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. INTRODUCTION

In a typical chemical reaction the ability of the atoms to rearrange themselves is con-
“trolled by one or more dynamical bottlenecks in phase space. A dynamical bottleneck
may be represented by a hypersurface in phase space dividing reactants from products,
and this dividing surface is called the activated complex or the transition state (1). The
allowed energy levels of the transition state are not strictly quantized because they are
not bound states, but they are approximately quantized (like vibrationally predissociating
states in spectroscopy (2) or like collision resonances in scattering theory (3-5)), because
they are fleetingly metastable. The search for these quantized energy levels is called
transition state spectroscopy. Transition state spectroscopy has proved to be extremely
difficult from an experimental point of view, so much so, in fact, that the term has come
to be associated with any form of spectroscopy or any spectroscopic measurement that
gives information about the activated complex region of the potential energy surface,
even when no hint of quantized structure is present (6,7). In recent years we have learned
that this structure does exist and can be uncovered by quantum reactive scattering cal-
culations (8—16). This chapter reviews the theory behind the phenomenon and surveys
recent results from our group, some (those in Secs. IV, V, and VIII) published elsewhere
(8-16) and others (extensive results in Secs. VI and VII and preliminary results in Sec.
IX.D) presented for the first time in this chapter. The analysis of the O + H, system
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includes a contribution by Bowman (13), and our work on halogen-hydrogen halide
reactions is based in part on accurate scattering calculations by Schatz (17-19). We also
discuss results in computational and experimental transition state spectroscopy by other
groups (references in Secs. IV-IX).

. THEORY

We focus attention on bimolecular reactions of the form A + BC — AB + C. The
canonical ensemble rate coefficient &(T') in the expression

- 8 kyse) Q)

can be written in terms of the microcanonical ensemble rate constant k(E), T being the
temperature and E being the total energy, as (8,20)

f exp(—E/ksT)p"(EYK(E) dE

k(T ) = q)R(T)

@

where k; is Boltzmann’s constant, ®*(T) is the reactants’ partition function per unit
volume, and p“(E) is the reactants’ density of states per unit volume per unit energy. An
exact quantum mechanical expression for k(F) is given in terms of the state-to-state
reaction probabilities P, by (8,21)

2.2y P.(E)

KE) = hp*(E)

)
where h is Planck’s constant and n(n') is an index of the quantum state of the reactants
(products), and we are employing the ultimate level of state specification, in which each
channel is counted as a state. For an atom-diatom reaction, n(n') designates the total
angular momentum J, its component M, on an arbitrary space-fixed axis, and the set of
initial (final) vibrational quantum number v (v'), rotational quantum number j ('), and
orbital angular momentum quantum number / (I'). The state-to-state reaction probability
can be written in terms of elements of the scattering matrix S if desired (22):

Pnn'(E) = |Srm‘(E)|2 (4)

The double sum in Eq. (3) contains all the dynamics in both k(T’) and k(E) and is called
the cumulative reaction probability (CRP) (23) and denoted N(E):

-

NE) = D, D, PunlE) ‘ )
The dynamical structure in k(E) can be brought out most clearly by calculating the energy

derivative of the CRP, the density of reactive states p(E):

o) = L) ©
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Transition state theory (TST) provides a framework for understanding the CRP and
its energy derivative. The transition state theory rate constant is the value that the rate
constant would have if (i) all reactant states were in local Boltzmann equilibrium and
(ii) the one-way flux through a hypersurface in phase space dividing reactants from prod-
ucts were equal to the flux from one side to the other (24-28). In a world described by
classical mechanics, the latter condition would be true if all trajectories passing through
the dividing surface crossed it only once. The dividing surface in phase space has one
less degree of freedom than the phase space itself, and, as mentioned in the introduction,
species constrained to the dividing surface are said to be in the transition state. The
missing degree of freedom, which is normal to the dividing surface, is called the reaction
coordinate s.

Conditions (i) and (ii), plus the usual assumption that bound degrees of freedom
have quantized energy levels, lead to the familiar expression (1,29) in which the rate
constant k(7)) becomes proportional to a ‘‘transition state partition function,” Q¥(T),
which is a sum over quantized states of an activated complex:

T QD) e

where V* is the classical potential energy at the transition state, i.e., the difference in the
zeroes of energy used to compute Q*(T) and ®(T). (Note that we take the zero of
energy for partition functions to be the minimum potential energy of the species in
question, not the lowest quantized energy level of that species.) The microcanonical
ensemble version of the familiar TST expression is (30—33)

N'E)
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Here N*(E) is the number of energy states (levels) of the activated complex with energy
less than or equal to E.

If we interpret the quantization of the activated complex literally, then comparison
of Egs. (3), (5), and (8) suggests that the cumulative reaction probability will increase
in steps of one at the energy levels of the transition state. However, Eq. (8) neglects
quantum mechanical tunneling and nonclassical reflection (diffraction by the barrier top)
at energies below and above, respectively, the reaction barrier. Furthermore, it assumes
that the transition state is a perfect dynamical bottleneck in the sense that all systems
crossing the transition state proceed directly from reactants to products without recrossing
(24-28). Several workers have proposed generalizations of transition state theory to
account for quantum tunneling and recrossing effects (21,23,34,35). For example, we can
account for the breakdown of these assumptions in the simplest way by replacing Eq.

(8) by

2.k.PAE) ©

KE) = hp'(E)

where 7 is a level of the transition state, k., is a transmission coefficient accounting for
recrossing, and P, is a quantal or semiclassical transmission probability accounting for
quantum mechanical tunneling and nonclassical reflection. The numerator still contains
a sum over energy levels, but instead of increasing in steps of one at each new level of
the transition state, it increases more gradually and by an amount governed by k.P.(E).
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Note that if we set «, equal to unity and P.(E) to a unit step function at transition state
energy level E., Eq. (9) reduces to (8).

If we assume that the reaction coordinate is separable, that there exists an effective
potential curve V,(s) for passage through the transition state region in level 7, and that
this potential has a parabolic form, we obtain k., = 1 and a simple form for P.(E). In
particular, if V,(s) is given in terms of the reaction coordinate s by

1
V.is) =E, + 5 k.s? ) (10)
with E. being the energy of the barrier maximum and £, being a negative force constant,

then the quantum mechanical transmission probability is given by (36)

1

P.E) = 1 + exp[(E, — E)/W,] =

where W, is a width parameter. The transmission probability P,(E) rises smoothly from
zero to one. In Eq. (11), the width parameter W, is

filo|
W.=—— 12

where # is Planck’s constant divided by 27, w, is the imaginary frequency of the barrier
o, = Vk/un 13)

and p is the reduced mass. Because of Egs. (12) and (13), W, is inversely related to the
width of the effective potential barrier V,. Small values of W, correspond to wide barriers,
for which tunneling and nonclassical reflection are less important. Inserting Eq. (11) into
(9) leads to a generalized version of conventional transition state theory that incorporates
quantum effects on reaction-coordinate motion and recrossing.

Equations (6), (8), (9), and (11) yield the following approximation to the density
of reactive states:

PHE) = D, .po(E) (14)

with

exp[(E. — E)/W,]
W.(1 + exp[(E. — E)/W.])?

p-(E) = (15)
The function p,(E) is a symmetric bell-shaped curve centered at E., and p.(E) is narrower
when the effective potential barrier is wider. For an ideal dynamical bottleneck k., is
unity; deviations from unity indicate that recrossing or other multidimensional effects are
important.

The density of reactive states p(E) defined by Eq. (6) is the quantum mechanical
analogue of the transition state theory p*(E) of Eq. (14). Transition state theory with
quantum effects on the reaction coordinate motion and recrossing predicts that the CRP
will increase in smooth steps of height k. at each energy level of the transition state and
that p(E) will be a sum of bell-shaped curves, each centered at an energy E. We have
found clear evidence for this prediction in the densities of reactive states p(E) that we
have calculated by accurate quantum dynamics.
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Because the total angular momentum and its component are conserved during a
collision, we can study the reaction dynamics for each value of J and M, independently.
Since the results are independent of M, we always set M, = 0, and we will not mention
it again (but the existence of the M, quantum number is the reason for the factor of
2J + 1 in the following sentence). In particular, we can study the J-specific contributions
to the rate constant, k’(E) [with k(E) of Eq. (3) being a (2J + 1)-weighted sum of
individual £’(E)], to the cumulative reaction probability, N'(E), and to the density of
reactive states, p’(E). The influence of quantized transition states on chemical reactivity
will be analyzed through studies of k’(E).

We can often understand the dynamics in greater detail by studying J-specific state-
selected reaction probabilities P, (E), which are related to J-specific state-to-state reaction
probabilities via

P/(E) = D, P;,/(E) (16)

We also find it useful to define the corresponding densities of state-selected reaction
probability pi(E):

dP(E)

J
E) =
P.(E) I

an

A similar analysis can be made in terms of product states n' rather than initial states n:

PL.(E) = D, PL(E) (18)
o.u(E) = L) (19)

The quantities p,(E) and p’.,(E) are often helpful in discerning aspects of the reaction
dynamics that are not apparent from p’(E).

We will also find it useful to present densities that result from taking the energy
derivative of sums of other subsets of the state-to-state reaction probabilities. Parity-
specific densities can be obtained from the derivative of the sum of P,,. having the same
parity P = (—1)"*'. (When J = 0, j = [, and so P = +1.) Furthermore, for atom-diatom
reactions of the form A + H, — AH + H, we can define a spatial permutation symmetry
S, which equals +1 for para hydrogen and —1 for ortho hydrogen. Symmetry-specific
densities are obtained by summing those P,,. with the same spatial permutation symmetry.
Densities for a specific set (J, P, S) are denoted p””; when these are summed over P
and S, the above densities p’ are obtained.

For H + H, and O + H,, the densities and CRPs to be presented result from
treating the two hydrogen atoms in the initial molecule as distinguishable and presenting
results for one of the two symmetry-related paths, for example, A + H'H" — AH' +
H". That is, we do not include the factor of 2 for the two products AH’ + H” and AH"
+ H’. We do, however, sum over S, but ignoring nuclear spin. For D + H, and
F + H,, we present results for only a single symmetry S but count both product arrange-
ments. In either of these cases, the CRP increases by about 1 at the nearly ideal transition
states.

In order to separate contributions to the density of reactive states from events
occurring on different time scales it is useful to introduce low-resolution convolutions of
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the accurate density of reactive states. In particular we define

£
N'(E; F) = f dE' N’(E")f(E,E'; F) (20)
Ei
where the resolution function f is
2
2(E — E'
fEE;F)=A CXP{_[_(_—I—?——)] In 2} (21)

and where the normalization factor A is determined by

A= < f k" exp{~[2(E — E')/FT* In 2}) (22)

E,

i

Fis the full width at half maximum, and E; and E, are the lowest and highest energies
in the convolution. The finite-resolution density of reactive states p’(E; F) is then defined
by

p'(E; F) = E‘% N’(E; F) (23)

Averaging over an energy width can be thought of as selecting a particular time
regime for analysis. Observing the cumulative reaction probability, or any function of
energy, with a finite resolution F corresponds to observing a time scale of A¢ = #/F (37).
In many cases, we expect total rate constants to be dominated by short-time dynamics
in the vicinity of the transition state (38—42). Thus we might expect that looking at the
cumulative reaction probability with a resolution broad enough to smooth over features
due to longer-time dynamical effects (such as trapped-state resonances and entrance chan-
nel and exit channel couplings) will reveal broader structure due to quantized transition
states.

Separating time scales in terms of energy is familiar in spectroscopy. This idea has
been well expressed, for example, by Heller (43): “‘a spectrum taken at ultrahigh reso-
lution (and containing long-time information) contains within it all lower-resolution in-
formation (i.e., shorter-time information). We can choose to examine it at lower resolution
and extract the dynamics corresponding to shorter and shorter times.”’

. COMPUTATIONAL METHODS

Accurate quantum mechanical cumulative reaction probabilities and densities of reactive
states were obtained by carrying out converged quantum dynamics calculations for re-
alistic potential energy surfaces. The wave function was expanded in a multiarrangement
basis set (44—49), and the coefficients were found by linear algebraic methods employing
a variational principle. In particular either the generalized Newton variational principle
(GNVP) (50-54) or the outgoing wave variational princple (OWVP) (55-58) was used
to obtain scattering matrix elements that are stationary with respect to small variations
in the wave function. Full details of the basis sets and numerical methods used in these
calculations are presented in previous publications from our group (53,54,58—63). One
point that deserves to be emphasized though is that the method is made efficient by
partitioning the Hamiltonian into distortion blocks and coupling potentials.
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The reaction probabilities are well converged with respect to basis set and numes-
ical parameters. This is extremely important since differentiation with respect to energy
must yield smooth densities, and hence we give additional details of the convergence for
the two new sets of calculations presented in this chapter, namely those for D + H, and
those for F + H,.

For the D + H, reaction, all calculations were carried out with the OWVP using
techniques and parameters described previously (64). In particular, for the results pre-
sented here, we used parameter set A for J = 12 and 15 and parameter set B for J = 0—
9. In both these parameter sets the basis functions are half-integrated Green’s functions
for open channels and £ functions for closed channels. Specifically for the present
chapter we repeated the calculations for JPS = 3+ + with a parameter set in which all
basis sets and numerical parameters were better converged as compared to set B. At 21
energies from 1.20-1.60 eV, the average unsigned percentage difference in the cumu-
lative reaction probabilities from those computed with set B was <0.06%, and the max-
imum percentage difference was 0.18%. Furthermore the densities of reactive states,
computed as derivatives of cubic spline fits, were almost indistinguishable when
superimposed.

We also used the OWVP for the F + H, reaction. Two parameter sets that were
used in the calculations are given in Table 1.

IV. H+H,

In this section we discuss the quantized transition state spectra of H + H, with emphasis
on the assignment of quantum numbers and transmission coefficients. The discussion is
focused on the total CRP. Another very important aspect of the H; quantized transition
states is their role in determining state-selected and state-to-state transition probabilities;
we refer the reader to previous discussions (9,16) for that subject.

A J=0

The J-selected cumulative reaction probability N°(E) for the H + H, reaction computed
(8,9) using the double many-body expansion (DMBE) potential energy surface (65) is
shown versus energy as the solid line in Fig. 1a. (We will consistently use energy units
of eV; 1 eV/molecule = 96.48 kJ/mol.) The CRP as a function of energy is characterized
by steplike structures as predicted by transition state theory. The energy derivative of
N°(E), obtained by analytically differentiating the cubic spline fit of Fig. 1a, is the density
of reactive states p°(E), shown as the solid line in Fig. 1b. The derivative converts the
steps in N° to peaks in p°, akin to the bell-shaped curves p, of Eq. (15). The CRP reaches
a value of 8.9 at 1.6 eV. Therefore, transition state theory would predict that there are
nine energy levels of a quantized transition state at energies below 1.6 eV if all trans-
mission coefficients are unity or more than nine if not all of the transition states are
perfect dynamical bottlenecks. Figure 1b clearly shows seven peaks and one shoulder,
and these are identified with eight transition state energy levels. The detailed analysis
here suggests that there are a total of 10 quantized transition states contributing to
Fig. 1b.

The density of reactive states p°(E) was fit by a sum of terms «.p,(E), as given in
Egs. (14) and (15), appropriate to scattering by parabolic potential energy barriers. (Note
that the use of the parabolic barrier is the simplest barrier shape for understanding p’(E)
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Table 1 Parameter Sets for F + H, CRP Calculations for the 6SEC Surface

Set A Set B
Explanation F + H, HF + H F + H, HF + H
Jmax(V = 0) a 13 24 13 24
Juax¥ = 1) a 13 24 13 24
Joax® = 2) a 11 22 11 22
" Jmae(® = 3) a 11 19 11 19
V= 4) a 9 17 9 15
Joax(V = 5) a 9 17 — 10
v =0 b 6 13 6 13
jiv=1-3) b 1 13 — 13
jaw = 4-5) b 1 1 — —_
S(ao)(v = 0) c 2.85 24 3.85 2.94
RS (ag)(v = 1-3) c 2.85 24 42 2.94
RS (a)(v = 4) c 2.85 24 42 33
Aa))(v = 0) d 0.25 0.18 0.25 0.27
Ay)(v = 1) d 0.25 0.18 0.30 0.27
c(v=0) e 1.25 0.63 1.0 0.864
c(v=1) e 1.25 0.63 12 0.864
m¥(v = 0) f 16 18 10 8
mi(v = 1) f 16 18 - 8
mé(v = 2-3) f 16 18 - 10
mé(v = 4) f 16 18 — —
m*(v = 0) g — - - —
m'(v = 1) g — — 7 —
m(v = 2-3) g — — 7 —
m(v = 4) g — — 7 8
N.(HO) h 90 90 60 60
N% i 80 80 40 40
NP, N i 200 200 80 0
N j 50 50 25 25
N j 25 25 25 25
N j 2 2 1 1
¥ omin i 0.5 0.5 0.5 0.5
ro. j 32 3.2 32 32
N,(F) k 399 398 203 365
NT 1 13 13 13 : 13
N2.o 1 8 8 8 8
R%o(20) m 23 15 2.3 15
R:,N«(F)ﬂ(ao) m 18.0 18.0 18.0 22.0
oin n 23 15 2.8 1.75
R®E, n 18.0 18.0 10.0 10.0
NP 0 35 35 35 35
fe p 0.9 0.9 0.9 0.9
ngt q 0 0 0 0
GSS. r 0 0 0 0
NE s 52 33 24 30
NZer s 7 11 7 11
€ t 1077 107¢
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Table 1 Continued

Set A Set B
Explanation F + H, HF + H F + H, HF + H
€d u 10°% 107'®
€ v 107 1078
€ w 1077 1077
€z X 107° } 10°°

max(V) is the maximum value of the rotational quantum number in vibrational level v included in the vibra-
tional-rotational-orbital basis. In these calculations we did not eliminate higher values of the body-frame angular
momentum projection .

%j4(v) is the number of rotational states that are fully coupled in the distorted waves. Channels with j = jo(v)
are treated as uncoupled in the distorted waves, as explained in Ref. 61.

“RS, is the value of R, at the center of the innermost radial Gaussian function, where R, is the mass-scaled
atom-to-diatom distance defined in Ref. 58, and radial Gaussians are used both directly as outgoing wave basis
functions (in the OWVP) and to generate half-integrated Green’s functions (in the GNVP and OWVP).

‘A is the spacing in R, between successive radial Gaussians.

°c is the radial Gaussian overlap parameter, which determines the widths of the Gaussian functions, as explained
in Ref. 59.

‘m?® is the number of radial half-integrated Green’s functions per channel.

®m" is the number of radial Gaussians per channel used as &7 basis functions for the outgoing wave.
"N,(HO) is the number of harmonic oscillator functions used to expand the diatomic adiabatic vibrational
eigenfunctions, which in turn are used as vibrational basis functions for the scattering calculations.

