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Abstract This chapter reviews the theoretical background for continuum models of
solvation, recent advances in their implementation, and illustrative examples of their use.
Continuum models are the most efficient way to include condensed-phase effects into
quantum mechanical calculations, and this is typically accomplished by the using self-
consistent reaction field (SCRF) approach for the electrostatic component. This approach
does not automatically include the non-electrostatic component of solvation, and we review
various approaches for including that aspect. The performance of various models is
compared for a number of applications, with emphasis on heterocyclic tautomeric equilibria
because they have been the subject of the widest variety of studies. For nonequilibrium
applications, e.g., dynamics and spectroscopy, one must consider the various time scales
of the solvation process and the dynamical process under consideration, and the final
section of the review discusses these issues.
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CONTINUUM SOLVATION MODELS

1 Introduction

Accurate treatments of condensed-phase systems are particularly challenging for
theoretical chemistry. The primary reason that condensed-phase problems are
formidable is the intractability of solving the Schrédinger equation for large, non-
periodic systems. Although the nuclear degrees of freedom may be rendered
separable from the electronic ones by invocation of the Born-Oppenheimer
approximation, the electronic degrees of freedom remain far too numerous to be
handled practically, especially if a quantum mechanical approach is used without
compromise. Therefore it is very common to replace the quantal problem by a
classical one in which the electronic energy plus the coulombic interactions of the
nuclei, taken together, are modeled by a classical force field—this approach is
usually called molecular mechanics (MM). Another approach is to divide the
system into two parts: (1) the primary subsystem consisting of solute and perhaps
a few nearby solvent molecules and (2) the secondary subsystem consisting of the
rest. The primary subsystem might be treated by quantum mechanics to retain the
accuracy of that approach, whereas the secondary subsystem, for all practical
purposes, is treated by MM to reduce the computational complexity. Such hybrids
of quantum mechanics and classical mechanics, often abbreviated QM/MM, allow
the prediction of properties dependent on the quantal nature of the solute, which is
especially important for conformational equilibria dominated by stereoelectronic
effects, open shell systems, bond rearrangements, and spectroscopy. At the same
time, this approach permits the treatment of specific first-solvation-shell
interactions.

The QM/MM methodology [1-7] has seen increasing application [8-16]
and has been recently reviewed [17-19]. The classical solvent molecules may also
be assigned classical polarizability tensors, although this enhancement appears to
have been used to date only for simulations in which the solute is also represented
classically [20-30]. The treatment of the electronic problem, whether quantal,
classical, or hybrid, eventually leads to a potential energy surface governing the
nuclear coordinates.

The treatment of the nuclear coordinates also presents imposing
challenges. The potential energy hypersurface for a condensed-phase system has
numerous low-energy local minima. An accurate prediction of thermodynamic
and quasi-thermodynamic properties thus requires wide sampling of the 6N-
dimensional energy/momentum phase space, where N is the number of particles
[31, 32]. Both dynamical and probabilistic methods may be employed to
accomplish this sampling [33-44], but it can be difficult to converge [42, 45-50],
and it is expensive when long-range forces (e.g., Coulomb interactions) are
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significant [48, 51-54]. Often local minima in the hypersurface have steep
surrounding potentials due to intermolecular interactions or to solute molecules
having multiple conformations separated by significant barriers [48, 55]; such
situations are problematic for sampling approaches that are easily trapped in deep
potential wells. The (impractical) fully quantal approach, and the QM/MM and
fully MM methods that treat solvent molecules explicitly, share the disadvantage
that they all require efficient techniques for the sampling of phase space. For the
QM/MM and fully MM approaches, this sampling problem becomes the
computational bottleneck.

When structural and dynamical information about the solvent molecules
themselves is not of primary interest, the solute-solvent system may be made
simpler by modeling the secondary subsystem as an infinite (usually isotropic)
medium characterized by the same dielectric constant as the bulk solvent, i.e., a
dielectric continuum. In most applications the continuum may be thought of as a
configuration-averaged or time-averaged solvent environment, where the
averaging is Boltzmann weighted at the temperature of interest. The dielectric
continuum approach is thus also sometimes referred to as a “mean-field”
approach. The model includes polarization of the dielectric continuum by the
solute’s electric field; that polarization and the energetics of the solute-continuum
interaction are calculated by classical electrostatic formulas [56], in particular the
Poisson equation or the Poisson-Boltzmann equation, the latter finding use in
systems where the continuum is considered to have an ionic strength arising from
dissolved salts.

