plates that remove the ions). In more
recent experiments, Barnett and Ray (1972) passed a beam of H; through
H, to form H,. The outer electron was stripped off in an intense electric
field and the Hy was detected. The H, “molecules” were thought to
- consist of a stable Hy core and a highly excited Rydberg electron
(principal quantum number r > 11). Additional experiments on the produc-
tion and properties of excited H, would be very interesting.

VI. CONCLUDING REMARKS
The ground-state potential-energy surface of H; has now been calcu-

lated accurately for many geometries, especially in the vicinity of the

barrier for reaction. The C, and T coefficients of the long-range H-H,
interaction are also well known from theory (see Table 1IV), but the
topology of the van der Waals well is not accurately known (see Table V).
Recent scattering experiments (Gengenbach et al., 1975) should motivate
more theoretical attention to this problem. The excited states are much
more poorly understood, at least as far as quantitative results are con-
cerned. The states correlating with H(n=2)+Hy(X ‘Z; ) are particularly
important in fluorescence-quenching experiments. The long-range interac-
tions in excited states of H; may also be important for the interpretation of
experiments. It is difficult to deduce an accurate interaction potential from
experimental cross sections and rate coefficients for elastic scattering and
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the various energy-transfer processes. However, it is now possible to make
realistic calculations for some of these processes and to use theory to
understand the qualitative features of others. Nevertheless, the effect of the
nonsphericity of the interaction potential on the elastic scattering and
transport properties is not well studied, vibrational-rotational energy trans-
fer in H+H, is poorly understood compared to the same processes in
inert-gas collisions with homonuclear diatomics, electronic-energy transfer
is poorly understood compared to analogous processes involving alkali
atoms, the theory of associative ionization requires more work, and the
transport data have not yet been interpreted using the most accurate
available potentials. Experimental studies of rotational and vibrational
energy transfer in H+ H, collisions would be particularly valuable because
reasonably accurate ab initio calculation of cross sections for simultaneous
vibrational-rotational energy transfer in both reactive and nonreactive
H-H, collisions should be possible in the near future. More detailed
experimental studies of other energy-transfer processes and of associative
ionization would also be valuable. In particular, the energy dependence of
the branching ratios that determine the outcome in H(n=2)+ H, collisions
needs further study.

In some respects, H+H, provides an important test case for studying
inelastic processes in chemically reactive systems because the relatively
high (compared to other atom-molecule atom-transfer reactions) energy
barrier to reaction in either direction in the ground electronic state means
that under many low-energy conditions reaction is negligible. However, the
relevant interactions are still more representative of a reactive system than,
for example, an inert-gas collision with a molecule. For this reason we
hope the H+H, inelastic collision processes will be the subject of con-
tinued study in the near future.
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