N2 and N2% are the number of points in the Gauss-Legendre quadrature used in the single- and multiarrange-
ment angular quadratures, respectively. (Note that « = 1 is F + H,, a = 2 and 3 are HF + H)

INTY is the total number of points in the quadratures of the interaction potential over the vibrational coordinate.
In the present calculations the quadratures are carried out by dividing the mass-scaled vibrational coordinate
r. into N5 segments extending from r %, to r%%,,. Each segment is then integrated by a N3°Y-point Gauss-
Legendre quadrature.

“N,(F) is the total number of points in the finite difference grid used for the calculation of the regular solution
of the distortion problems and the half-integrated Green’s functions.

'NEP and NG ) are the number of points used in the representation of the second derivative operator in the
main body of the finite difference grid and at the last grid point respectively.

"R and R v )+ are, tespectively, the location of the lower and upper finite difference boundary condition
points.

"R, and RI% . are the lower and upper bounds of the region of R, over which quadratures of the variational
functional are carried out.

°N3P is the number of points appended to the main part of the finite difference grid with geometrically de-
creasing spacing.

PF3P is the step-size decrease factor for the spacing of the final finite difference grid points.

nt® is the number of extra points inserted between neighboring points in the third step of the finite difference
grid generation scheme explained in Ref. 61.

‘GSS, is the grid spacing scheme for the radial quadrature grids, as explained in Ref. 61.

*N2® is the number of repetitions of N3°“-point Gaussian quadrature used in the generation of the finite
difference grid and the integrations over R,.

‘e, is the vibrational screening parameter. (Screening parameters are explained in Ref. 57.)

“€.q is the radial screening parameter.

‘€, is the translational basis screening parameter.

“eq is a screening parameter involving the matrix W.

€4 is a screening parameter involving the matrix B.
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Figure 1 H + H,, J = 0. (a) Cumulative reaction probability. The solid curve is a spline fit to
‘the accurate quantal results, and the dashed curve was obtained by integrating the synthetic density
in b. (b) Density of reactive states. The solid curve is obtained by analytically differentiating a
cubic spline fit to the accurate quantum mechanical CRPs. The heavy dashed curve is the fit of
Egs. (14) and (15). The arrows are positioned at the fitted values of E,, and the feature numbers
and assignments above the arrows correspond to Table 2. (Reprinted with permission from Ref. 8,
copyright 1991, American Chemical Society.)
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and does not imply that the true barriers are parabolic, just as using the harmonic
oscillator model to interpret ordinary spectra does not imply that the potentials are pre-
" cisely quadratic.) Each term k.p.(E) in the sum represents the contribution of the indi-
vidual energy level of the transition state. The quantities k., E,, and W, are fitting
parameters.

All of the features in the quantal p°(E) are fit very accurately by including 10 terms
in the sum. The parameters from the fit are included in Table 2. The sum of the terms
K.p. in the fit is shown in Fig. 1b as the dashed curve, which is neatly indistinguishable
from the quantal result. By integrating the fit to the quantal density of reactive states,
we obtain a synthetic curve for the CRP. This is shown in Fig. 1a as a dashed curve,
which to plotting accuracy is indistinguishable from the quantal result.

The excellent agreement between the quantal and synthetic densities of reactive

states in Fig. 1b demonstrat€s that quantized transition states globally control the chemical
reactivity. All of the reactive flux, up to an energy of 1.6 eV, can be attributed to con-
tributions from the energy levels of the transition state; i.e., there is no noticeable back-
ground. Thus, this study (and ones to follow) provides a strong validation for approximate
transition state theories that postulate the existence of transition states controlling the
reaction dynamics.
‘ The value of the transmission coefficient k. is shown for each feature in Table 2.
(The value of k, for the last feature is greater than 1 because it includes contributions
from higher energy transition states that have not been included in the fit.) Many of the
values of the transmission coefficients are very close to unity, suggesting that these fea-
tures correspond to quantized transition states that are nearly ideal dynamical bottlenecks
to the reactive flux. Several of the values of k., deviate from unity; this could be the
result of the assumption of parabolic effective potential barriers or from recrossing or
other multidimensional effects.

Each of the 10 energy levels of the H; quantized transition state can be associated
with a set of linear-triatomic quantum numbers (66) [v,v5] where v, and v, are the stretch
and bend quantum numbers respectively for modes orthogonal to the reaction coordinate

Table 2 Quantized Transition States for H + H,, J = 0

W, Adiabatic At At
E, (1072 energy  E(v,v;)  (TSRT) accurate®

Feature (eV) k. eV) Assignment (V) (V) fs) (fs)

1 0.645 1.00 201 [00°] 0.663 0.645 10 11

2 0872 097 2.95 [02°] 0.909 0.872 7 10

4 1.094 0.98 3.30 [04°] 1.173 1.094 6 5
6 1.286 0.18 1.48 [06°] 1.452 1.309 14
9 1494 1.01 3.02 [08°] 1.754 1517 7

3 0978 0.79 0.75 {10 0.979 0.978 28 28

5 1.192 1.02 217 [12°] 1.173 1.192 10 8
8 1405 080 214 [14°] 1430 1.399 10

7 1368 1.01 0.78 [20°] 1.384 1.368 27 30

10 1538 1.15 1.40 [22° 1.513 1.567 15 12

*Transition state resonance theory (TSRT) results from Eq. (29) and the W, values given here.
°From Ref. 96.



334 ) Chatfield et al.

and K is the vibrational angular momentum (also the magnitude of the projection of J
on the molecular axis). (Here the vibrational angular momentum is denoted K rather than
€, which is conventional in spectroscopy (66), but which we reserve for orbital angular
momentum. For J = 0, K must be 0 as well.) This type of assignment corresponds to the
conventional picture where the one degree of freedom corresponding to unbound motion
along the reaction coordinate is ‘‘missing.”’ (By comparison, a stable triatomic molecule
like CO, has a ““full’’ set of quantum numbers (v;v5v;) (66), with v, the asymmetric
stretch quantum number. The quantum number ‘‘missing’’ in the transition state descrip-
tion will reappear when we treat the transition state as a quantum mechanical resonance.)

The lowest energy feature in p°(E) at 0.645 eV is easily assigned as [00°] since it
is the overall reaction threshold and thus corresponds ‘to the lowest energy level of the
transition state. We are able to assign quantum numbers v; and v, to the other nine
energy levels that affect the spectrum in this figure by using a variety of methods (8,9),
but primarily by comparing the fitted values of E, with the barrier maxima of semiclas-
sical vibrationally adiabatic potential energy curves. The vibrationally adiabatic curves
are defined by (35,67-71)

Va(vla v2: K’ J’ s) = VMEP(S) + Eim(vla V2, K’ J7 S) (24)

where s is the distance along the reaction path (s = 0 at the saddle point), Vygp(s) is the
Born-Oppenheimer potential energy along the reaction path, and &, (v;, v, K, J, s) is
the vibrational-rotational energy of the stretch, bend, and rotational motions excluding
motion along the reaction coordinate. The stretching motion (with quantum number v,)
of the H; transition state correlates adiabatically with the vibrational motion (with quan-
tum number v) in the reactant H, molecuie (72). The bend is doubly degenerate and—
along with overall rotation—correlates to the orbital-rotational motions of the reactants
(73). The vibrationally adiabatic curves (labeled by v,, v,, and K) were calculated in
internal coordinates using the WKB method to treat the stretch anharmonicity (74) and
a variation-perturbation treatment (75) of a quadratic-quartic potential (76) to treat bend
anharmonicity. Coriolis interactions were neglected so the curves are independent of K.
The energies of the maxima of these curves are in good agreement with the E. values
obtained by fitting the density of reactive states (8,16). This comparison allows us to
make the assignments shown in column 5 of Table 2. Energies of the maxima in V,(v,,
v,, K, J, s) are shown as column 6 in that table. (For the more highly bend excited states,
the semiclassical energies are less accurate, and other methods (8,9) were used to make
more convincing assignments of these quantum numbers.) Notice that for J = O only
even v, states appear, just as in the J = 0 spectra of bound linear triatomics (66).

The good agreement between the energy levels of the quantized transition state
obtained from the exact quantum dynamics calculations and the maxima of vibrationally
adiabatic curves strongly suggests that the reactive flux is ‘“focused’’ (77) in the inter-
action region through dynamical bottlenecks that are locally vibrationally adiabatic. The
overall chemical reaction is not globally adiabatic (8,9); for example, many state-to-state
reaction probabilities with v # v’ have significant magnitudes (> 107*). Thus we conclude
that adiabaticity is a better approximation at the transition state itself than globally and
that the flux passing through a particular level of the transition state may originate from
a wide set of reactant states. One way to understand this is to consider that at a barrier
maximum, the motion along the reaction coordinate is classically stopped. Thus the
simplest criterion for vibrational adiabaticity, that vibrational motions transverse to the
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reaction coordinate be fast compared to motion along the reaction coordinate, is locally
satisfied.

With all of the v, and v, assignments made, some interesting trends in the fitted
parameters k. and W, appear. From Table 2, we see that the significant deviations of k.
from unity are generally found for the highly bend excited transition state levels. There-
fore, most of the breakdown of transition state theory appears to be associated with only
those few levels. In addition, we see in Table 2 that W, becomes larger as v, is increased
from O to 2 for a given value of v,. This is consistent with the discussion below Eq.
(13) since the vibrationally adiabatic potentials become narrower as v, increases (8,16).
This same trend in W, is even more apparent in the results discussed below for H + H,,
J =1, where both even and odd values of v, are allowed.

We conclude above that the J = 0 cumulative reaction probability is globally con-
trolled by quantized transition states, and we have assigned stretch (v;) and bend (v.)
quantum numbers for the motion orthogonal to the reaction coordinate. As discussed
below, similar conclusions can be reached for the J = 1 and J = 4 cumulative reaction
probabilities. We have obtained spectroscopic constants for the H, transition state by
fitting the E, values of [00°], [02°], [04°], [10°], [12°], and [20°] for J = O and [00°] for
J = 4 by (66)

E( s Vo, J E,
—(1—];2_) = }-ﬁ + (.01(1’1 + 05) + (02(1’2 + 1) + xu(VI * 05)2 (25)

+ Xpn(v, + 17 + x5(v; + 05)(v, + 1) + BIJ + 1)

where E, is a constant, and w,;, w,, X;;, X1,, X, and B are the usual spectroscopic fitting
parameters. The fit, which reproduced the energies within about 0.02 eV, yielded values (in
cm™') of E, = 3061, w, = 2295, w, = 972, Xy = 227, x5 = —6, x;, = —58, and B = 10.6.
These parameters compare favorably with the approximate values (78) obtained by a normal
modes calculation at the saddle point: E, = 3372, w, = 2067, @, = 899, and B = 9.7.
Energy levels E(v,, v,,J = 0) of the transition state predicted by these spectroscopic
~ constants are shown in Table 2 to be in good agreement with the values of E, obtained
by fitting the density of reactive states. When Eq. (25) is applied to bound states, an
implicit assumption is that the quantized states have vibrational motion about the same
“‘equilibrium’” geometry. The vibrationally adiabatic curves (8,16) suggest though that
the variational transition states are found at different points along the reaction coordinate
and therefore different geometries. In light of this and as the values obtained with Eq.
(25) are effective values since Eq. (25) is a truncation of an infinite Taylor series, the
good agreement obtained with Eq. (25) is quite remarkable.’

The correspondence between the energies of the quantized transition states and the
maxima of vibrationally adiabatic curves, as well as the success in using a model of
transmission through effective potential energy barriers to fit the density of reactive states,
both suggest that detailed explorations of the nature of scattering by one-dimensional
potential barriers can provide further insight. In classical mechanics, a potential maximum
is associated with metastability at the energy of the maximum and with a time delay for
higher energies due to the system slowing down as it crosses the top of the barrier. In
quantum mechanics, barrier passage is also associated with a time delay (79—81) mani-
fested as an increasing phase in scattering matrix elements (relative to the background
phase). In model studies of quantum mchanical transmission through and over potential
barriers, it has been shown that the time delays corresponding to barrier passage are
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associated with poles of the scattering matrix at complex energy (82-84). Since poles
of the scattering matrix represent quantum mechanical resonances (3,5,50,85,86), we have
concluded that chemical reaction thresholds associated with barriers, i.e., quantized tran-
sition states, are reactive scattering resonances. These so-called barrier resonances tend
to be associated with shorter time delays than conventional resonances attributed to a
particle trapped in a well between barriers. However, there is no distinction in kind
between these two types of poles of the scattering matrix: barrier resonances may be
transformed continuously into trapped-state resonances by varying the shape of the one-
dimensional potential function (83,84). In fact, in our H + H, work (8,9,16) as well as
our one-dimensional studies (83,84) we have found that a single resonance may partake
of both barrier and trapped-state resonance characters. The identification of transition
states as scattering resonances has also been made by applying a complex scaling trans-
formation to the reaction coordinate (87).

The characterization of transition states as resonances is a useful analytical tool and
provides new insights into fundamental problems of chemical reactivity. It has already been
used, for example, to lead to a new computational approach for the calculation of anharmonic
transition state energy levels by a reformulation of variational transition state theory (88).

Semiclassical transition state theory based on second-order perturbation theory (89)
provides another way to assign quantized energy levels of the transition state, and an
application (90) to the H + H, reaction yielded encouraging results in comparison to the
full quantum (8) calculations. One difference in assignments (8,90) was later explained
(88), using the resonance theory reformulation of variational transition state theory, as a
consequence of the inadequacy of second-order perturbation theory.

Treatment of transition states as resonances is complicated by the fact that, in many
cases, barrier resonances will not be isolated or narrow and the theory of overlapping
resonances (91,92) is more complicated than the theory of isolated, narrow resonances.
Analyses of the poles of the scattering matrix show that even with a simple barrier, there
is more than one pole (82-84,93,94) associated with barrier passage. On the other hand,
our work on H + H, and other systems to be described shows that in many cases the
transition states are resolvable and the observable structure in the dynamical N’'(E) and
p’(E) may be correlated with one or a small number of poles. This paradoxical situation
is resolved by noting that, when resonances are broad and overlapping, it is the pole
nearest to the real energy axis that is useful for understanding the features of the dynam-
ical observables. In particular, for a series of poles associated with a simple (e.g., para-
bolic or approximately parabolic) barrier, one can assign a new quantum number v to
each member of the sequence, with v = 0 assigned to the pole closest to the real energy
axis, v = 1 to the next closest pole and so on. This quantum number v is associated with
the ““missing’’ degree of freedom of the quantized transition state. The v = 0 transition
state is used for understanding the dynamics in real time, as discussed next.

Poles in the scattering matrix occur at complex resonance energies (50,85,86)

E=E. — (i)r (26)
2
where E. is the real part of the resonance energy and I' is the real, positive resonance
width, which is related to the collision lifetime Az by (95)
2h

At = ? 27
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The complex resonance energies of the poles for the parabolic barrier of Eq. (10) are
(82,93)

1 .
E,=F. - o (v s E) )
where v is the analogue of the ‘‘missing’’ quantum number v;. If we assume that the
pole with v = 0 dominates the behavior of the quantal reaction probability (for scattering
by a parabolic barrier), then using Eqs. (12) and (26)—(28) yields

fi
Ar = W,

29)

Values of At computed from the W, parameters of Table 2 are also included in Table 2,
labeled TSRT (transition state resonance theory). They compare favorably with At values
obtained (96) from accurate quantum dynamical scattering matrix elements without using
transition state theory or resonance theory; these latter values are given in the last column
of Table 2. It is important to note that whereas the W, values are obtained from fits to
reaction probabilities (which contain no information about the phases of the scattering
matrix elements), the direct calculation (96,97) of At depends explicitly on phases. Thus
there is no a priori reason why the A¢ values must compare favorably. The fact that they
do provides further evidence of the utility of treating transition states with resonance
theory.

Cuccaro et al. (96) interpreted the time delays in Table 2 as resonances and assigned
a value of O for the third quantum number v without explanation. We identify these
resonances as quantized transition states. The analysis presented above of scattering by
one-dimensional barriers, with the conclusion that the v = 0 pole is the most important
because it is closest to the real energy axis, supplies a justification for the assignment of
the third quantum number.

The steplike CRP originally obtained (8) from quantum mechanical scattering cal-
culations has also been reproduced by a trace formula that avoids explicit specification
of asymptotic states (98,99) and by a method based on eigenvalues of a reaction prob-
ability operator (100).

B. J=1

A similar analysis of the CRP and the density of reactive states for H + H, with total
angular momentum J equal to 1 also shows quantized transition state control of the
chemical reactivity (8,16). However, the spectra are more complicated because the num-
ber of features in N’(E) and p’(E) increases with J. This is because both even and odd
values of v, are allowed for nonzero J, and states with identical v, and v, but different
K are allowed forJ > 1. Note that K =Jand K =v,, v, — 2, v, — 4, ..., 0 0or 1. The _
degeneracy of a state [v;v5] is 2 if K is nonzero and 1 if X is zero.

A fit of the density by a sum of terms k.p.(E), analogous to the fit for J = 0,
identifies 20 features up to 1.7 eV, and 15 of these are labeled in Fig. 2. Assigning
transition state quantum numbers to the fitted features was simplified by analyzing each
parity block separately, as described next.

For transition states, the total parity is the product of the parities of the vibrational
and rotational wave functions, and it depends on both J and K. The parity of the rotational
wave function is (—1)’. For K = 0, the vibrational wave function has even parity (+1).
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Figure 2 H + H,, J = 1. Density of reactive states for both parities (p'~ labeled odd and p'*
labeled even) and their sum.

For K > 0, the bending mode is doubly degenerate and has one even-parity and one odd-
parity component (66,96). For JP = 1+, then, v, must be odd. Consequently, only states
with K = 1, and hence odd v,, will appear in the density spectrum. For JP = 1—, the
vibrational wave function is even, so both K = 0 and K = 1 states, and consequently
both odd and even values of v,, are allowed. Figure 2 shows clearly that K = O states
occur only in the odd parity block. The spectrum for JP = 1+ is similar to the spectrum
for J = 0 in Fig. 1b, except that the {v,1?] features in the J = 0 spectrum corresponds to
[vi(v2 + 1)'] features in the JP = 1+ spectrum. All values of v, are allowed for JP =
1—, so the spectrum for odd parity has twice as many features as that for even parity.
The spectra for JP = 1+ and JP = 1— sum to give the spectrum for J = 1.

Assignments and values of E,, k., and W, from a fit by a sum of terms «,p.(E)
are given in Table 3. The parameters E.,, W,, and k, for J = 1 exhibit the same trends as
those for J = 0. Most of the k., are close to 1, indicating that the quantized transition
states are good dynamical bottlenecks. Again, most of the exceptions are highly bend
excited states. The quantal and fitted densities are identical to plotting accuracy (9),
indicating that quantized transition states can account for all of the chemical reactivity.
Table 3 also shows that fitted energies match the predictions of Eq. (25) well with the
parameters given earlier, differing by only 0.018 eV on average (the larger differences
are for highly bend excited states).