Continuum models remove the difficulties associated with the statistical
sampling of phase space, but they do so at the cost of losing molecular-level
detail. In most continuum models, dynamical properties associated with the
solvent and with solute-solvent interactions are replaced by equilibrium averages.
Furthermore, the choice of where the primary subsystem “ends” and the dielectric
continuum “begins”, i.e., the boundary and the shape of the “cavity” containing
the primary subsystem, is ambiguous (since such a boundary is intrinsically non-
physical). Typically this boundary is placed on some sort of van der Waals
envelope of either the solute or the solute plus a few key solvent molecules.

Continuum models have a long and honorable tradition in solvation
modeling; they ultimately have their roots in the classical formulas of Mossotti
(1850), Clausius (1879), Lorentz (1880), and Lorenz (1881), based on the
polarization fields in condensed media [32, 57]. Chemical thermodynamics is
based on free energies [58], and the modern theory of free energies in solution is
traceable to Born’s derivation (1920) of the electrostatic free energy of insertion
of a monatomic ion in a continuum dielectric [59], and Kirkwood and Onsager’s
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closely related treatments [60-62] (1930s) of the electrostatic free energy of
insertion of dipolar solutes. The seminal idea of a reaction field [32] was
developed in this work. Nonelectrostatic contributions to solvation were originally
treated by molecular models. However, Lee and Richards [63] and Hermann [64]
introduced the concept of the solvent accessible surface area (SASA). When a
proportionality is assumed between, on the one hand, the SASA and, on the other
hand, non-bulk-type electrostatic effects and non-electrostatic effects in the first
solvation shell (where they are largest), this augments the continuum approach in
a rational way. The quasithermodynamic formulation of transition state theory
extends all these concepts to the treatment of reaction rates by defining the
condensed-phase free energy of activation [65-67]. The breakdown of transition
state theory for dynamics, which is related to (if not identical to) the subject of
nonequilibrium solvation, can also be discussed in terms of continuum models, as
pioneered in Kramers’ model involving solvent viscosity [67-69] and in Marcus’
work involving nonequilibrium polarization fields [70].

The last thirty years have seen a flowering of simulation techniques based
on explicit treatments of solvent molecules (some references are given above).
Such methods provide new insight into the reasons why continuum methods work
or don’t work. However they have not and never will replace continuum models.
In fact, continuum models are sometimes so strikingly successful that hubris may
be the most serious danger facing their practitioners. One of the goals of this
present chapter will be to diffuse (but not entirely deflate!) any possible
overconfidence.

The present chapter thus provides an overview of the current status of
continuum models of solvation. We review available continuum models and
computational techniques implementing such models for both electrostatic and
non-electrostatic components of the free energy of solvation. We then consider a
number of case studies, with particular focus on the prediction of heterocyclic
tautomeric equilibria. In the discussion of the latter we center attention on the
subtleties of actual chemical systems and some of the dangers of applying
continuum models uncritically. We hope the reader will emerge with a balanced
appreciation of the power and limitations of these methods.

At this point we note the existence of several classic and recent reviews
devoted to, or with considerable attention paid to, continuum models of solvation
effects, and we direct the reader to these works [71-83] for other perspectives that
we consider complementary to what is presented here.

Section 2 presents a review of the theory underlying self-consistent
continuum models, with section 2.1 devoted to electrostatics and section 2.2
devoted to the incorporation of non-electrostatic effects into continuum solvation
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modeling. Section 3 discusses the various algorithmic implementations extant.
Section 4 reviews selected applications to various equilibrium properties and
contrasts different approaches. Section 5 offers a brief overview of methods to
extend continuum solvation modeling to account for dynamic effects in kinetics
and spectroscopy, and Section 6 closes with some conclusions and remarks about
future directions.

2 Theory

2.1 ELECTROSTATICS

A charged system has an electrical potential energy equal to the work that must be
done to assemble it from separate components infinitely far apart and at rest. This
energy resides in and can be calculated from the electric field. This electrostatic
potential energy, when considered as a thermodynamic quantity, is a free energy
because it is the maximum work obtainable from the system under isothermal
conditions [84]. We have the option, therefore, of calculating it as an electrostatic
potential energy or as the isothermal work in a charging process. Although the
latter approach is very popular, dating back to its use by Born, the former
approach seems to provide more insight into the quantum mechanical formulation,
and so we adopt that approach here. Recognizing that the electrostatic potential
energy is the free energy associated with the electric polarization of the dielectric
medium, we will call it Gp.