It was mentioned in Sec. IV.A. that the widths of features in the density of reactive
states generally increase with v,. The density for JP = 1— (Fig. 2) provides a striking
demonstration of this. The first three peaks in Fig. 2 are due to states {00°], [01'], and
[02°]; the next four peaks are primarily due to states [10°], [11"], [12°], and [13']; and
the last four peaks are primarily due to states [20°], [21'], [22°], and [23']. Inspection
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Table 3 Quantized Transition States for H + H,, J =1

E(v,, v5) E, K W,
Assignment (eV) (V) JP =1+ JP=1- (1072 eV)
[00°) 0.647 0.647 1.00 2.04
[01'] 0.762 0.767 1.00 0.97 2.53
[02°] 0.875 0.875 1.01 3.06
[034 0.986 0.990 1.01 0.96 3.29
(04°) 1.096 1.088 1.00 2.16
[05") 1.205 1.205 0.81 1.00 3.07
[06°] 1.311 1.290 0.79 2.30
[07'] 1.416 1.388 0.55 0.09 2.74
[08°] 1.520 1.498 1.21 2.89
(09'] 1.622 1.560 0.27 027 2.15
(0 10°] 1.722 a a a
(10" 0.981 0.981 0.84 0.79
(11 1.088 1.089 0.98 0.73 1.28
[129] 1.194 1.187 1.00 2.19
[13] 1.299 1.298 1.00 0.39 271
[14°) 1.401 1.401 1.21 2.18
[151 1.502 1.502 1.00 0.81 275
[16°] 1.602 . a a a
[17] 1.700 a a a a
[20 1.371 1.370 1.03 0.80
[21] 1.471 1.456 0.74 0.77 0.82
22" 1.570 1.540 1.01 1.28
[237] 1.667 1.633,° 1.639° 1.91° 2.88° 2.34, 2.73°

*This state’s contribution is believed to be included in the unresolved feature non{inally assigned as [23'].
"*Values from the JP = 1+ fit.
“Values from the JP = 1 fit.

of the odd-parity curve in Fig. 2 shows that the first peak of each of these three sets of
peaks is the tallest and narrowest; the others become shorter and broader as energy
increases. This trend is confirmed by the fit values of W, (9), and it is consistent with
adiabatic transition state theory. As v, increases for a given v,, peaks in vibrationally
adiabatic curves become higher and narrower, causing tunneling to become significant
over a wider range of energies. The related effect in the fully quantum world is that
abrupt steps in N'(E) become smoothed out, and peaks in p'(E) become broader. The
broader peaks are generally associated with shorter lifetimes, as demonstrated for J = 0.
We also note that broader features in p'(E) generally have smaller peak heights because
the integrated area under each is approximately the same, being one for an ideal transition
state (k. = 1).

C. J=4

The accurate cumulative reaction probability and density of reactive states (summed over
parities) for J = 4 are shown in Fig. 3. The nine prominent features correspond to tran-
sition states with v, =0, 1, or 2 for v, = 0, 1, and 2, just as in the J = 1 spectrum (9).
States with v, > 2 also occur, but they are harder to identify because they are broad and
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Figure 3 H + H,, J = 4. (a) Cumulative reaction probability. (b) Density of reactive states. In
part b, the peaks are labeled by feature numbers and by the assigned quantum numbers of one of
the levels contributing to the peak. See Table 4 for the complete set of assignments.

-

overlapping. Ignoring K-splitting, transition states with nonzero values of v, (less than
or equal to J) have a degeneracy of v, + 1 (66). [The K-splitting is much smaller than
the spacing of (v,, v,) levels.] The density’s apparently rising baseline is due to the
number of these broad, overlapping features increasing with energy; on top of this back-
ground, the prominent features due to low v, can be distinguished. Table 4 shows our
assignments of the first nine peaks for J = 4, which were made primarily on the basis
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Table 4 Quantized Transition State Spectrum for H + H,, J = 4

Energy Sum of degeneracies Running
Feature (eV) States of these states sum N*
1 0.671 [00°] 1 1 1
2 0.794 [01'] 2 3 3
3 0917  [02°F 3 6 5%,
4 1.002  [10°], [03" 5 11 9y,
5 1.113 [11'], [04°*%) 7 18 16
6 1.228 [12%%, [05'] 7 25 24
7 1.383 [20°], [13"7], [06%*] 10 35 32
8 1.473 [21'], [14%*], [07™] 11 46 40
9 1.570 [22°7], [15™], [08°%4] 12 58 491,

of the spectroscopic constants and by comparison with the fitted quantal transition state
energies E, forJ = 0 and 1. This table illustrates that the running degeneracy sum reaches
25 after the first six features, as compared to 6 for J = 0.

The energies of the nine features in Table 4 all correspond closely to the energies
of maxima in the vibrationally adiabatic potential curves (8). Table S illustrates the agree-
ment between the energies predicted by the spectroscopic constants and maxima, E,,,,,
in the quantal density of reactive states.

Fitting the quantal density by a sum of terms k.p.(E) is difficult because of the
large number of transition states for J = 4. However, quantized transition state control
of chemical reactivity can be assessed for J = 4 without identifying all of the individual
contributions to the total density by comparing the accurate values of N*(E) with those
in the next to last column of Table 4. If the transition states were ideal (k. = 1), the two
numbers would be equal. Up to 1.228 eV, the energy of the sixth peak, the numbers are
very close; at 1.228 eV the accurate value of N*(E) is 24. Thus, the quantized transition
states up to 1.228 eV are nearly ideal dynamical bottlenecks. Above 1.228 eV the quantal
N*(E) is somewhat smaller than the predicted value, but even at 1.570 eV the difference
is only 15%. This difference may be due to the inaccuracy of Eq. (25) at high v, or to

Table 5 Assignments of Quantized Transition States for H + H,,J = 4

Ei (Vl vz) Emax
Feature (V) Assignment (eV)
1 0.671 [00%] 0.671
2 0.783 [01] 0.794
3 0.899 [02%%) 0.917
4 1.005 [10°] 1.002
5 1.111 [111 1.113
6 1.213 [12°7] 1.228
7 1.394 [207] 1.383
8 1.494 217} 1.473
9 1.593 [22°7] 1.570
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deviations of k, from unity at high values of the total energy or of v,. In any case, these
results show that transition state control of chemical reactivity is maintained up to high
energy and that the individual transition states are relatively good bottlenecks for J = 4.
This strongly suggests that the detailed trends identified for J = 0 and J = 1 are general
and that thermal rate constants, which depend on a weighted sum of J-specific terms (see
Sec. II), are determined by the energy levels of the quantized dynamical bottleneck up
to high temperature (>1000 K) (101).

V. O+H;

The OCP) + H, reaction was studied (12—14,102,103) with the Johnson-Winter-Schatz
(IWS) London-Eyring-Polanyi-Sato-type (LEPS type) potential energy surface (104,105).
This surface was originally parameterized to give reasonably accurate thermal rate con-
stants (104), and its qualitative features are similar to later, more accurate surfaces
(12,102—110). We use the JWS potential rather than the more accurate surfaces because
the JWS potential has better global analytic behavior in all chemical rearrangements,
which is necessary for the reactive scattering calculations reported here. The JWS surface
has a collinear saddle point, and the Vygp(s) curve, although asymmetric by a few kcal/
mol, has roughly the same shape as that for H + H, and D + H.,.

A. Variational and Supernumerary Transition States

The O(’P) + H, — OH + H reaction provides a further test of the generality of analyzing
chemical reactivity in terms of quantized transition states. The reaction of O with H,,
like that of H with H,, is generally free of narrow trapped-state resonances and other
long-lifetime dynamical effects. However, the O + H, reaction is more complicated than
the H + H, reaction in that it is asymmetric (that is, reactants and products are different
chemical species), and it has nonsymmetrically related multiple-bottleneck regions. This
introduces the possibility of dynamical bottlenecks with different sets of energy levels
on the reactant side and on the product side of the region of high-reaction-path curvature
(102,107,109,110), and it is especially interesting to see if bottlenecks in both regions,
as well as those near the approximately symmetric saddle point, exert observable influ-
ence on the reaction.

Vibrationally adiabatic potentials were calculated for O + H, using the same meth-
ods (74-76) as for H + H,. Examples of these curves are shown in Fig. 4. For v, > 0,
where v, is the quantum number for the stretching motion transverse to the reaction
coordinate, the adiabatic curves for this reaction exhibit several local maxima. However,
only the first and last local maximum of each curve are plausibly associated with dy-
namical bottlenecks because the vibrational coordinates do not adjust adiabatically to
reaction coordinate motion in the central region due to the large reaction path curvature.
(111-113). Of the local maxima in the adiabatic regions, the first one is higher. For
example, for v, = 1, v, = 0, where v, is again the bending quantum number, it is 0.05
eV higher, and for v, = 2, v, = 0 it is about 0.09 eV higher than the product-side
maximum. The difference increases with v,. If the reaction were completely vibrationally
adiabatic, only the higher (reactant-like) maxima would influence reactivity. Therefore
we call dynamical bottlenecks with reactant-like geometries variational transition states
and designate them in the usual manner, i.e., [v,v5]. However, many vibrationally non-
adiabatic transitions have nonnegligible reaction probabilities in the exact quantal cal-
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Figure 4 Vibrationally adiabatic potential curves for O + H, with v, = 1,7 = 0, and v, = 0, 2,
4, and 6. From the bottom up the curves correspond to the [10°], [12°], [14°], and [16°] states.
(Reprinted with permission from Ref. 14.)

culation. The possibility therefore exists that dynamical bottlenecks with product-like
geometries may also have observable influence on the chemical reactivity. We call these
supernumerary transition states, and we designate them with the letter S, i.e., S[vy%], to
distinguish them from variational transition states with the same v,, v,, and K. We further
distinguish between two kinds of supernumerary transition states: those of the first kind,
whose influence on the total dynamics can be observed; and those of the second kind,
whose influence on the total reactive flux is not detectable (14) but which do influence
state-to-state reactivity.

B. Total Reactivity

The accurate density of reactive states O + H,, J = 0 is shown in the top left panel of
Fig. 5, and results of the quantized transition state theory fit are in Table 6, along with
assignments discussed below. The quantal and fitted densities are indistinguishable to
plotting accuracy (14), indicating that quantized transition states control the chemical
reactivity. The density closely resembles that for the reaction of H with H, up to about
1.3 eV. Analogous features are associated with the same sets of quantum numbers through
the [06°] transition state at 1.218 ev.

The fit identified 17 features up to 1.9 eV. The width parameter W, generally scales
inversely with v, and directly with v,, as expected (14). For many of the states «, is very
close to 1.00, and its smallest value is 0.54 (14). Thus many of the quantized transition
states are nearly ideal dynamical bottlenecks, and even ones with large bend quantum
numbers are quite good.

The maxima in the quantal density of reactive states and in the vibrationally adi-
abatic curves occur at almost the same energies. Thus, as for the H + H, reaction, the
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Figure 5 Total, p'(E), and partial, p;(E) and p_., ; (E), densities of reactive states for O + H,,
J=0.(af) Total. b) v = 0, j = 0-15. (c) v’ = 0, j = 0~25. (d)v =1, j = 0-12. () v’ = 1, ' =
0-22. (g) v =2,j =0-9. (h) v’ =2,j' = 0~17. () v = 3, j = 0~4. (j) ¥’ = 3, j’ = 0~11. (Reprinted
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accurate quantum mechanical dynamics of O + H; is controlled by dynamical bottlenecks
that are locally vibrationally adiabatic near quantized transition state energies. The first
peak is obviously the [00°] transition state. The [02°] transition state was assigned first
by Bowman (13), by analyzing our (12) cumulative reaction probabilities, which we made
available to him prior to publication. The density has sharp peaks at the energies of both
reactant-like and product-like maxima in the v, = 2 and v, = 3 vibrationally adiabatic
curves. On this basis we identify the influence of four variational transition states, in
particular [00°], [10°], [20°], and [30°], and two supernumerary transition states, in par-
ticular S[20°] and S[30°], on the density.
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Table 6 Quantized Transition States for O + H,,J =0

E, W,
Assignment eV) K. (1072 eV)
[00%] 0.695 0.96 2.62
[02°] 0.877 0.89 3.82
[10°] 0.969 0.62 0.92
[04°] 1.040 1.00 4.16
[12] 1.133 1.00 3.03
[06°] * 1.218 0.54 262
S[20] 1.306 0.78 0.81
[08°], [167] 1.393 1.00 3.79
[20), S[22°] 1.400 1.01 1.60
[0 10", [18") 1.501 1.00 322
[22°), S[24°] 1.564 0.69 2.54
[0 12°], [1 107] 1.619 1.00 591
S[30°] 1.662 0.96 0.68
5[32°] 1.734 1.00 1.33
[30"] 1.801 0.63 0.80
S[34°) 1.829 0.85 1.20
S[36%] 1.883 1.14 1.82

C. State-Selected Reactivity

Assignment of the remaining fitted features was made [14] largely on the basis of den-
sities of state-selected reaction probability, pJ and p%,., presented in Fig. 5. Each of the
panels (b) through (e) and (g) through (j) displays densities of state-selected reaction
probability for a given value of v or v' and for each value of j or j' open up to 1.9 eV.

The first peak in each of the panels corresponds to one of the ground-bend states
already identified: [00°] for v = 0 and v’ = 0, [10°]) for v = 1 and v' = 1, [20°] for v =
2, §[20°] for v’ = 2, [30°] for v = 3, and S[30°] for v’ = 3. Note that the first peak for
v’ =2 (v' = 3) channels, identified with a supernumerary transition state, occurs at a
lower energy than the first peak for v = 2 (v = 3) channels, just as the product-like
maxima in the vibrationally adiabatic curves are lower than the reactant-like maxima.

The remaining peaks in each panel are associated primarily with bend-excited tran-
sition states in the corresponding vibrational manifold. For example, the maxima in the
v =0 and v’ = 0 spectra in Figs. 5b and Sc correspond to transition states [v, = 0; v, =
0,2, 4, ..., 16X°]. Several state-selected spectra, particularly those in the v = 0 and v’
= 0 panels, exhibit double peaks whose maxima nearly overlap with prominent, neigh-
boring peaks in other spectra. This is interesting for two reasons. First, overlapping
maxima confirm that a quantized transition state controls reactive flux for the correspond-
ing asymptotic states at energies near the maxima. Second, the existence of two prominent
maxima for a single spectrum shows that the asymptotic state couples to two consecutive
even-v, bend levels of the transition state. The overlapping of peaks also demonstrates
that peak maxima do not locate transition state energies exactly, because the overlap is
not perfect: relative to the peaks with which they overlap, the individual maxima of a
double peak are shifted inward toward the average energy of the double peak.
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We note that the peaks in pJ and p%,. do not correspond to the opening of asymp-
totic channels increasing sequentially in j (rotational thresholds). The energy spacing of
rotational thresholds would increase linearly with j [the derivative of the j(j + 1) quad-
ratic energy expression is linear in j], where the peaks in Figs. 5b and Sc are evenly
spaced, as are the levels of a harmonic oscillator.

The maxima in the vibrationally adiabatic curves at reactant-like and product-like
geometries are nearly evenly spaced in energy for a given v; > 0 stretch manifold, but

the latter are more closely spaced than the former (14). Likewise, prominent maxima in .

the v = 1 (Fig. 5d), v’ = 1 (Fig. Se), v = 2 (Fig. 5g), and v' = 2 (Fig. 5h) spectra are
also nearly evenly spaced, with the spacing of peaks in the p5(E) spectra being larger
than the spacing in the corresponding p2., spectra. (The v = 3 and v’ = 3 spectra begin
at too high an energy for the spacing to be judged.) A possible explanation is that the
most prominent peaks in py represent variational transition states, while the most prom-
inent peaks in p%, represent supernumerary transition states. This would be consistent
with the vibrationally adiabatic maxima at reactant-like geometries being less closely
spaced than the maxima at product-like geometries (for v, > 0).

Figure 5 suggests that when both variational and supernumerary transition states
influence state-selected dynamics, the former are observed primarily in p, and the latter
in p—,. This is clearly true for the [20°], S[20°], [30°], and S[30°] transition states in
Figs. 5g—j, and the spacing of features suggests that it is also true for bend-excited
transition states in the stretch-excited manifolds. This trend is most easily understood by
considering that, from the principle of time reversal invariance, quantum mechanical
transition probabilities P,,. describe both forward (n — n') and reverse (n' — n) reac-
tions. Thus p_.,. describes both reaction into state n’ for the forward reaction and out of
state n’ for the reverse reaction. To understand the state-selected dynamics, we consider
the evolution of reactive flux associated with a single asymptotic state. Therefore we
consider the forward reaction for p, and the reverse reaction for p-.,.. The quantity p_.,.,
then, tends to be influenced by dynamical bottlenecks for state #’ that occur before the
region of highly vibrationally nonadiabatic dynamics for the reverse reaction, i.e., su-
pernumerary transition states. The quantity p,, on the other hand, tends to be influenced
by dynamical bottlenecks on the opposite side of the interaction region (variational tran-
sition states) because it describes reaction out of a particular state for the forward reaction.

Many but not all of the quantized transition states observed in the densities of state-
selected reaction probability are observed as peaks in the total density of reactive states.
Some highly bend excited states (e.g., [0 12°], and [0 14°]) are observed as peaks only
in the state-selected dynamics. If the closely spaced features in the stretch-excited man-
ifolds for p%, are indicative of supernumerary transition states more closely spaced in
energy than the variational transition states (which adiabatic transition state theory also
suggests), then only some of the supernumerary transition states, in particular S[20°],
S[22°], S[24°], S[30°], S[32°], S[34°], and S[36°], are observed in the total density, i.e.,
only some are of the first kind. The other supernumerary transition states identified in
the state-selected dynamics are of the second kind. '

The interpretation of the accurate quantal results in terms of variational and su-
pernumerary transition states is consistent with model studies of scattering by unsym-
metrical one-dimensional Eckart potentials (84). These studies show that both maxima
in the unsymmetrical potentials are associated with poles of the scattering matrix, and
some of these poles are associated with an increase in the transmission probability, while
others are not.

-
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D. Spectroscopic Constants

Spectroscopic constants for the variational transition states were obtained by a fit similar
to that used for the H + H, reaction. In this case, noting that quantized transition states
are associated with poles of the S matrix having the form

E@, vy) = E.(vy, ;) — imW,(vy, v2) 30)

we fit both the energies and the widths of the quantized transition states. Equation (30)
is equivalent to Eq. (26) except that it has been written in terms of the width parameter
W, instead of the resonance width I' (from Eqs. (12), (26), and (28) with v set to zero,
T = 2wW,). A least-squares fit of the first six O + H, levels was made using Egs. (25)
and (30), allowing the spectroscopic parameters to be complex. We constrained x;, to be
zero because none of the first six states involve v, > 1. The parameters thus obtained are
compared with those obtained by adiabatic transition state theory. The latter were cal-
culated with an analogous least-squares fit in which the real parts of the resonance energy
were the maxima in the vibrationally adiabatic curves at reactant-like geometries, and
the imaginary parts were obtained from tunneling probabilities for a parabolic approxi-
mation to the vibrationally adiabatic curves near their maxima (14).