In general the electrostatic potential energy of a charge distribution in a
dielectric medium is [84, 85]

Gp = -;- [ ar[ET(1)D(r) - 42T (1) D(x)] )

where the integration is over the whole dielectric medium (in the case of solvation
this means an integration over all space except that occupied by the solute), E is
the electric field, T denotes a transpose, D is the dielectric displacement, and the
second term in the integrand references the energy to that for the same solute in a
vacuum. Recall from electrostatics that

V-D=pgree (2)

where prree is the charge density of the material inserted into the dielectric, i.e., of
the solute, but
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V-E =41p a1 3)

where

Ptotal = Pfree T PP 4)

and pp is the polarization charge density, i.e., the charge density induced in the
dielectric medium by the solute (in classical electrostatics, pp is often called
Pbound)- In an isotropic medium, assuming linear response of the solvent to the
solute, it is generally the case that [84]

4n
E(r)= @D(r) (5)

where £(r) is the dielectric constant (i.e., relative permittivity) of the solvent at
position r.

Clearly, D(r) is a function of the solute charge density only, and we can
write

D(r) = (wld(r)lv) ©)
where d(r) is the operator that generates the displacement at r. Then
1

Gp = | dr[ET(r)— 4n DT(r)]<\|/|d(r)|\y). )
Using the linear response result (5), we then get
1 T

60 = -2 x| 1< [ofaT e} vlacolw) )

= <\v 27 j d r[l - %} dT(r)(\uld(r)I\y>|\|f> (8b)

= <W|Gp,op|\|’> | (8c)

where
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1
GP,OpI‘V) = Y Kop dT(r)(\I’ld(r)I\l’»\V) )
and we have defined the integral operator ’
- PU P
Kopf(r)=4n[dr (1 - (r,)) £(r) (10)

for any function f{(r). If the gas-phase Hamiltonian is Hy, then the solute’s energy
in the electrostatic field of the polarized solvent is

Grp = (W{Ho + Gpopl¥) (11)

where Ggnp has the thermodynamic interpretation of the total internal energy of
the solute (represented by H) plus the electric polarization free energy of the
entire solute-solvent system.

We note that GENp is a complicated function of y; in particular it is
nonlinear. Recall that an operator Loy is linear if

Lopleryy + caW2) = e Lop|W1) + c2Lop| W2 )- (12)

However
1
Gp,op| W1 +W2) = - Kop d? (r)(w1 + yold@w + w2 )lw1)

1 .
~= Kop d™ (r) (w1 + woldhwy + w2 )| w2) (13a)

# GP,Opl‘V1> + GP,op|W2)~ (13b)

Hence Gp,op is nonlinear, and therefore the energy functional Genp of (11) 1s
nonlinear.

Note that Gp op of eq. (9) can be written in several equivalent but different
looking forms, as is typical of electrostatic quantities in general. For example, it is
often convenient to express the results in terms of the electrostatic scalar potential
o(r) instead of the electric vector field E(r). In the formulation above, the
dielectric displacement vector field associated with the solute charge distribution
induces an electric vector field, with which it interacts. In the electrostatic
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potential formulation, the solute charge distribution induces an electrostatic scalar
potential field, with which it interacts. The difference between either induced field
in the presence of solvent compared to the absence of solvent may be called the
reaction field, using the language mentioned above as introduced by Onsager. In
any such formulation, Gp op Will remain nonlinear. In particular it will have the
form Aop(y*y) where Agp is some operator. Sanhueza et al. [86] have constructed
variational functions representing general nonlinear Hamiltonians having the form
Lop +Aop(y*W)4, where g is any positive number. The sense of the notation is
simply that y* and y each appear to the first power in one term of the operator.
Thus, comparing to eq. (9), we see that their treatment reduces to our case when g
= 1. The g = 1 case is of special interest since it arises any time a solute is
immersed in a medium exhibiting linear response to it. Since this case is central to
the work reviewed in this chapter, we present below a self-contained variational
formulation for the g = 1 case. In particular we will consider the case of GEnp as
expressed above although the procedure is valid for any Hamiltonian whose
nonlinearity may be written as Agp(y*y)9 with g = 1.

In order to motivate the quantum mechanical treatment of a system with
the energy functional GENp, we first consider the functional

E = (y|Ho|w) (14)

where Hy is the gas-phase Hamiltonian. We use Euler-Lagrange theory to find a
differential equation satisfied by the y that extremizes the value of the integral
functional E of y. The Euler equation for an extremum of E subject to the
constraint

(wv)=1 | )
18
S[E + 7\.<\|I|\|I>] =0 (16)

where A is a Lagrange multiplier. Carrying out the variation gives

(8w|Holw) + (w|Ho[ow) + A((3wlw) + (vidy))=0 (17)

or

J=0 (18)
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where
J =2((8w|Holw)+ x(&yw)). (19)
For this to be valid for any variation dv, it is required that

Hyy =~Ay (20)

where A is evaluated by using eq. (15). To use eq. (15), note that (20) implies that