Table 7 shows that the agreement between the accurate results and adiabatic-
transition state theory is quite good for the real parts of Eo, @, and w,. The imaginary
parts do not match as closely, but the imaginary parts of four of the five spectroscopic
constants agree in sign, and in three cases they agree within a factor of about 2.

VI. D+H;

We have also calculated the density of reactive states for the D + H, reaction. These
calculations were carried out as part of a converged calculation of the thermal rate con-
stant for the reaction D + H, — HD + H over a wide range of temperatures (64). We
found in these calculations that rate constants calculated using either the DMBE potential
energy surface discussed above or the earlier so-called LSTH potential energy surface
(114-116) were in excellent agreement with experiment. In particular the average de-
viation from experiment (117) over the 250-900 K range is only 5% for both surfaces,
which is within the experimental error bars.

Not only the rate constants but also the densities of reactive states are very similar
for these two potential energy surfaces; hence we will concentrate here on surveying the
results for only one of these surfaces. We arbitrarily chose the LSTH surface for this

Table 7 Spectroscopic Constants (cm™") for O + H,, J = 0

Adiabatic
Accurate transition state theory
Ey/he 3786 — 597i 3945 — 971i
, 2241 + 507i 2326 + 520i
®, 737 — 307 929 + 75i
X1 —45 — 89i —266 — 245i

X2 -2+ 43i 24 + 88i
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purpose. In the rest of this section we present an analysis of the role of quantized tran-
sition states in the accurate quantal dynamics of the D + H, reaction on this surface.
We will present results for total angular momenta J = 0, 3, 9, and 15 with H, spatial
permutation symmetry (S) equal to +1; we show results for parity (P) equal to +1 with
J=0and 3 and for P = —1 withJ = 3, 9, and 15.

First of all we note that the § = +1 and S = —1 symmetry blocks yield almost
identical CRPs (64), and this is why we present the results only for S = +1. The density
spectrum for D + H, with JPS = 0+ + is shown as the solid curve in Fig. 6. The heavy
dashed curve is the simulated spectrum obtained by fitting the quantal density by a sum
of terms as in Egs. (14) and (15), corresponding to scattering by parabolic barriers. In
order to achieve a physical fit we used 13 terms and constrained five of the k. to be
equal unity; the resulting fit is quite good. We conclude that quantized transition states
control the chemical reactivity globally. As before we label the levels of the transition
state as [v,v3]. For J = 0 only the even-bend states contribute to the CRP. Assignments
[v,v5] were made on the basis of semiclassically computed vibrationally adiabatic po-
tential maxima and the expected uniformity of the spacings between fitted threshold
energies in a given v, or v, progression. The assignments are shown also in Fig. 6. We
found evidence for significant influence on the CRP by nine variational transition states
and two supernumerary transition states of the first kind at energies below 1.5 eV. Su-
pernumerary transition states in the v, = 2 stretch manifold influence this unsymmetric
reaction, just as for O + H,. The parameters obtained for D + H, are shown in Table
8 and may be compared with those for H + H, in Table 2.

30

JPS = 044 ' " ' '
20°
25| ]
§22° :
20 E : 08° [
§20° 16: |
:; 06° 822240
e (s5f  00° 10° I f
w Y H
% 04° g0 .
. 14
02 = [ ]
10}
5 -
0 I I . :.'-::‘ 1 ..~','"' - '1 2oty S S . .
0.6 08 - 10 1.2 1.6

Energy (eV)

Figure 6 Density of reactive states for D + H, with JPS = 0++. The components of the fit
are shown as dashed curves, and the assignments are shown above the peaks in the fit. The heavy
dashed curve is the sum of the terms in the fit, and the solid curve is the accurate quantal density
of reactive states.
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Table 8 ‘ Quantized Transition States for D + H,, J = 0

E, W, K,
Assignment (eV) (1072 eV) (V)
[00°] 0.630 2.04 1.00
[029 0.835 251 0.81
[107 0.967 2.72 1.00°
[04°] 1.038 2.59 0.71
[12°] 1.150 2.81 1.00°
S[20°] 1.250 1.14 0.32
[06°] 1.273 3.02 1.00°
(147 . 1336 1.39 0.22
5122 1.375 1.05 023
[20°] 1.400 1.39 1.00°
[08°] 1.438 222 0.67
[16°], [22°], S[24°] 1.529 232 1.00°
S[30%] 1.627 217 2.84°

*Constrained to 1.00.
*Includes contributions from higher-energy quantized transition states.

Using the E, values from Table 8 for the variational transition states [00°], [02°],
[04°], [10°], [12°], and [20°] with J = 0, and using the positions of the peak maxima for
the [00°] states with J = 3 and 15, we obtain spectroscopic constants via fits of the
threshold energies to Eq. (25), augmented by an extra term, —DJ*(J + 1)°. The spectro-
scopic constants obtained are given in Table 9. These constants predict threshold energies
for the [06°], [08°], and [14°] transition states that differ, on average, by only 0.014 eV
from the fitted values of E.,. The value of the rotational constant B is in excellent agree-
ment with the value of 7.04 cm™" obtained from the semiclassical (76) analysis. There
is also qualitative agreement between these constants and those [10,16] for H + H,,
given in Sec. IV.A, after taking into account the different reduced masses of the system.

Figure 7 shows the densities of reactive states for JPS = 0++, 3++, 3—+, 9—+,
and 15—+. On each plot we tabulate the energies in eV of the variational transition
states predicted by the parameters in Table 9 along with the assignments; and we also
list the cumulative reaction probability N***(E), summed over both HD product arrange-
ments, at each local minimum. Transition states with K = O appear only for (—1)’P =

Table 9 Accurate Spectroscopic Constants (cm ™) for D + H,
Transition States®

®; 2047
W, 882
X1 383
X1z —89
X2 =2
B 7.556
D 0.002

*E, = 0.388 eV.
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Figure 7 Densities of reactive states p”**(E) for D + H, with § = +1. (a)J = 0, P = +1. (b,c)
J=3,P==*1.(d)J=9 P=~1.(e)J =15, P = —1. The positions of the variational transition
states predicted by the spectroscopic fit are indicated, labeled by their assignments and by their
energies in eV, and the local minima of N’** are labeled by the values of the CRP. .

+1, and in particular they are not present in the JPS = 3+ + spectrum, whereas the JPS
= 3—+ spectrum has contributions from both zero and nonzero K, based on symmetry
arguments given in Sec. IV.B.

The first and most important point that we wish to make on the basis of Fig. 7 is
that the quantized transition state structure persists up to high J, despite the increasing
density of states due to K degeneracy. This answers affirmatively the most widely asked
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Figure 7 Continued.

-

question we hear at seminars if we concentrate on low-J examples, namely, can quantized
transition state structure be observed at high J?

The values of the CRP at the local minima are a somewhat crude (compared to
fitting with the correct line shape) way to estimate the sum of the transmission coefficients
of all levels below a given local minimum. In the typical cases with J = 0—15, the CRP
at the first local minimum is in the range 0.99—1.02. Thus the first transition state, [00°],
is almost always a nearly ideal dynamical bottleneck. The bend states are roughly equally
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Figure 7 Continued.

spaced in energy. The quantized transition state structures at higher energy are relatively
broad and tend to overlap, especially at higher values of J where the different K states
can broaden the feature associated with a given v, and v,.

Examination of state-selected CRPs for this system (not shown here) indicates that
the various initial states can each access several transition states, although some speci-
ficity is observed. Much of the state-selected dynamics clearly correlates with the total
dynamics. For example, the state-selected densities for various j with v = 0 have prom-
inent peaks at 0.63, 0.84, and 1.03 eV, while those for v = 1 have prominent peaks at
0.96 and 1.16eV. ,

Vi. F+H,

The observation of quantized transition states in H + H, and D + H,, as discussed in
Sec. IV and VI, builds on a long history of the development of theoretical concepts for
which these reactions have provided critical early examples (118). The reaction of F with
H, is another reaction whose detailed understanding has been the subject of many studies
over a long period of time. In particular, it is a prototype exothermic chemical reaction,
and it has played an important role (119-126) in our appreciation for resonance-phe-
nomena. Although resonances were observed theoretically in the H + H, reaction many
years -ago (118), resonance effects have been hard to observe experimentally for bimo-
lecular reactions. The F + H, reaction, though, showed a dependence of the angular
scattering pattern on the vibrational quantum number v’ of the HF product that was hard
to interpret unless resonance behavior was invoked. In particular, Neumark et al. (125)
concluded that ‘“when contrasted with the strong backscattering of HF (v’ = 2) in the
reaction F + p-H, at 1.84 kcal/mol (0.080 eV relative translational energy, which cor-
responds to 0.348 eV total energy for j = 0) the sharp forward peak of the v’ = 3 product
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is the most compelling evidence to date for quantum mechanical dynamical resonance
effects in reactive scattering. The shape of the distribution is what one expects when
collisions at relatively high impact parameters contribute to the formation of a quasi-
bound state followed by selective decay to v' = 3 products.”” Early attempts to explain
the phenomenon were hindered by incomplete knowledge of the potential energy surface
and an inability to perform converged quantum dynamical calculations.

One of the major impediments to understanding the dynamics has been the lack of
an accurate potential energy surface, and in fact even the barrier height and saddle point
geometry, which are two of the most basic properties of a potential energy surface for a
reactive system, have been controversial. Recently, though, three quite different sets of
electronic structure calculations (127-131) have converged on similar results for these
properties. Furthermore both sets of calculations predict that the bending potential for
the saddle point is very soft, and the saddle point may even be (probably is) nonlinear.
A global potential energy surface that embodies these new predictions was created and
fine tuned by an iterative process involving repeated converged quantum dynamics cal-
culations (126). The new surface is called 6SEC.

Well-converged quantum dynamics calculations were first reported for the F + H,
reaction (for J = 0 on an inacccurate potential surface) in 1989 (132), and a combination
of large-basis-set electronic structure calculations (127-129), variational transition state
theory- calculations (126,129), and modifications based on accurate quantum scattering
calculations (126) with J = 0—18 were used in 1993 to calibrate the 6SEC (126) potential
energy surface. Accurate quantum dynamics calculations with J = 0-21 (126) give a
remarkably realistic: reproduction of the energy-dependent experimental (125) angular
scattering patterns for the F + H, reaction for both v’ =2 and v’ = 3, whereas calculations
based on-intermediate surfaces in the iterative surface fitting process often were very
inaccurate for these features due to their inaccurate prediction of high-J resonances (J =
12-17), which are sensitive tests of surface quality.

Interest in this system is further heightened by photoelectron spectra of FH, in
which the final state.is a neutral FH, system in the transition state region (133—135).
The original interpretation (133) of these spectra was that the system made transitions to
a resonarnce state -at an energy just below a product asymptote .and to continuum states
in which probability density accumulated near classical turning points by Franck-Condon
transitions to ‘‘scattering wave functions with nearly zero momentum in the Franck-
Condon region along the dissociation coordinate.”” The latter were called “‘direct’” tran-
sitions to emphasize the nonresonant interpretation. The relationship of the observed
spectrum to quantized transition states was brought out later though in the work of Kress
and Hayes (136), who pointed out the similarity of the observed spectrum to the density
of reactive states for the SSEC (129) potential surface. The 6SEC surface, which is
qualitatively similar to (and based on) the SSEC one in the transition state region, also
leads to qualitative agreement with experimental (133) spacings. Werner and co-workers _
(135), using a surface similar to 6SEC but based on ab initio .electronic structure cal-
culations, have carried out a successful direct simulation of the photoelectron spectrum
(direct simulations usinng presumably less accurate surfaces were reported earlier (134)).
In light of these results it is of great interest to present the density of reactive states for
the F -+ H, reaction on the 6SEC surface, which reproduces the: state- and energy-
dependent angular distributions so well.

For F + H,, we consider both symmetries S (they are calculated separatcly, taking
advantage of the fact that S is a conserved quantum number), and we count both product
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arrangements. The resulting cumulative reaction probabilities and densities of reactive
states for various sets of the conserved quantum numbers J, P, and S are given in Fig.
8. The curves are labeled similarly to those for D + H, except that in the regions between
prominent peaks and after the final prominent peak we mark the value of the CRP only
at the first local minimum, not at all local minima. The obvious separation of the quan-
tized transition states in both the CRP and density plots is very striking. The energies at
the local maxima in the density plot provide a first approximation to the transition state
energy levels E,, and, for nondegenerate levels, the differences between N’**(E) at the
successive local minima provide a first approximation to the transmission coefficients ..
In some cases these differences are closer to 2 or 3 than to unity, and this indicates a
degenerate level or a near degeneracy. In such cases the difference is an approximation
to the product of the degeneracy and the average transmission coefficient of the states
comprising the degenerate or near-degenerate manifold. (The energies at the local maxima
in the CRP plot have no obvious meaning, and in fact it is not even clear why there are
local maxima after every rise, but we labeled them for the convenience of the reader.)

The F + H, system is characterized by an early, loose transition state whose lowest-
frequency motion is best modeled as an internal rotation, in contrast to the tight, linear
transition states of the H + H,, D + H,, and O + H, reactions discussed above, whose
low-frequency motion is well modeled as an anharmonic bending ‘vibration. The lowest-
energy saddle point on the 6SEC surface is bent, although it is only 0.022 eV lower in
energy than the collinear transition state. The marked difference in the character of tight
and loose transition states results in striking differences in the corresponding transition
state spectra. The hindered-rotor transition-state levels may be labeled by the diatomic
reactant’s vibrational and rotational quantum numbers, denoted v and j respectively, as
well as the magnitude, K, of the projection of J on the atom-to-diatom axis. The projec-
tion quantum number is constrained such that (63)

[1 — (~1)’P)/2 = K = min(j, J) (1)

This may be called a body-frame label set. Alternatively one may use the space-frame
labels v, j, and [ of the initial collision pair, where [ is the orbital angular momentum
quantum number of the relative translational motion of FF with respect to H,. The quan-
tum number [ is constrained by (137)

i-Jl=t1=lj+J| ' , (32)
and
(-1)' = P(-1) (33)

Neither the (v, j, K) nor the (v, j, I) set of quantum numbers fully separates the motion
at the transition state, but these representations provide a basis for discussion.

The asymptotic H, eigenstate energies for the 6SEC potential energy surface are
given in Table 10, and they illustrate the well-known fact that the energies of pure rotor
states are approximately equal to Bj(j + 1), where B is the rotational constant in energy
units. Examination of the peak positions in Fig. 8 shows that they fall into clusters whose
mean energies are also approximately proportional to j(j + 1), and we present them
organized this way in Table 11. The penultimate column of Table 11 displays the internal
rotational excitation energies of the extreme energies of each cluster, and we see that
they differ from the rotational excitation energies of H, in Table 10 by 25-36% for j =
1, 13-14% for j = 2, and less than or equal to 4% for j = 3 and 4. We conclude that
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Figure 8 Cumulative reaction probabilities, N"**(E), and densities of reactive states, p””*(E) in
eV, for F + H, as functions of total energy E. JPS: (a,b) 0++, (c,d) 0+—, (e,f) 1—+, (g,h)
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because the transition states are so early, j is approximately adiabatic in the region be-
tween reactants and transition state. This allows j to be assigned as a good transition
state quantum number, similar to the assignment of quantum numbers for some van der
Waals complexes (138—140). Table 10 for H, and Table 11 for the FH, transition state
both show the j(j + 1) quadratic dependence on j. Table 10 yields B == 0.0073 eV for
overall rotation of H,, and Table 11 yields about the same value of B for internal rotation
of H, in the FH, transition state.
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In order to further categorize the transition states, we carried out eigenvalue cal-
culations, using a method described elsewhere (141), in which we reduced the dimen-
sionality by fixing the H—H distance at 1.44a, and the F—H, distance at 3.17a,, ap-
proximately the collinear saddle point values. The eigenvalue calculations were carried
out with a body-frame basis, first assuming the Hamiltonian is block diagonal in K, then
coupling the K blocks. We performed such calculations with J = 0, 1, 2, P = *1, and

= —1. When K was assumed to be a good quantum number, a single basis vector had



358 Chatfield et al.
I JPS = 1__ 0.428

3sl (9)
3.0}

25}

CRP

20}

1.5

05 b

1 1 il

0.0 Y—— L
0.30 0.35 0.40 0.45 0.50

energy (eV)

140

" 0.329 JPS =1~

120 |
100 |
80|

60

dN/JE

40

20

1.91 3.76

0.30 0.35 0.40 0.45 0.50
energy (eV)
Figure 8 Continued.

-

a coefficient in the eigenvector greater than or equal to 0.993 in all cases, and for JPS
= 0+- and 1+ —, for which there is only one K value, the internal rotational excitation
energies of such eigenvalue calculations agree with those in Table 11 within 1 and 5
meV. These results confirm that j is a good quantum number.

For JPS sets with more than one K, we then allowed the K blocks to couple. The
coupled-K internal-rotation excitation energies agree with those in Table 11 with an aver-
age absolute deviation of only 7 meV, but the largest coefficient of the uncoupled eigen-
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359

states in the various coupled eigenvectors varied from 0.725 to 1.00, with an average
value being 0.898, corresponding to a squared coefficient (fractional weight of the basis
function in the eigenvector) equal to only 0.806 (i.e., about 81%). Thus, in general X is
not a good quantum number, although for the lowest-energy state of each JPS block, the
largest coefficient in the eigenvector is always at least 0.996. The transition state assign-
ments resulting from this analysis are given in Table 12 (where in this case, we quote
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the contribution in terms of primitive basis functions rather than uncoupled eigenstates),
and these results confirm the j assignments of Table 11.

The levels differing only in K are typically not resolved. However, we can get an
idea of the K splitting in two ways. First is the K splitting predicted by the reduced-
dimensionality calculations, which is 14—-15 meV for j = 1 and 4-11 meV for j = 3.
Second is to look at differences in the energies at which peaks occur in the state-selected



Computational Spectroscopy of the Transition State 361

7
JPS =2++ 0.490

- (m)

4t 0.384

CRP

0.327

0.30 0.35 0.40 0.45 0.50
energy (eV)

200
JPS = 24+

(n) 0.357
150

100 |

"dN/dE

50

0.96 . 6.45

1 L

0.30 0.35 0.40 0.45 0.50
energy (eV)

Figure 8 Continued.

densities of reactive states in the body-frame representation. The second method yields
~2-12 meV, depending on the values of J, P, S, and j, which is reasonably consistent
with the first method. Since most of the peaks are broader than the estimated splittings,
it is not too surprising that the K splittings are not resolved.

The transmission coefficients in the last column of Table 11 are amazing! The
average deviation from unity, over 23 values, is only 5%. This is especially striking since
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the collinear F + H, reaction shows a transmission coefficient of about 0.55 averaged
over a Boltzmann distribution at 300 K (142), which is by far the largest breakdown of
the unit transmission coefficient assumption of any reaction studied to date, out of over
40 cases (143-146). Clearly the mechanism leading to trajectory recrossing (147) in a
collinear world is not very significant in the full 3-D world.
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Vill. HALOGEN-HYDROGEN HALIDE SYSTEMS

363

The hydrogen transfer reactions Cl + HCl, I + HI, and I + DI present a more difficult
test of quantized transition state control of chemical reactivity. In contrast to the H +
H,, D + H,, O + H,, and F + H, reactions, the quantized transition state structure in
the accurate dynamics of these reactions is almost completely obscured by features that
have been attributed to trapped-state resonances and rotational thresholds (17-19). Al-
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‘though quasibound resonance features and other complicated dependencies of state-to-
state reaction probabilities on energy and initial and final states are observable for the
reactions discussed above, the cumulative reaction probability for these reactions is re-
markably free of such structures and, as discussed above, clearly exhibits the influence
of quantized transition states. This is not the case for the halogen-hydrogen halide re-
actions. However, as we discuss below, the influence of quantized transition states un-
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Table 10 Asymptotic H, Eigenenergies for the 6SEC Potential Energy
Surface for the FH, System
(E; — E)lj(j +
E E, — E, 1)
j (eV) (meV) (meV)
0 0.2687 0.0 —
1 0.2834 14.7 7.4
2 0.3126 43.9 73
3 0.3561 87.4 73
4 - 04135 144.8 72
5 0.4843 215.6 72
6 0.5679 299.2 71
Table 11 'Ifansition State Level Assignments and Transmission Coefficients for
F + H, on the 6SEC Surface
Contributing
channels E, E. - 318
J J P S 4 K (eV) (meV) Kb
0 0 + + 0 0 0.318 0.96
1 - + 1 0 0.318 0.96
2 + + 2 0 0.319 0-1 0.96
1 0 + - 1 0 0.338 0.98
1 - - 0,2 0,1 0.329, 0.338 0.95
1 + - 1 1 0.329 0.98
2 + - 1,3 0,1 0.333, 0.333 0.94
2 - - 2 1 0.330 11-20 0.98
2 0 + + 2 0 0.363 0.89 -
1 - + 1,3 0,1 0.365, 0.365 0.95
1 + + 2 1 0.366 0.99
2 + + 0,2,4 0,1,2 0.356, 0.356, 0.363 . 0.92
2 - + 1,3 1,2 0.356, 0.368 38-50 0.96
3 0 + - 3 0 0.407 0.90
1 - - 24 0,1 0.408, 0.408 0.93
1 + - 3 1 0.409 0.92
2 + - 13,5 0,1,2 0.409, 0.409, 0.409 0.94
2 - - 2,4 1,2 0.408, 0.408 89-91 0.96
4 0 + + 4 0 ~ 0466 0.83
1 - + 3,5 0,1 0.467, 0.467 0.89
1 + + 4 1 0.467 0.98
2 + + 2,4,6 0,1,2 0.468, 0.468, 0.468 -0.89
2 - + 3,5 1,2 0.468, 0.468 148-150 0.98

*We give the labels of the contributing channels using both the space-frame and body-frame representations.

*For degenerate or near-degenerate clusters, k, is the average transmission coefficient.
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Table 12  Assignments of FH, Quantized Transition States®

Maximum contributor

E.
J P S (eV) j K Fraction
0 + - 0.338 1 0 0.990
0.407 3 0 0.988
1 + - 0.329 1 1 0.990
0.409 3 1 0.986
1 - - 0.329 1 1 0.988
0.338 1 0 0.988
0.408 3 0 0.532
0.408 3 1 0.531
2 - - 0.330 1 1 0.990
0.408 3 2 0.928
0.408 3 1 0.918
2 + - 0.333 1 1 0.982
0.333 1 0 0.982
0.409 3 2 0.854
0.409 3 0 0519
0.409 3 1 0.530

‘E, values from Table 11; assignments and fractional contributions based on reduced-dimen-
sionality eigenvalue calculations.

derlies the relatively narrow structures that, at first view, are most prominent in the
cumulative reaction probabilities for these reactions.

There has been considerable interest by other workers in the resonance structure
of reactions of the type X + HX. Many calculations have been performed for such
reactions, and it is beyond the scope of this chapter to review them all. We refer the
interested reader to other sources (10,11,17-19,148—159) and mention only a few cal-
culations in particular. Quasibound states for collinear reactions of the type X + HX
were predicted on the basis of quantum mechanical scattering calculations as early as
1981 (148,150,152), and these states were related to wells in one-dimensional model
potentials (148,152). Approximate three-dimensional calculations (156) employing
LEPS-type potential energy surfaces (150,152) for CIHCI, IHI, and IDI also located
quasibound states, which further model calculations (152,158) were useful in understand-
ing. Accurate three-dimensional quantum mechanical scattering calculations for Cl +
HCl (17), I + HI (18), and I + DI (19) were reported by Schatz in 1989. He too
employed LEPS-type potential energy surfaces (150,152). The calculated CRPs exhibit
an overall increase with energy, on which narrow oscillations are superimposed. The
CRP for Cl + HCI exhibits a sharp feature at 0.641 eV that has been interpreted as a
trapped-state resonance (17), just below the threshold for reaction of v = 1 vibrationally
excited reactants. The I + HI and I + DI calculated CRPs also exhibit trapped-state
resonance features, in both cases just below the overall threshold to reaction (18,19). On
the basis of oscillations in state-selected reaction probabilities, Schatz associated the other
oscillations, which occur with roughly the rotational spacing of the reactant diatom, with
rotational thresholds for hindered rotor states (17-19).
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Experimental evidence for the vibrational structure of XHX transition states has
been provided by photoelectron spectroscopy of XHX™ anions with X = Cl, Br, and I
(134,160—163). This technique, by inducing photodetachment of an electron from the
XHX" anions, probes the Franck-Condon region, which is believed for these systems to
include geometries in the vicinity of the transition state region for the neutral systems.
Spectral bands have been interpreted as evidence for trapped-state resonances associated
with asymmetric stretch-excited levels of the transition state (160—163), and they are in
general agreement with synthetic photoelectron spectra calculated from the scattering
computations of Schatz (17-19). In recent experimental spectra (158,162), more closely
spaced oscillations have been observed; these are apparently related to rotational thresh-
olds as described by Schatz.

In the rest of this section we discuss our analysis (10,11) of the accurate cumulative
reaction probabilities for the halogen-hydrogen halide systems that were published by
Schatz (17-19). The CRPs were digitized with an optical scanner, which introduces
negligible error. The accurate N°(E) was fit with cubic splines and convoluted using Eq.
(20). Our analysis is based on the observation that the calculated CRPs of Schatz for
Cl + HCL, I + HI, and I + DI appeared to have an overall steplike structure reminiscent
of that associated with quantized transition states, underlying the narrower features as-
sociated with trapped-state resonances and rotational thresholds. Our conclusion that
quantized transition states exert broad control of the chemical reactivity for these reac-
tions is not inconsistent with Schatz’s description of the narrow trapped-state resonance
and rotational threshold features. These different sorts of dynamical features represent
different time scales, with the shorter-time (broader) features being more closely related
to the traditional concern of chemical kinetics, i.e., reactivity, as discussed below Eq.
(23). The relationship of features in the CRP to features in the photoelectron spectrum
is not fully worked out yet. ’

In 1992, Darakjian et al. (164) reported quantum dynamics calculations for the
reaction He + H; — HeH"* + H with JPS = 0++. Like the halogen-hydrogen halide
. reactions, this reaction exhibits a cumulative reaction probability with many narrow res-
onance structures, spaced about 0.005—0.01 eV apart over the entire energy range. How-
ever, it appears that these narrow structures were superimposed on a more coarsely
grained, broader structure reminiscent of the steps in the cumulative reaction probability
identified with quantized transition states in the H + H, reaction. Darakjian and co-
workers (164) therefore applied an averaging procedure (165,166) to the raw cumulative
reaction probability to bring out the quantized transition state structure. When they av-
eraged over an interval of 0.01 eV, the underlying structure appeared with surprising
clarity, revealing quantized transition states spaced about 0.07 eV apart. A similar treat-
ment has identified quantized transition state influence of the reaction of Ne with H;
(167-169).

The finite-resolution density of reactive states introduced in Sec. II is especially
useful for analyzing the halogen-hydrogen halide reactions because, as stated above, the
features due to quantized transition states are partially obscured in these systems by a
number of narrow resonances associated with other regions of the potential energy sur-
faces. Therefore the accurate cumulative reaction probabilities N°(E) were convoluted
with a Gaussian function of variable width F to obtain finite-resolution cumulative re-
action probabilities N°(E; F). Analysis of dN°(E; F)/dE reveals the influence of quantized
transition states underlying the narrower dynamical features of N°(E).
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A. Cl+ HCI

Finite-resolution p° are shown for Cl + HCI in Fig.9. The value of F was chosen to
optimize the separation of scales, smoothing over narrow features while leaving broader
structure intact.

The raw p°(E) has many rapid oscillations that are very difficult to interpret. Con-
volution of N°(E) for Cl + HCI with a Gaussian having a width parameter F of 0.027
eV (corresponding to At = 24 fs) produces a finite-resolution CRP increasing almost
monotonically with energy (11) and having clearly recognizable steplike features remi-
niscent of the H + H, and O + H, reactions. The corresponding density in Fig. 9 has
seven well-defined features and one noticeable shoulder.

Structures suggestive of quantized transition states are discernible even in the un-
convoluted N°(E). The initial rise between 0.40 and 0.45 eV is quite marked, so we
assign this feature as [00°]. Since N°(E) reaches about 1 by 0.45 eV, the feature corre-
sponds to a nearly ideal dynamical bottleneck. The rapid rise at 0.66—0.67 ¢V has been
shown to be due to a dynamical threshold for formation of vibrationally excited v’ =1
products (157), so we assign it as [10°]. Other features in N°(E), however, are associated
with different kinds of dynamical effects. For example, the sharp peak at 0.647 eV
has been identified previously as a trapped-state resonance, and the broader features
between 0.5 and 0.6 eV have been associated with rotational thresholds of the asymptotic
diatom (17).

The influence of the remaining quantized transition states is identified on the basis
of the features in the finite-resolution density p°(E;0.027) in Fig. 9 and the incremental
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Figure 9 Original and finite-resolution densities of reactive states for the Cl + HCI reaction
with J = 0. (a) N°(E). (b) p°(E). (c) N°(E; 0.027 eV). (d) p°(E; 0.027 eV). The value of N(E; F)
is indicated at each minimum in p°(E; F). (Reprinted with permission from Ref. 11, copyright
1992, American Chemical Society.)
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rise in N°(E;0.027) (between the energies of minima between peaks in p°(E;0.027)). The
first peak corresponds to the initial step in N%(E) already identified as [00°]; N°(E;0.027)
reaches 1.06 at the minimum following it (0.416 V). The next two peaks near 0.5 and
0.6 eV are traceable to the rotational thresholds identified in N°(E). Since N°(E;0.027)
reaches 2.21 at the minimum following them (at 0.594 eV), we conclude that a single
quantized transition state is predominantly responsible for the increase in reactive flux
over this energy range, and so we assign both of these features as [02°]. One interpretation
of the fact that this transition state leads to two peaks rather than one is that there is
some intermediate-time structure that is not totally removed by the 0.027-eV-wide aver-
aging procedure. The tail of the next higher feature also contributes to the value of
N°(E;0.027) at 0.594 eV.

Between 0.594 eV and the minimum at 0.775 eV, p°(E;0.027) exhibits three peaks
and one shoulder. The peak at 0.665 eV is associated with the rapid rise in N%E) already
identified as [10°]. Between the minima on either side of this peak, N°(E;0.027) rises by
close to unity (from 2.86 to 3.88). The preceding peak is identified as [04°], the next
even-v, bend state in the ground-stretch manifold. The peak and shoulder following the
[10°] feature are assigned as [06°] and [12°], respectively, on the basis of the energy
spacing of bend states in the ground-stretch manifold.

Up to 0.735 eV, then, we assign six quantized transition states, and N°(E;0.027)
reaches 5.35. This is in accord with the quantized transition states being good dynamical
bottlenecks and exerting predominant control of the chemical reactivity. If our assign-
ments are correct, the average transmission coefficient k, for the six states up to 0.735
eV is 0.89, or 89% of its ideal value.

The remaining feature in the finite-resolution spectrum, at 0.800 eV, is more dif-
ficult to assign. On the basis of energy spacings it appears to be [08°].

It is especially interesting to note that the short- and long-time dynamics of Cl +
HCI are sufficiently separated in time scale that an energy resolution of 0.027 ¢V washes
out almost all features due to the latter in N°(E) and p°(E). The trapped-state resonance
responsible for the 0.66—0.67 eV peak in N°(E) and the rapid oscillation in p°(E) is not
discernible in the finite-resolution spectra. Only the broader rotational thresholds near 0.5
and 0.6 eV survive the averaging procedure. These occur on a time scale similar to that
of the quantized transition states and cannot as easily be separated.

B. I+ Hland |+ DI

Raw and finite-resolution spectra for the I + HI reaction are shown in Fig. 10. The
method of analysis (11) is similar to that used for C1 + HCI.

The raw N°(E) exhibits steplike features suggestive of quantized transition states
(11). Superimposed on these are wide oscillations which have been identified with ro-
tational thresholds. The corresponding derivative curve shows many rapid oscillations
that are difficult to interpret.

In the finite-resolution spectra with a resolution function of 0.027 eV, the rapid
oscillations are washed out, as illustrated in Fig. 10. The difference in time scale between
the rotational thresholds and the quantized transition states for I + HI is sufficient to
- separate them with an appropriate resolution function. A vibrationally adiabatic analysis
of I + HI predicts the [10°] threshold at 0.422 eV, which is beyond the energy scale of
Fig. 10. Therefore we assign all the features in the finite-resolution density in Fig. 10 to
the ground-stretch manifold. By the minimum of p°(E;0.027) at 0.357 eV, N°(E;0.027)
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Figure 10 Original and finite-resolution densities of reactive states for the I + HI reaction with
J = 0. () N°(E). (b) p°(E). (c) N°(E; 0.020 eV). (d) p°(E; 0.020 eV). (€) N°(E; 0.027 eV). (f) p°(E;
0.027 eV). The value of N°(E; F) is indicated at each minimum in p°(E; F). (Reprinted with
permission from Ref. 11, copyright 1992, American Chemical Society.)

reaches 4.00. We identify four quantized transition states ([00°], [02°], [04°], and [06°])
with the four peaks in this range. Thus the four lowest-energy quantized transition states
for this reaction gate the flux with apparent unit efficiently (i.e., k. = 1), exerting dom-
inant control of the dynamics.

The analysis for I + DI is very similar to that for I + HI and Cl + HCl. With an
energy resolution of 0.025 eV, seven quantized transition states were identified up. to
0.42 eV, and the average value of k, was 0.8 (11).

C. Spectroscopic Constants for Halogen-Hydrogen Halide Systems

Quantal spectroscopic constants, as defined in Eq. (25), were calculated for the three
reactions from fits to assigned peak energies in the finite-resolution density. Vibrationally
adiabatic thresholds (the maxima in vibrationally adiabatic curves calculated using the
procedure described for H + H,) were also least-squares fit with Eq. (25). Results are
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Table 13 Spectroscopic Constants of CIHCI, IHI, and IDI Quantized Transition States

E, (O w; X2 X12
(eV) (cm™) (em™) (cm™) (cm™)
CIHC1
quantal 0.231 2010 497 -11.2
adiabatic 0.271 1920 671 174 ~-269
THI
quantal a a 235
adiabatic 6.65(—3)" 2200 253 26.8 -154
IDI
quantal 8.80(—3) 1560 230
adiabatic 1.72(-2) 1450 192 14.2 —-78.5

*Ey + 0.5hco, = 0.139 ¢V = 1124 cm ™.
®(—3) indicates 107,

in Table 13. In general, the quantal and adiabatic values for w;, and w, are in good
agreement. They differ by 5% (w,) and 30% (w,) for Cl + HCI, 8% (w,) for I + HI,
and 7% (w,) and 17% (w,) for I + DI. (We did not obtain a value for w, for I + HI.)
The good agreement of the accurate and adiabatic values supports the quantized transition
state assignments for features in the finite-resolution density.

We note that vibrationally adiabatic treatment yields a large magnitude of x,, for
Cl + HCJ, in particular, x,, = — 269 cm ™. This is a consequence of the transition state
geometries. The ground-stretch thresholds are at the symmetric saddle point, but the
stretch-excited thresholds are displaced toward the asymptotic species. The bending fre-
quencies for these different structures are expected to be quite different, resulting in a
large magnitude for x,.

The Cl + HCI quantized transition states have also been studied by Cohen et al.
(159), using semiclassical transition state theory based on second-order perturbation the-
ory for cubic force constants and first-order perturbation theory for quartic ones. Their
‘treatment yielded w, = 339 cm™" and w, = 508 cm™". The former is considerably lower
than the values extracted from finite-resolution quantal densities of reactive states and
from vibrationally adiabatic analysis, 2010 and 1920 cm™* respectively (11), but the bend
frequency w, is in good agreement with the previous (11) values, 497 and 691 cm™*
from quantum scattering and vibrationally adiabatic analyses respectively. The discrep-
ancy in the stretching frequency is a consequence of Cohen et al. using second-order
perturbation theory in the vicinity of the saddle point rather than the variational transition
state. As discussed elsewhere (88), second-order perturbation theory is inadequate to
capture large deviations in position of the variational transition state from the saddle
point.

IX. OTHER SYSTEMS
A. Rare Gas + H;: Theory

Darakjian et al. (164) computed accurate densities of reactive states for He + H; —
HeH" + H with J = 0. The raw CRP exhibited many rapid oscillations, indicative of
narrow trapped-state resonances. By averaging the cumulative reaction probability for
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the even spatial permutation symmetry block over a range of 0.02 eV, they obtained a
cumulative reaction probability exhibiting four steplike features up to 1.30 eV that were
interpreted as quantized transition states. Each of these steps was approximately unity,
suggesting that quantized transition states functioning as good dynamical bottlenecks
underlie the narrow, trapped-state resonances. Further analysis was provided by Klippen-
stein and Kress (165); and their density of reactive states (a derivative of an averaged
CRP), summed over both symmetry blocks, also shows four clear peaks up to 1.30 eV,
and seven peaks (and three shoulders) up to 1.50 ¢V. The variational transition states in
this system are far out in the exit valley, and, as a result, the energy spacings of the steps
correlate with product rotational energy spacings.

Kress (167) reported the first converged quantum results for the reaction Ne +
H; — NeH" + H with J = 0. He observed six steps in an averaged cumulative reaction
probability and six peaks in the density of reactive states. The spacing is fairly constant
and is the range 0.05-0.08 eV. In a follow-up paper (168), Kress and Klippenstein as-
signed all six states and discussed statistical corrections to variational transition state
theory associated with supernumerary transition states. Further analysis and discussion
was provided by Kress et al. (169).

B. H + O,: Theory

Pack and co-workers (166,170) calculated cumulative reaction probabilities for the com-
bustion reaction H + O, — OH + O with zero total angular momentum. The raw CRP
has many narrow resonance features. When the CRP was convoluted with Gaussians,
however, the resonance features were sufficiently smoothed that the resulting CRP shows
steplike features that the authors interpreted as possibly representing quantized transition
states. They noted in particular that the positions and spacings of the steps correspond
well with some effective potential barriers in the exit valley. Further calculations on this
system were reported by Leforestier and Miller (171). Their CRP curve agrees qualita-
tively with that of Pack and co-workers, but the energy grid is less fine and the CRP
does not display narrow resonance features until after the first two steplike increases in
the CRP, from O to 1 and from 1 to 2, each of which is quite clean.

C. Li+ HF: Theory

Another system where accurate microcanonical rate constants have been calculated is
Li + HF — LiF + H with J = 0 (172). This reaction has variational transition states in
the exit valley. Variational transition state theory agrees very well with accurate quantum
dynamical calculations up to about 0.15 eV above threshold. After that, deviations are
observed, increasing to about a factor of 2 about 0.3 eV above threshold. These deviations
were attributed to effective barriers in the entrance valley; these are supernumerary tran-
sition states. After Gaussian convolution of the accurate results, only a hint of step
structure due to the variational transition states remains. Densities of reactive states,
which would make the transition state spectrum more visible, were not published (172).

D. CI+ H,: Theory

We have also carried out accurate quantum scattering calculations for the reaction Cl +
H, — HCl + H, which is about 0.13 eV endothermic in a Born-Oppenheimer sense and
about 0.05 eV endothermic when zero-point energy is included. We used the G3 potential
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energy surface (173) on which the Bomn-Oppenheimer barrier height is about 0.34 V.
Thus this is another nearly thermoneutral system of the A + H, type, with, however, a
barrier height somewhat smaller than that for D + H, and O + H,. For JPS = 0++,
the CRP rises monotonically and the density of reactive states shows several clearly
resolved quantized transition states. The lowest state, [00°], leads to a well-resolved
plateau in the CRP at ~1.0, which is similar to the behavior seen above for H + H,,
D + H,, and O + H,. The next two peaks may be assigned to [02°] and a supernumerary
transition state of the first kind with quantum numbers [10°]. The value of the CRP at
the local minimum following the third peak in the density is only about 1.8, though. The
mere fact that the [10°] supernumerary transition state is one of the first kind indicates
that the fundamental no-recrossing assumption of transition state theory is less valid for
this system than for the other A + H, systems, and a value of only 1.8 for the CRP at
the local minimum preceding the third variational transition state further illustrates the
nonideal nature of the dynamics in this system, which will provide an interesting case
for further analysis.

E. Experiment

Experimental detection of quantized transition states has been impeded by the difficulty
of carrying out experiments in which only one or a few values of the total angular
momentum J contribute to the signal. Otherwise the smearing effect of many values of
J will tend to hide structure due to quantized transition states. Nevertheless, in the past
five years, sophisticated measurements have supplied evidence for the influence of quan-
-tized transition states on a number of reactions.

We have already mentioned the interpretation of photodetachment spectra of FH,
and XHX™ (X = Cl, Br, 1), in terms of quantized transition state resonances. Similar
experiments have been carried out for IDI", OHF~, OHCl", OHOH", and HOHOH"
(174-177), and these experiments have been interpreted in terms of resonances and other
types of vibration-rotation energy level structure associated with the transition state spe-
cies of the neutral product (10,11,17-19,162,163,174—178). The FH, and FD, photo-
detachment experiments provide a particularly striking example of the observation of
quantized transition states in experimental spectra (133—135). In theoretical work carried
out to analyze recent experimental work on photodetachment, in particular for OHCl™
(176), the calculated cumulative reaction probability for the O + HCI reaction showed
steps at quantized hindered rotor energies (as well as sharper resonances due to trapped
states), but the steps had transmission coefficients considerably smaller than unity.

Photodissociation experiments provide one route to observing the dynamics asso-
ciated with a single value of J, and as such would be expected (179) to be a good place
to look for quantized transition state structure. For the photodissociation of triplet ketene,
Lovejoy et al. (180) reported direct observation of a step in the microcanonical rate
constant associated with a vibrationally excited transition state, and they interpreted their
results using a theoretical framework similar to that used in Sec. IV. Further analysis was
provided in later papers (181-183), including a discussion of subthreshold transmission
resonances such as have also been predicted theoretically (184,185). The most recent
paper from the Moore group (183) exhibits approximately three distinct steps each for
photodissociation of CH,CO and CD,CO with further structure presumably correspond-
ing to unresolved steps at higher energies. For CH,CO the first peak was assigned to a
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C—C—O0 bend, and another peak was assigned as a combination of the C—C—O bend
with one quantum of hindered rotation.

Another experimental system where steplike structure possibly related to quantized
transition states was observed is the work of Wittig and co-workers (186—-188) on NO,
dissociation; these experiments have been further analyzed by Klippenstein and Radi-
voyevitch (189) and Katagiri and Kato (190), both of whose studies indicate that the
interpretation may be more complicated. Wittig and co-workers concluded (187) that the
steps observed in the experimental microcanonical rate constants may correspond to over-
lapping of vibrationally adiabatic thresholds.

Choi et al. measured the cis-frans isomerization rate of trans,trans-1,3,5,7-octa-
tetraene by exciting its vibronic bands in a supersonic jet and observing fluorescence
decay (191). Choi et al. noticed a stepwise increase in the isomerization rate with energy,
which they attributed to quantization of the vibrational levels of the transition state for
cis-trans isomerization of a double bond. This study is especially noteworthy because
quantization is observed in a molecule with 48 degrees of freedom. The energy spacing
of 80 = 10 cm™ between the first two steps was tentatively assigned to an in-plane
bending vibration of the transition state.

X. CONCLUDING REMARKS

In transition state theory it is assumed that a dynamical bottleneck in the interaction
region controls chemical reactivity. Transition state theory relates the rate of a chemical
reaction in a microcanonical ensemble to the number of energetically accessible vibra-
tional-rotational levels of the interacting particles at the dynamical bottleneck. In spite
of the success of transition state theory, direct evidence for a quantized spectrum of the
transition state has been found only recently, and this evidence was found first in accurate
quantum mechanical reactive scattering calculations. Quantized transition states have now
been identified in accurate. three-dimensional quantal calculations for 12 reactive atom-
diatom systems. The systems are H + H,, D + H,, O + H,, C1 + H,, H + O,, F +
H,, Cl + HCL, I + HI, I + DI, He + H;, Ne + H;, and O + HCIL

In this chapter we reviewed the evidence for the quantized nature of the spectrum
of the transition state based on exact quantum mechanical reactive scattering calculations.
We discussed fitting the accurate computational results by a model with level-dependent
transmission probabilities that include recrossing effects and that account for tunneling
and nonclassical reflection based on parabolic effective barriers. We discussed. global
control of reactivity for both zero and nonzero total angular momentum, and we also
discussed the degree of ideality of the individual dynamical bottlenecks. We assigned
quantum numbers to individual transition state. levels by comparison of the results with
maxima in vibrationally adiabatic potential curves. We discussed the relevance of the
concept of vibrational adiabaticity for the accurate dynamics. We obtained spectroscopic
constants for the quantized transition state by fitting to a truncated Taylor series in the
vibrational quantum numbers. We also drew an explicit connection between quantized
transition states and quantum mechanical quasibound states, both of which are related to
poles of the scattering matrix. In this connection we discussed the relationship of thresh-
olds and resonances. We derived transition state lifetimes for the H + H, transition states
by identifying the lifetimes with the imaginary parts of the resonance energies and re-
lating those imaginary energies to the effective parabolic potentials implied by the fit.
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We also noted the reformulation of variational transition state theory in terms of quantum
mechanical resonance theory. :

We discussed the implications of the O + H, reaction’s multiple bottleneck regions
in terms of variational and supernumerary transition states. We related the observed fea-
tures to the scattering results for asymmetrical Eckart potentials. We emphasized that
global control is maintained to very high energy (1.9 eV) and very high levels of v,. We
demonstrated the influence of quantized transition states at the level of state-selected
reaction probability for this reaction.

Next, using D + H, as an example, we showed that quantized transition state
spectra can be observed and analyzed even for very high total angular momenta, up to
15.

Using F + H, as an example, we discussed the correspondence of peaks in the
photoelectron spectrum of the negative ion of the transition state with individual quan-
tized transition states for J = 0—2. This system is very interesting in that the quantized
energy levels show an internal rotation progression, and the average transmission coef-
ficient is 0.95, with all transmission coefficients in the range 0.83-0.98. The ability to
assign transmission coefficients to individual levels of the quantized transition state is
one of the most remarkable developments of the theoretical analysis of accurate quantal
reaction probabilities to date. '

We also presented an analysis of halogen-hydrogen halide calculations. We dis-
cussed a formalism for probing the reaction at a finite time resolution by convoluting the
exact results with a Gaussian function. We demonstrated that quantized transition states
dominate the short time dynamics.

Accurate quantal dynamics calculations play important roles in predicting experi-
mentally observable rates, cross sections, and transition probabilities, in elucidating and
uncovering quantal phenomena, and in testing approximate dynamics calculations and
models. The implementation of quantum mechanical scattering theory for quantal dy-
namics calculations on bimolecular collisions has become increasingly practical in recent
years, especially for reactive collisions (8,12,77,96,101,102,164,166,167,192—220). The
use of accurate quantum calculations for transition state spectroscopy, as reviewed in this
chapter, provides an especially clear-cut example of where the calculations help us un-
cover fundamental quantum structures in nature that have a very significant impact even
on highly averaged rate phenomena.

ACKNOWLEDGMENTS -

The authors are grateful to Yuri Volobuev for participation in early stages of the DH,
analysis and to Professor Ken Leopold for helpful discussions. The quantum mechanical
scattering calculations were supported in part by the National Science Foundation. The
variational transition state theory calculations were supported in part by the U.S. De-
partment of Energy, Office of Basic Energy Sciences.

REFERENCES

1. M. M. Kreevoy and D. G. Truhlar, Transition state theory, Investigation of Rates and Mech-
anisms of Reactions (C. F. Bernasconi, ed.) [Techniques of Chemistry, 4th ed., A. Weiss-
berger (ed.)], John Wiley & Sons, New York, 1986, Part I, pp. 13-95.



376

W

10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

24.

Chatfield et al.

G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules [Molec-
ular Spectra and Molecular Structure, Vol. lII], Van Nostrand Reinhold, New York, 1966,
pp.. 458ff. ‘

A. Bohm, Quantum Mechanics, 3rd ed., Springer-Verlag, New York, 1993, pp. 452-569.
J. Simons, Roles played by metastable states in chemisry, ACS Symp. Ser. 263: 3 (1984).
Resonances, E. Brindas and N. Elander (eds.) [Lecture Notes in Physics, Vol. 325), Springer-
Verlag, Berlin, 1989.

P. D. Kleiber, A. M. Lyyra, K. M. Sando, V. Zafiropulos, and W. C. Stwalley, Reactive col-
lision dynamics by far wing laser scattering: Mg + Hy, J. Chem. Phys. 85: 5493 (1986).
J. C. Polanyi, M. G. Prisant, and J. S. Wright, Spectroscopy of the transition state (theory).
4. Absorption by HFH* in H + FH' — HFH* — HF + H', J. Phys. Chem. 91: 4727 (1987).
D. C. Chatfield, R. S. Friedman, D. G. Truhlar, B. C. Garrett, and D. W. Schwenke, Global
control of suprathreshold reactivity by quantized transition states, J. Am. Chem. Soc. 113:
486 (1991).

D. C. Chatfield, R. S. Friedman, D. G. Trublar, and D. W. Schwenke, Quantum-dynamical
characterization of reactive transition states, Faraday Discuss. Chem. Soc. 91: 289 (1991).
D. C. Chatfield, R. S. Friedman, G. C. Lynch, and D. G. Truhlar, Discussion remarks, Far-
aday Discuss. Chem. Soc. 91: 398 (1991).

D. C. Chatfield, R. S. Friedman, G. C. Lynch, and D. G. Truhlar, Quantized transition-state
structure in the cumulative reaction probabilities for the C1 + HCIL, I + HI and I + DI
reactions, J. Phys. Chem. 96: 57 (1992).

K. Haug, D. W. Schwenke, D. G. Truhlar, Y. Zhang, J. Z. H. Zhang, and D. J. Kouri, Ac-
curate quantum mechanical reaction probabilities for the reaction O + H, — OH + H, J.
Chem. Phys. 87: 1892 (1987). '

J. M. Bowman, Comparison of reduced dimensionality and accurate cumulative reaction
probabilities for OCP) + H, (v = 0, 1), Chem. Phys. Lett. 141: 545 (1987).

D. C. Chatfield, R.S. Friedman, G. C. Lynch, D. G. Truhlar, and D. W. Schwenke, The
nature and role of quantized transition states in the accurate quantum dynamics of the
reaction O + H, — OH + H, J. Chem. Phys. 98: 342 (1993).

G. C. Lynch, P. Halvick, M. Zhao, D. G. Truhlar, C.-H. Yu, D.J. Kouri, and D. W.
Schwenke, Converged three-dimensional quantum mechanical reaction probabilities for the
F + H, reaction on a potential energy surface with realistic entrance and exit channels and
comparisons to results for three other surfaces, J. Chem. Phys. 94: 7150 (1991).

D. C. Chatfield, R. S. Friedman, D. W. Schwenke, and D. G. Truhlar, Control of chemical
reactivity of quantized transition states, J. Phys. Chem. 96: 2414 (1992).

G. C. Schatz, A three dimensional reactive scattering study of the photodetachment spectrum
of CIHCI™, J. Chem. Phys. 90: 3582 (1989).

G. C. Schatz, A three-dimensional quantum reactive scattering study of the I + HI reaction
and of the IHI™ photodetachment spectrum, .J. Chem. Phys. 90: 4847 (1989).

G. C. Schatz, A three-dimensional quantum reactive scattering study of the I + DI reaction
and of the IDI™ photodetachment spectrum, J. Chem. Soc. Faraday Trans. 86: 1729 (1990).
B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Classical mechanical
theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem. 83:
1052 (1979). Errata: 83: 3058 (1979): 87: 4553 (1983). -

R. A. Marcus, Chemical-reaction cross sections, quasiequilibrium, and generalized activated
complexes, J. Chem. Phys. 45: 2138 (1966).

F. T. Smith, Scattering matrix and chemical reaction rates, J. Chem. Phys. 36: 248 (1962).
W. H. Miller, Semiclassical limit of quantum mechanical transition state theory for nonsep-
arable systems, J. Chem. Phys. 62: 1899 (1975).

E. Wigner, Calculation of the rate of elementary association reactions, J. Chem. Phys. 5:
720 (1937).



&

Computational Spectroscopy of the Transition State 377

25.

26.
27.

28.
29.
30.
31.

32.

33.

34.
35.

36.
37.
38.
39.
'40.

41.
42.

43.

45.
46.

47.

J. Horiuti, On the statistical mechanical treatment of the absolute rate of chemical reaction,
Bull. Chem. Soc. Japan 13: 210 (1938).

J. C. Keck, Variational theory of reaction rates, Adv. Chem. Phys. 13: 85 (1967).

D. G. Trublar and B. C. Garrett, Variational transition state theory, Annu. Rev. Phys. Chem.
35: 159 (1984).

S. C. Tucker and D. G. Truhlar, Dynamical formulation of transition state theory: Variational
transition states and semiclassical tunneling, New Theoretical Concepts for Understanding
Organic Reactions (J. Bertrdn and 1. G. Csizmadia, Eds.), Kluwer, Dordrecht, 1989, p. 291.
H. Eyring, The activated complex in chemical reactions, J. Chem. Phys. 3: 107 (1935).

R. A. Marcus and O. K. Rice, The kinetics of the recombination of methy! radicals and
iodine atoms, J. Phys. Colloid Chem. 55: 894 (1951).

R. A. Marcus, Unimolecular dissociations and free radical recombination reactions, J. Chem.
Phys. 20: 359 (1952).

H. M. Rosenstock, M. B. Wallenstein, A. L. Wahrhaftig, and H. Eyring, Absolute rate theory
for isolated systems and the mass spectra of polyatomic molecules, Proc. Natl. Acad. Sci.
USA 38: 667 (1952).

J. L. Magee, Theory of the chemical reaction rate constant, Proc. Natl. Acad. Sci. U.S.A.
38: 764 (1952). .
B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Quantum effects for
collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules,
J. Phys. Chem. 83: 1079 (1979); Errata: 84: 682 (1980); 87: 4553 (1983).

D. G. Truhlar, A. D. Isaacson, and B. C. Garrett, Generalized transition state theory, Theory
of Chemical Reaction Dynamics (M. Baer, ed.), CRC Press, Boca Raton, FL, 1985, Vol. 4,
p- 65.

E. C. Kemble, The Fundamental Principles of Quantum Mechanics with Elementary Appli-
cations, Dover, New York, 1958, p. 109.

J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, Redwood City, CA, 1985, pp.
78-80. ‘

W. H. Miller, Quantum mechanical transition state theory and a new semiclassical model
for reaction rate constants, J. Chem. Phys. 61: 1823 (1974).

J. W. Tromp and W. H. Miller, New approach to quantum mechanical transition-state theory,
J. Phys. Chem. 90: 3482 (1986). '

J. W. Tromp and W. H. Miller, The reactive flux correlation function for collision reactions
H + H,, Cl + HC], and F + H,, Faraday Discuss. Chem. Soc. 84: 441 (1987).

P.N. Day and D. G. Truhlar, Benchmark calculation of thermal reaction rates. II. Direct
calculation of the flux autocorrelation function for a canonical ensemble, J. Chem. Phys.
94: 2045 (1991).

P.N. Day and D. G. Truhlar, Calculation of thermal rate coefficients from the quantum flux
autocorrelation function: Converged results and variational quantum transition state theory
for O + HD ~ OD + H and O + HD — OH + D, J. Chem. Phys. 95: 5097 (1991).
E.J. Heller, Potential surfaces properties and dynamics from molecular spectra: A time-
dependent picture, Potential Energy Surfaces and Dynamics Calculations (D. G. Truhlar,
ed.), Plenum Press, New York, 1981, p. 103.

M. J. Seaton, The Hartree-Fock equations for continuous states with applications to electron
excitation of the ground configuration terms of O,, Philos, Trans. Roy. Soc. London A 245:
469 (1953).

H. S. W. Massey, Theory of the scattering of slow electrons, Rev. Mod. Phys. 28: 199 (1956).
D. A. Micha, A quantum mechanical model for simple molecular reactions, Arkiv. Fys. 30:
411 (1965).

W. H. Miller, Coupled equations and the minimum principle for collisions of an atom and
a diatomic molecule, including rearrangements, J. Chem. Phys. 50: 407 (1969).



378

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Chatfield et al.

D. G. Truhlar, J. Abdallah, Jr., and R. L. Smith, Algebraic variational methods in scattering
theory, Adv. Chem. Phys. 25: 211 (1974).

D. G. Truhlar and J. Abdallah, Jr., New methods for calculating scattering cross sections for
rearrangement collisions, Phys. Rev. A 9: 297 (1974).

R. G. Newton, Scattering Theory of Particles and Waves, 2nd ed., Springer-Verlag, New
York, 1982 (Section 11.3, variational principles; Section 11.2, resonances as poles of the §
matrix).

G. Staszewska and D. G. Truhlar, Convergence of £* methods for scattering problems, J.
Chem. Phys. 86: 2793 (1987).

D. W. Schwenke, K. Haug, D. G. Truhlar, Y. Sun, J. Z. H. Zhang, and D. J. Kouri, Variational
basis-set calculations of accurate quantum mechanical reaction probabilities, J. Phys. Chem.
91: 6080 (1987).

D. W. Schwenke, K. Haug, M. Zhao, D. G. Truhlar, Y. Sun, J. Z. H. Zhang, and D. J. Kouri,
Quantum mechanical algebraic variational methods for inelastic and reactive molecular col-
lisions, J. Phys. Chem. 92: 3202 (1988).

D. W. Schwenke, M. Mladenovic, M. Zhao, D. G. Truhlar, Y. Sun, and D.J. Kouri, Com-
putational strategies and improvements in the linear algebraic variational approach to rear-
rangement scattering, Supercomputer Algorithms for Reactivity Dynamics and Kinetics of
Small Molecules (A. Lagana, ed.), Kluwer, Dordrecht, 1989, p. 131.

L. Schlessinger, Use of analyticity in the calculation of nonrelativistic scattering amplitudes,
Phys. Rev. 167: 1411 (1968).

Y. Sun, D. J. Kouri, D. G. Truhlar, and D. W. Schwenke, Dynamlcal basis sets for algebraic
variational calculations in quantum-mechanical scattering theory, Phys. Rev. A 41: 4857
(1990).

Y. Sun, D. J. Kouri, and D. G. Truhlar, A comparative analysis of variational methods for
inelastic and reactive scattering, Nucl. Phys. A508: 41c (1990).

D. W. Schwenke, S.L. Mielke, and D. G. Truhlar, Variational reactive scattering calcula-
tions: computational optimization strategics, Theor. Chim. Acta 79: 241 (1991).

J. Z. H. Zhang, D.J. Kouri, K. Haug, D. W. Schwenke, Y. Shima, and D. G. Truhlar, ¥>
amplitude density method for multichannel inelastic and rearrangement collisions, J. Chem.
Phys. 88: 2492 (1988).

D. W. Schwenke and D. G. Truhlar, Localized basis functions and other computatlonal im-
provements in variational nonorthogonal basis function methods for quantum mechanical
scattering problems involving chemical reactions, Computing Methods in Applied Sciences
and Engineering (R. Glowinski and A. Lichnewsky, Eds.), SIAM, Philadelphia, 1990, p.
291.

S. L. Mielke, D. G. Truhlar, and D. W. Schwenke, Improved techniques for outgoing wave
variational principle calculations of converged state-to-state transition probabilities for chem-
ical reactions, J. Chem. Phys. 95: 5930 (1991).

G.J. Tawa, S. L. Mielke, D. G. Truhlar, and D. W. Schwenke, Algebraic variational and
propagation formalisms for quantal dynamics calculations of electronic-to-vibrational, ro-
tational energy transfer and application to the quenching of the 3p state of sodium by
hydrogen molecules, J. Chem. Phys. 100: 5751 (1994). -
G.J. Tawa, S. L. Mielke, D. G. Truhlar, and D. W. Schwenke, Linear algebraic formulation
of reactive scattering with general basis functions, Advances in Molecular Vibrations and
Collision Dynamics, Vol. 2B (J. M. Bowman, ed.), JAI, Greenwich, CT, 1994, p. 45.

S. L. Mielke, G. C. Lynch, D. G. Truhlar, and D. W. Schwenke, Ab initio chemical kinetics:
Converged quantal rate constants for the D + H, systems, J. Phys. Chem. 98: 8000 (1994).
A.J. C. Varandas, F. B. Brown, C. A. Mead, D. G. Truhlar, and N. C. Blais, A double many-
body expansion of the two lowest-energy potential surfaces and nonadiabatic coupling for
H,, J. Chem. Phys. 86: 6258 (1987).



Computational Spectroscopy of the Transition State ' 379

66.
67.
68.
69.
70.

71.

72.
73.

74.

75.

76.

77.

78.

79.
" 80.
81.
82.
83.
84.
85.
86.
87.
88.

89.

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules [Molecular Spectra and
Molecular Structure, Vol. II], Van Nostrand Reinhold, New York, 1945, pp. 15, 75, 205.
M. A. Eliason and J. O. Hirschfelder, General collision theory treatment for the rate of gas
phase reactions, J. Chem. Phys. 30: 1426 (1959).

L. Hofacker, Quantentheorie chemischer Reaktionen, Z. Naturforsch. 18a: 607 (1963).

D. G. Truhlar, The adiabatic theory of chemical reactions, J. Chem. Phys. 53: 2041 (1970).
D. G. Truhlar and A. Kuppermann, Exact tunneling calculations, J. Amer. Chem. Soc. 93:
1840 (1971).

B. C. Garrett, D. G. Truhiar, R. S. Grev, and A. W. Magnuson, Improved treatment of thresh-
old contributions in variational transition-state theory, J. Phys. Chem. 84: 1730 (1980).
Erratum: 87: 4554 (1983).

R. A. Marcus, On the analytical mechanics of chemical reactions. Quantum mechanics of
linear collisions, J. Chem. Phys. 45: 4493 (1965).

R. A. Marcus, Analytical mechanics and almost vibrationally-adiabatic chemlcal reactions,
Discussions Faraday Soc. 44: 7 (1967).

B. C. Garrett and D. G. Truhlar, WKB approximation for the reaction-path Hamiltonian:
Application to variational transition state theory, vibrationally adiabatic excited-state barrier
heights, and resonance calculations, J. Chem. Phys. 81: 309 (1984).

D. G. Truhlar, Oscillators with quartic anharmonicity: Approximate energy levels, J. Molec.

Spec. 38: 4151 (1971).

B. C. Garrett and D. G. Truhlar, Generalized transition state theory calculations for the re-
actions D + H, and H + D, using an accurate potential energy surface: Explanation of the
kinetic isotope effect, J. Chem. Phys. 72: 3460 (1980).

G. C. Lynch, P. Halvick, D. G. Truhlar, B. C. Garrett, D. W. Schwenke, and D. J. Kouri,
Semiclassical and quantum mechanical calculations of isotopic kinetic branching ratios for
the reaction of OCP) with HD, Zeitschrift fiir Naturforschung 44a: 427 (1989).

B. C. Garrett, D. G. Truhlar, A.J. C. Varandas, and N. C. Blais, Semiclassical variational
transition state calculations for the reactions of H and D with thermal and vibrationally
excited H,, Int. J. Chem. Kin. 18: 1065 (1986).

R. D. Levine and S.-F. Wu, Resonances in reactive collisions: Computational study of the
H + H, collision, Chem. Phys. Lest. 11: 557 (1971).

. N. Abu-Salbi, D. J. Kouri, M. Baer, and E. Pollak, A study of the quantal time delay matrix

in collinear reactive scattering, J. Chem. Phys. 82: 4500 (1985).

E. Pollak, Periodic orbit analysis of bend level structure of resonances in 3D H + H, reactive
scattering, Chem. Phys. Lett. 137: 171 (1987).

O. Atabek, R. Lefebvre, M. Garcia Sucre, J. Gomez-Llorente, and H. Taylor, Quantum
localizations over a potential barrier, Int. J. Quant. Chem. 40: 211 (1991).

R. S. Friedman and D. G. Truhlar, Chemical reaction thresholds are resonances, Chem. Phys.”~
Lert. 183: 539 (1991).

R.S. Friedman, V.D. Hullinger, and D. G. Truhlar, Quantum mechanical threshold reso-
nances for unsymmetric potential energy barriers, J. Phys. Chem. 99: 3184 (1995).

A.J.F. Siegert, On the derivation of the dispersion formula for nuclear reactions, Phys. Rev.
56: 750 (1939).

1. R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, Krieger,
Malabar, Florida, 1983, p. 407.

M. Zhao and S. A. Rice, Resonance state approach to quantum transition state theory, J.
Phys. Chem. 98: 3444 (1994).

D. G. Truhlar and B. C. Garrett, Resonance state approach to quantum mechanical varia-
tional transition state theory, J. Phys. Chem. 96: 6515 (1992).

W. H. Miller, R. Hernandez, N. C. Handy, D. Jayatilaka, and A. Willetts, Ab initio calcu-
lation of anharmonic constants for a transition state, with application to semiclassical tran-
sition state tunneling probabilities, Chem. Phys. Lett. 172: 62 (1990).



90.

91.
92.
93.
9%4.

9s.

9.
97.
98.
9.
" 100.
101.

102.

103.

104.
10s.

106.

107.
108.

109.
110.

111.

Chatfield et al.

M. J. Cohen, N. C. Handy, R. Hernandez, and W. H. Miller, Cumulative reaction probabil-
ities for H + H, — H, + H from a knowledge of the anharmonic force field, Chem. Phys.
Lert. 192: 407 (1992).

H. Feshbach, The unified theory of nuclear reactions. IIl. Overlapping resonances, Ann.
Phys. (N.Y.) 43: 410 (1967).

H. Feshbach, Theoretical Nuclear Physics: Nuclear Reactions, John Wiley & Sons, New
York, 1992, pp. 164-169, 211213, 248~249.

T. Siedeman and W. H. Miller, Transition state theory, Siegert eigenstates, and quantum
mechanical rates, J. Chem. Phys. 95: 1768 (1991).

V. Ryaboy and N. Moiseyev, Cumulative reaction probability from Siegert eigenvalues:
Model Studies, J. Chem. Phys. 98: 9618 (1993).

A. Kuppermann, Reactive scattering resonances and their physical interpretation: The vi-
brational structure of the transition state, Potential Energy Surfaces and Dynamics Calcu-
lations (D. G. Truhlar, ed.), Plenum, New York, 1981, p. 375.

S. A. Cuccaro, P. G. Hipes, and A. Kuppermann, Symmetry analysis of accurate H + H,
resonances for low partial waves, Chem. Phys. Lett. 157: 440 (1989).

F. T. Smith, Lifetime matrix in collision theory, Phys. Rev. 118: 349 (1960).

T. Seideman and W. H. Miller, Quantum mechanical reaction probabilities via a discrete
variable representation-absorbing boundary condition Green’s function, J. Chem. Phys. 97:
2499 (1992). i

W. H. Miller, Beyond transition-state theory: A rigorous quantum theory of chemical reac-
tion rates, Acc. Chem. Res. 26: 174 (1993).

U. Manthe and W. H. Miller, The cumulative reaction probability as eigenvalue problem, J.
Chem. Phys. 99: 3411 (1993).

D. C. Chatfield, D. G. Truhlar, and D. W. Schwenke, Benchmark calculations of thermal
reaction rates. I. Quantal scattering theory, J. Chem. Phys. 94: 2040 (1991).

J. Z. H. Zhang, Y. Zhang, D. J. Kouri, B. C. Garrett, K. Haug, D. W. Schwenke, and D. G.
Truhlar, £ Calculations of accurate quantal-dynamical reactive scattering transition prob-
abilities and their use to test semiclassical applications, Faraday Discuss. Chem. Soc. 84:
3711 (1987).

Y. Sun, C.h. Yu, D.J. Kouri, D. W. Schwenke, P. Halvick, M. Mladenovic, and D. G.
Truhlar, Direct calculition of the reactive transition matrix by $> quantum mechanical vari-
ational methods with complex boundary conditions, J. Chem. Phys. 91: 1643 (1989).

B. R. Johnson and N. W. Winter, Classical trajectory study of the effect of vibrational energy
on the reaction of molecular hydrogen with atomic oxygen, J. Chem. Phys. 66: 4116 (1977).
G. C. Schatz, A coupled states distorted wave study of the OC’P) + H,(D,, HD, DH)
reaction, J. Chem. Phys. 83: 5677 (1985).

D. G. Truhlar, K. Runge, and B. C. Garrett, Variational transition state theory and tunneling
calculations of potential energy surface effects on the reaction of O(°P) with H,, Twentieth
Symposium (International) on Combustion, Combustion Institute, Pittsburgh, 1984, p. 585.
B. C. Garrett and D. G. Truhlar, Thermal and state-selected rate constant calculations for
O(’P) + H, — OH + H and isotopic analogs, Int. J. Quantum Chem. 29: 1463 (1986). -
T. Joseph, D. G. Truhlar, and B.C. Garrett, Improved potential energy surfaces for the -
reaction OC’P) + H, — OH + H, J. Chem. Phys. 88: 6982 (1988). -
J.M. Bowman and A.F. Wagner, Reduced dimensionality theories of Quantum reactive
scattering: Applications to Mu + H,, H + H,, OCP) + H,, D,, and HD, The Theory of
Chemical Reaction Dynamics (D. C. Clary, ed.), Reidel, Dordrecht, 1986, p. 47.

B. C. Garrett, D. G. Truhlar, J. M. Bowman, and A. F. Wagner, Evaluation of dynamical
approximations for calculating the effect of vibrational excitation on reaction rates. O +
H, (n =0, 1) < OH + H, J. Phys. Chem. 90: 4305 (1986).

R.D. Levine, Radiationless transitions and population inversions: Two examples of internal
conversions, Chem. Phys. Lett. 10: 510 (1971).



Computational Spectroscopy of the Transition State 381

112.

113.

114.

115.

116.

117.

118.
116.

120.

121.

122

123.-

124

125.

126.

127.

128.

129.

130.

131

132.

J. W. Duff and D. G. Truhlar, Effect of curvature of the reaction path on dynamic effects in
endothermic reactions and product energies in exothermic reactions, J. Chem. Phys. 62:
2477 (1975).

D. G. Truhlar and D. A. Dixon, Direct-mode chemical reactions: Classical theories, Atom-
Molecule Collision Theory (R. B. Bernstein, ed.), Plenum, New York, 1979, p. 595.

B. Liu, Ab initio potential energy surface for linear H;, J. Chem. Phys. 58: 1925 (1973).
P. Siegbahn and ‘B. Liu, An accurate three-dimensional potential energy surface for Hj, J.
Chem. Phys. 68: 2457 (1978).

D. G. Truhlar and C. J. Horowitz, Functional representation of Liu and Siegbahn’s ab initio
potential energy calculations for H + H,, J. Chem. Phys. 68: 2466 (1978). Erratum: 71:
1514 (1979).

J. V. Michael and J. R. Fisher, Rate constants for the reaction D + H, — HD + H over the
temperature range 655-1979 K, by the flash photolysis-shock tube technique, J. Phys.
Chem. 94: 3318 (1990) and references therein.

D. G. Truhlar and R. E. Wyatt, History of H; kinetics, Annu. Rev. Phys. Chem. 27: 1 (1976).
S.-E. Wu, B. R. Johnson, and R. D. Levine, Quantum mechanical computational studies of
chemical reactions: III. Collinear A + BC reaction with some model potential energy sur-
faces, Mol. Phys. 25: 839 (1973).

T. C. Thompson and D. G. Truhlar, Stabilization calculations and probability densities for
the well-studied collisional resonances in collinear F + H,, F + HD, and F + D,, J. Phys.
Chem. 88: 210 (1984).

C. C. Marston and R. E. Wyatt, Resonant quasi-periodic and periodic orbits for the three-di-
mensional reaction of fluorine atoms with hydrogen molecules, ACS Symp. Ser. 263: 441 (1984).
Z.H. Zhang, N. Abusalbi, M. Baer, D.J. Kouri, and J. Jellinek, Resonance phenomena in
quantal reactive infinite-order sudden calculations, ACS Symp. Ser. 263: 457 (1984).

D. M. Neumark, A. M. Wodtke, G. N. Robinson, C. C. Hayden, and Y. T. Lee, Dynamic
resonances in the reaction of fluorine atoms with hydrogen molecules, ACS Symp. Ser. 263:
479 (1984).

E.F. Hayes and R. B. Walker, Reactive resonances and angular distributions in the rotating
linear model, ACS Symp. Ser. 263: 493 (1984).

D. M. Neumark, A. M. Wodtke, G. N. Robinson, C. C. Hayden, and Y. T. Lee, Molecular
beam studies of the F + H, reaction, J. Chem. Phys. 82, 3045 (1985).

S. L. Mielke, G. C. Lynch, D. G. Truhlar, and D. W. Schwenke, A more accurate potential
energy surface and quantum mechanical cross section calculations for the F + H, reaction,
Chem. Phys. Lett. 213: 10 (1993). Erratum: 217: 173 (1994).

R. Steckler, D. W. Schwenke, F. B. Brown, and D. G. Truhlar, An improved calculation of
the transition state for the F + H, reaction, Chem. Phys. Lett. 121: 475 (1985).

D. W. Schwenke, R. Steckler, F. B. Brown, and D. G. Truhlar, The potential energy surface
for the F + H, reaction as a function of bond angle in the saddle point vicinity, J. Chem.
Phys. 84: 5706 (1986).

G. C. Lynch, R. Steckler, D. W. Schwenke, A. J. C. Varandas, D. G. Truhlar, and B. C. Gar-
rett, Use of scaled external correlation, a double many-body expansion, and variational
transition state theory to calibrate a potential energy surface for FH,, J. Chem. Phys. 94:
7136 (1991).

C. W. Bauschlicher, S.P. Walch, S. R. Langhoff, P. R. Taylor, and R. L. Jaffe, Theoretical
studies of the potential surface for the F + H, — HF + H reaction, J. Chem. Phys. 88:
1743 (1988).

P.J. Knowles, K. Stark, and H. J. Werner, A full-CI study of the energetics of the reaction
F + H, — HF + H, Chem. Phys. Lett. 185: 555 (1991).

C.h. Yu, Y. Sun, D.J. Kouri, P. Halvick, D. G. Truhlar, and D. W. Schwenke, Converged
quantum dynamics calculations for the F + H, reaction on the well-studied M5 potential-
energy surface, J. Chem. Phys. 90: 7608 (1989).



382

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144,

145.

146.

147.

148.

149.

150.

151.

152.

Chatfield et al.

A. Weaver and D. M. Neumark, Negative-ion photodetachment as a probe of bimolecular
transition states: The F + H, reaction, Faraday Discuss. Chem. Soc. 91: 5 (1991).

S. E. Bradforth, D. W. Arnold, D. M. Neumark, and D. E. Manolopoulos, Experimental and
theoretical studies of the F + H, transition state region via photoelectron spectroscopy of
FH;, J. Chem. Phys. 99: 6345 (1993).

D. E. Manolopoulos, K. Stark, H. J. Werner, D. W. Arnold, S. E. Bradforth, and D. M. Neu-
mark, The transition state of the F + H, reaction, Science 262: 1852 (1993).

J.D. Kress and E. F. Hayes, Assignment of peaks in photodetachment spectra using pre-
dicted densities of reactive states: Applications to H,F~ and D,F~, J. Chem. Phys. 97: 4881
(1992).

A. M. Arthurs and A. Dalgarno, The theory of scattering by a rigid rotator, Proc. Roy. Soc.
Lond. A156: 540 (1960).

S. Bratoz and M. L. Martin, Infrared spectra of highly compressed gas mixtures of the type
HCl + X. A theoretical study, J. Chem. Phys. 42: 1051 (1965).

S. V. O’Neil, D. J. Nesbitt, P. Rosmus, H. J. Werner, and D. C. Clary, Weakly bound NeHF,
J. Chem. Phys. 91: 711 (1989).

D. J. Nesbitt, C. M. Lovejoy, T. G. Lindeman, S. V. O’Neil, and D. C. Clary, Slit jet infrared
spectroscopy of NeHF complexes: Internal rotor and J-dependent predissociation dynamics,
J. Chem. Phys. 91: 722 (1989).

D. W. Schwenke, On the computational of ro-vibrational energy levels of triatomic mole-
cules, Comp. Phys. Commun. 70: 1 (1992).

B. C. Garrett, D. G. Truhlar, R. S. Grev, A. W. Magnuson, and J. N. L. Connor, Variational
transition state theory, vibrationally adiabatic transmission coefficients, and the unified sta-
tistical model tested against accurate quantal rate constants for collinear F + H,, H + F,,
and isotopic analogs, J. Chem. Phys. 73: 1721 (1980).

D. G. Truhlar, W. L. Hase, and J. T. Hynes, Current status of transition-state theory, J. Phys.
Chem. 87. 2664 (1983). Additions and corrections: 87: 5523 (1983).

D. G. Truhlar and B. C. Garrett, Dynamical bottlenecks and semiclassical tunneling paths
for chemical reactions, J. Chim. Phys. 84: 365 (1987).

G. C. Lynch, D. G. Truhlar, and B. C. Garrett, Test of the accuracy of small-curvature and
minimum-—energy reference paths for parameterizing the search for least—action tunneling
paths: (H,D) + H'Br — (H,D)Br + H’, J. Chem. Phy. 90: 3102 (1989). Erratum: 91: 3280
(1989).

B. C. Garrett and D. G. Truhlar, Critical tests of variational transition state theory and semi-
classical tunneling methods for hydrogen and deuterium atom transfer reactions and use of
the semiclassical calculations to interpret the overbarrier and tunneling dynamics, J. Phys.
Chem. 95: 10374 (1991).

D. G. Truhlar and B. C. Garrett, General discussion, Faraday Discuss. Chem. Soc. 84: 465
(1987).

J. A. Kaye and A. Kuppermann, Collinear quantum mechanical properties for the I + HI
— IH + H reaction using hyperspherical coordinates, Chem. Phys. Lett. 77: 573 (1981).
V. K. Babamov and R. A. Marcus, Dynamics of hydrogen atom and proton transfer reaction.
Symmetric case, J. Chem. Phys. 74: 1790 (1981).

J. Manz and J. Rémelt, On the collinear I + HI and I + Mul reactions, Chem. Phys. Lett.
81: 179 (1981).

D. K. Bondi, J. N. L. Connor, B. C. Garrett, and D. G. Truhlar, Test of variational transition
state theory with a large-curvature tunneling approximation against accurate quantal reaction
probabilities and rate coefficients for three collinear reactions with large reaction—path cur-
vature: Cl + HCI, Cl + DCIl, and Cl + MuCl, J. Chem. Phys. 78: 5981 (1983).

D. K. Bondi, J.N. L. Connor, J. Manz, and J. Rémelt, Exact quantum and vibrationally
adiabatic quantum semiclassical and quasiclassical study of the collinear reactions Cl +
MuCl, Cl + HCI, Cl + DCI, Mol. Phys. 50. 467 (1983).



Computational Spectroscopy of the Transition State 383

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

- 171,

172

D. G. Truhlar, B. C. Garrett, P. G. Hipes, and A. Kuppermann, Test of variational transition
state theory against accurate quantal results for a reaction with very large reactxon path
curvature and a low barrier, J. Chem. Phys. 81: 3542 (1984).

J. Manz, Molecular dynamics along hyperspherical coordinates, Comm. At. Mol. Phys. 17:
91 (1985).

J. Romelt, Calculations on collinear reactions using hyperspherical coordinates, Theory of
Chemical Reaction Dynamics (D. C. Clary, ed.), Reidel, Dordrecht, 1986, p. 77.

J. M. Bowman and B. Gazdy, A reduced dimensionality £? simulation of the photodetach-
ment spectra of CIHC1™ and IHI", J. Phys. Chem. 93: 5129 (1989).

G. C. Schatz, D. Sokolovski, and J. N. L. Connor, Influence of transition state resonances
on integral cross sections and product rovibrational distributions for the Cl + HCl — CIH
+ Cl reaction, J. Chem. Phys. 94: 4311 (1991).

R. B. Metz and D. M. Neumark, Adiabatic three-dimensional simulations of the [HI", BrHI ",
and BrHBr™ photoelectron spectra, J. Chem. Phys. 97: 962 (1992).

M.J. Cohen, A. Willetts, and N. C. Handy, Cumulative reaction probabilities for OH +
H, = H,0 + Hand CIH + Cl — Cl + HCI from a knowledge of the anharmonic force
field, J. Chem. Phys. 99: 5885 (1993).

A. Weaver, R. B. Metz, S. E. Bradforth, and D. M. Neumark, Spectroscopy of the I + HI
transition-state region by photodetachment of IHI™, J. Phys. Chem. 92: 5558 (1988).

R. B. Metz, T. Kitsopoulos, A. Weaver, and D. M. Neumark, Study of the transition state
region in the Cl + HCI reaction by photoelectron spectroscopy of CIHCI™, J. Chem. Phys.
88: 1463 (1988). '

R. B. Metz, A. Weaver, S. E. Bradforth, T. N. Kitsopoulos, and D. M. Neumark, Probing
the transition state with negative ion photodetachment: The C1 + HCI and Br + HBr
reactions, J. Phys. Chem. 94: 1377 (1990).

S. E. Bradforth, D. W. Arnold, R. B. Metz, A. Weaver, and D. M. Neumark, Spectroscopy
of the transition state: Hydrogen abstraction reactions of fluorine, J. Phys. Chem. 95: 8066
(1991).

Z. Darakjian, E. F. Hayes, G. A. Parker, E. A. Butcher, and J. D. Kress, Direct calculation
of collisional properties that require energy derivatives of the S matrix: Results for the
reaction He + Hy — HeH" + H J. Chem. Phys. 95: 2516 (1991). Erratum: 101: 9203
(1994).

S. K. Klippenstein and J. D. Kress, Comparison of variational Rice-Ramsperger-Kassel-Mar-
cus theory with quantum scattering theory for the He + H; — HeH* + H reaction, J.
Chem. Phys. 96: 8164 (1992).

R. T Pack, E. A. Butcher, and G. A. Parker, Accurate quantum probabilities and threshold
behavior of the H + O, combustion reaction, J. Chem. Phys. 99: 9310 (1993).

J.D. Kress, Accurate three-dimensional quantum cumulative reaction probabilities for
Ne + Hy — NeH" + H, J. Chem. Phys. 95: 8673 (1991).

J.D. Kress and S. J. Klippenstein, Comparison of variational RRKM theory with quantum
scattering theory for the Ne + H; — NeH" + H reaction, Chem. Phys. Lett. 195: 513
(1992).

J. D. Kress, R. B. Walker, E. F. Hayes, and P. Pendergast, Quantum scattering studies of
long-lived resonances for the Ne + H; — NeH" + H reaction, J. Chem. Phys. 100: 2728
(1994).

R. T Pack, E. A. Butcher, and G. A. Parker, Accurate three-dimensional quantum properties
and collision lifetimes of the H + O, combustion reaction, J. Chem. Phys. 102: 5998 (1995).
C. Leforestier and W. H. Miller, Quantum mechanical calculation of the rate constant for
the reaction H + O, — OH + O, J. Chem. Phys. 100: 733 (1994).

C. Y. Yang, S.J. Klippenstein, J. D. Kress, R. T Pack, G. A. Parker, and A. Lagana, Com-
parison of transition state theory with quantum scattering theory for the reaction Li + HF —
LiF + H, J. Chem. Phys. 100: 4917 (1994).

-



173.

174.
175.

176.

177.

178.

179.
180.

181.
182,
183.
184.

'185.

186.

187.

188.

189.
190.
191

192.

193.

Chatfield et al.

T. C. Allison, S. L. Mielke, G. C. Lyach, D. G. Truhlar, and M. S. Gordon, An improved
potential energy surface for the H,Cl system and its use for calculations of rate constants
and kinetic isotope effects, manuscript in preparation.

R. B. Metz, S. E. Bradforth, and D. M. Neumark, Transition state spectroscopy of bimolec-
ular reactions using negative ion photodetachment, Adv. Chem. Phys. 81: 1 (1992).

D. M. Neumark, Transition state spectroscopy of bimolecular chemical reactions, Annu. Rev.
Phys. Chem. 43: 153 (1992).

M. J. Davis, H. Koizumi, G. C. Schatz, S. E. Bradforth, and D. M. Neumark, Experimental
and theoretical study of the O + HCI transition state region by photodetachment of OHCI™,
J. Chem. Phys. 101: 4708 (1994).

D. W. Amold, C. Xu, and D. M. Neumark, Spectroscopy of the transition state: Elementary
reactions of the hydroxyl radical studied by photoelectron spectroscopy of O™(H,0O) and
H;0;, J. Chem. Phys. 102: 6088 (1995).

G. C. Schatz, Quantum theory of photodetachment spectra of tramsition states, J. Phys.
Chem. 94: 6157 (1990).

D. G. Truhlar, General discussion, Faraday Discuss. Chem. Soc. 91: 395 (1991).

E.R. Lovejoy, S.K. Kim, and C.B. Moore, Observation of transition-state vibrational
thresholds in the rate of dissociation of ketene, Science 256: 1541 (1992).

W. H. Green, Jr., C.B. Moore, and W. F. Polik, Transition states and rate constants for
unimolecular reactions, Annu. Rev. Phys. Chem. 43: 591 (1992).

E. R. Lovejoy and C. B. Moore, Structures in the energy dependence of the rate constant
of ketene isomerization, J. Chem. Phys. 98: 7846 (1993).

S.K. Kim, E. R. Lovejoy, and C. B. Moore, Transition state vibrational level thresholds for
the dissociation of triplet ketene, J. Chem. Phys. 102: 3202 (1995).

M. S. Child, Measurable consequences of a dip in the activation barrier for an adiabatic
chemical reaction, Mol. Phys. 12: 401 (1967).

B. C. Garrett, D. G. Truhlar, R. S. Grev, G. C. Schatz, and R. B. Walker, Reaction prob-
abilities, resonances, and thermal rate constants for the collinear reactions H + FH and D
+ FD on a low-barrier surface: Close-coupling and tunneling calculations, variational tran-
sition-state theory, and the unified statistical model, J. Phys. Chem. 85: 3806 (1981).

G. A. Brucker, S. 1. Ionov, Y. Chen, and C. Wittig, Time-resolved studies of NO, photoin-

- itiated unimolecular decomposition: step-like variation of k.(E), Chem. Phys. Lett. 194:

301 (1992).

. S. 1L Ionov, G. A. Brucker, C. Jaques, Y. Chen, and C. Wittig, Probing the NO, — NO + O

transition state via time resolved unimolecular decomposition, J. Chem. Phys. 99: 3420 (1993).
S. L Ionov, H. F. Davis, K. Mikhaylichenko, L. Valachovic, R. A. Beaudet, and C. Wittig,
The density of reactive levels in NO, unimolecular decomposition, J. Chem. Phys 101:
4809 (1994).

S.J. Klippenstein and T. Radivoyevitch, A theoretical study of the dissociation of NO,, J.
Chem. Phys. 99: 3644 (1993).

H. Katagiri and S. Kato, The spin-orbit effect on potential surfaces of NO, photodissociation,
J. Chem. Phys. 99: 8805 (1993).

Y. S. Chei, T. S. Kim, H. Petek, K. Yoshihara, and R. L. Christensen, Evidence for quanti-
zation of the transition state for cis-trans isomerization, J. Chem. Phys. 100: 9269 (1994).
K. Haug, D. W. Schwenke, Y. Shima, D. G Truhiar, J. Zhang, and D. J. Kouri, & solution
of the quantum mechanical reactive scattering problem. The threshold energy for D +
H,(v = 1) — HD + H, J. Phys. Chem. 90: 6757 (1986).

Y. C. Zhang, J. Z. H. Zhang, D.J. Kouri, K. Haug, D. W. Schwenke, and D. G. Truhlar,
Quantum mechanical calculations of vibrational population inversion in chemical reactions:
Numerically exact $*-amplitude-density study of the H,Br reactive system, Phys. Rev. Lett.
60: 2367 (1988).



Computational Spectroscopy of the Transition State 385

194..

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

M. Mladenovic, M. Zhao, D. G. Truhlar, D. W. Schwenke, Y. Sun, and D. J. Kouri, Effect
of orbital and rotational angular momentum averaging on branching ratios of dynamical
resonances in the reaction H + p-H, — 0-H, + H, Chem. Phys. Lett. 146: 358 (1988).
M. Mladenovic, M. Zhao, D. G. Truhlar, D. W. Schwenke, Y. Sun, and D. J. Kouri, Con-
verged quantum mechanical calculation of the product vibration-rotation state distribution
of the H + p-H, reaction, J. Phys. Chem. 92: 7035 (1988).

M. Zhao, M. Mladenovic, D. G. Truhlar, D. W. Schwenke, O. Sharafeddin, Y. Sun, and
D. J. Kouri, Spectroscopic analysis of transition state energy levels: Bending-rotational spec-
trum and lifetime analysis of H; quasibound states, J. Chem. Phys. 91: 5302 (1989).

M. Zhao, D. G. Truhlar, D. W. Schwenke, and D. J. Kouri, Effect of rotational excitation on
state-to-state differential cross sections: D + H, — HD + H, J. Phys. Chem. 94: 7074
(1990).

D. G. Truhlar, D. W. Schwenke, and D. J. Kouri, Quantum dynamics of chemical reactions
by converged algebraic variational calculations, J. Phys. Chem. 94: 7346 (1990).

S. L. Mielke, G.J. Tawa, D. G. Truhlar, and D. W. Schwenke, Quantum photochemistry.
Accurate quantum scattering calculations for an electronically nonadiabatic reaction, Chem.
Phys. Lett. 234: 57 (1995).

G. C. Schatz, Quantum reactive scattering using hyperspherical coordinates: Results for
H + H, and Cl + HCI, Chem. Phys. Lett. 150. 92 (1988). )
W. H. Miller, Recent advances in quantum mechanical reactive scattering theory, Including
comparison of recent experiments with rigorous calculations of state-to-state cross sections
for the H/D + H, — H,/HD + H reactions, Annu. Rev. Phys. Chem. 41: 245 (1990).
J.Z. H. Zhang, D. L. Yeager, and W. H. Miller, 3D quantum scattering calculations of the
reaction He -+ H; — HeH" + H for total angular momentum J = 0, Chem. Phys. Lett.
173: 489 (1990). )

J.Z.H. Zhang and W. H. Miller, Quantum reactive scattering via the S-matrix version of
the Kohn variational principle: Differential and integral cross sections for D + H, —
HD + H, J. Chem. Phys. 91: 1528 (1989).

U. Manthe, T. Seideman, and W. H. Miller, Full-dimensional quantum mechanical calcula-
tion of the rate constant for the H, + OH — H,0 + H reaction, J. Chem. Phys. 99: 10078
(1993).

U. Manthe, T. Seideman, and W. H. Miller, Quantum mechanical calculations of the rate
constant for the H, + OH — H + H,O0 reaction: Full-dimensional results and comparison
to reduced dimensionality models, J. Chem. Phys. 101: 4759 (1994).

J.D. Kress, Z. Bati¢, G. A. Parker, and R. T. Pack, Quantum effects in the F + H, —
.HF + H reaction. Accurate 3D calculations with a realistic potential energy surface, Chem.
Phys. Lett. 157: 484 (1989).

Y. S.M. Wu, A. Kuppermann, and B. Lepetit, Theoretical calculation of experimentally
observable consequences of the geometric phase on chemical reaction cross sections, Chem.
Phys. Lett. 186: 319 (1991). '

Y. S. M. Wu and A. Kuppermann, Prediction of the effect of the geometric phase on product
rotational state distributions and integral cross sections, Chem. Phys. Lett. 201: 178 (1993).
D. Neuhauser, M. Baer, R. S. Judson, and D.J. Kouri, Time dependent three-dimensional
body frame quantal wave packet treatment of the H + H, exchange reaction on the Liu-
Siegbahn-Truhlar-Horowitz (LSTH) surface, J. Chem. Phys. 90: 5882 (1989).

D. Neuhauser, R. S. Judson, R. L. Jaffe, M. Baer, and D.J. Kouri, Total integral reactive
cross sections for F + H, — HF + H: Comparison of converged quantum, quasiclassical
trajectory and experimental results, Chem. Phys. Lett. 176: 546 (1991).

M. Gilibert and M. Baer, Exchange processes via electronic nonadiabatic transitions: An
accurate three-dimensional quantum mechanical study of the F(°P,,,, °P;,) + H, reactive
systems, J. Phys. Chem. 98: 12822 (1994).



386

212.

213.

214.

215.

216.

217.

218.

219.

220.

Chatfield et al.

D. E. Manolopoulos and D. C. Clary, Quantum calculations on reactive collisions, Annu.
Rep. Prog. Chem. 86: 95 (1989).

D. E. Manolopoulos and R. E. Wyatt, H + H, (0, 0) — H,(+', j') + H integral cross sections
on the double many body expansion potential energy surface, J. Chem. Phys. 92: 810 (1990).
M. D’Mello, D. E. Manolopoulos, and R. E. Wyatt, Quantum dynamics of the H + D, —
D + HD reaction: comparison with experiment, J. Chem. Phys. 94: 5985 (1991).

J. M. Launay, Computation of cross sections for the F + H,(v = 0, j = 0) —= FH (v',j') +
H reaction by the hyperspherical method, Theor. Chim. Acta 79: 183 (1991).

J. M. Launay and S. B. Padkjaer, Quantum-dynamical study of the Cl + H, - CIH + H
reaction, Chem. Phys. Lett. 181: 95 (1991).

S. E. Branchett, S. B. Padkjaer, and J. M. Launay, Quantum dynamical study of the H +
HCl — H, + Cl reaction, Chem. Phys. Lett. 208: 523 (1993).

G. A. Parker, R. T. Pack, and A. Lagana, Accurate 3D quantum reactive probabilities of
Li + FH, Chem. Phys. Lett. 202: 75 (1993).

A. Lagana, R. T. Pack, and G. A. Parker, Li + FH reactive cross sections from J = 0 accurate
quantum reactivity, J. Chem. Phys. 99: 2269 (1993).

G. C. Schatz, Influence of atomic fine structure on bimolecular rate constants: The CI(*P) +
HCI reaction, J. Phys. Chem. 99: 7522 (1995).