(wiHolw)+Myly)=0 @D
and using (15) then yields the interpretation of A
A = —(y|Ho|lw)=-E. (22)
Putting this in (20) yields
Ho\]}' - E\|I =0. (23)
Thus, as expected, the Euler equation equivalent to extremizing E is the

Schrodinger equation.
Now consider the functional

Gexp = (W[Ho = KopdT (X wldlwlv). 24

The Euler equation for an extremum of GENp subject to the constraint

(vlv)=1 25)

is
8[Genp + My |W)]=0 | (26)

where A is a Lagrange multiplier. Carrying out the variation gives
1
T+2(8y] - = Kopd (e wld(e)|w)lw)

+2(y |- % Kop at (r)(&y|d(r)|y)|w)=0. N
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For this is to be valid for arbitrary variations dv, it is required that

Hoy + My = Kopd " (r)(wld(x) W)y =0 (28)

where A is again to be evaluated from the constraint equation. Following the same
procedure as before we find

A= "(‘l’lHO —Kop d’ (rx\l’ld(l’)l‘l’)l\if)- (29)

It is conventional to rewrite eq. (28) as a nonlinear Schrddinger equation with
eigenvalue E:

[Ho - Kop 4T (r)(w|d(x)v) - E]w) = 0. (30)
Comparison of (30) to (28) and (29) shows that

E= (\VIH() - K()p dT(l')<\|/|d(l')|\V)l\l/>

= (y|Hp|w) +2Gp. G1)

Solving the nonlinear Schrédinger equation yields E and W and the desired
physical quantity Genp may then be calculated directly from (11) or from

Genp = E+%—Kop aT(r)w|am)|v)

=E-Gp (32)

which is easily derived by comparing eq. (8), (9), (24), and (31).
The fact that the eigenvalue E of the nonlinear effective Hamiltonian,

Hege = Ho — Kopd' (r)(w|d(r)|w) (33)

does not equal the expectation value of the functional GgNp that is extremized is
sometimes a source of confusion for those unfamiliar with nonlinear Schrédinger
equations. This is presumably because in the linear case the expectation value of
the function extremized, e.g., eq. (14), and the eigenvalue, e.g., —A in eq. (20), are
the same.

The second term of equation (33) may be called the self-consistent
reaction field (SCRF) equation in that eq. (30) must be solved iteratively until the
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ly> obtained by solving the equation is consistent with the y> used to calculate
the reaction field. Having established an effective nonlinear Hamiltonian, one may
solve the Schrédinger equation by any standard (or nonstandard) manner. The
common element is that the electrostatic free energy term Gp is combined with the
gas-phase Hamiltonian Hy to produce a nonlinear Schrodinger equation

(Ho +2Gp )y = Ey (34)

where \ is the solute wave function, and the reason that 2Gp appears in eq. (34) is
explained above, namely that Gp depends on y*y, and one can show that the
variational solution of (34) yields the best approximation to

Eg =(y|Hj + Gplw). 35)

In most work reported so far, the solute is treated by the Hartree-Fock
method (i.e., Hg is expressed as a Fock operator), in which each electron moves in
the self-consistent field (SCF) of the others. The term SCRF, which should refer
to the treatment of the reaction field, is used by some workers to refer to a
combination of the SCRF nonlinear Schrodinger equation (34) and SCF method to
solve it, but in the future, as correlated treatments of the solute becomes more
common, it will be necessary to more clearly distinguish the SCRF and SCF
approximations. The SCRF method, with or without the additional SCF
approximation, was first proposed by Rinaldi and Rivail [87, 88], Yomosa [89,
90], and Tapia and Goscinski [91]. A highly recommended review of the
foundations of the field was given by Tapia [71].

When the SCRF method is employed in conjunction with Hartree-Fock
theory for the solute, then the Fock operator is given by

F=F% 126, (36)

where F©O) is the gas-phase Fock operator. Using eq. (9) we can also write this as
F=F9 - Ky, aT(r)(wlale)y). (37)
There is another widely used method of obtaining the Fock operator, namely to

obtain its matrix elements Fyy as the derivative of the energy functional with
respect to the density. In our case that yields
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_ 9Ggnp

P = (38)
- p(0) , 9Gp
=F9+ e (38b)

where Fyv©@ is the matrix element of the gas-phase Fock operator, and Py is a
matrix element of the density. This method bypasses the nonlinear Schrodinger
equation and the nonlinear Hamiltonian, but a moment’s reflection on the
variational process of eqs. (24)—(30) shows that it yields the same results as egs.
(36) and (37). This too has caused confusion in the literature.

In conclusion, we note that there has recently been considerable interest in
including intrasolute electron correlation energy in SCRF theory [77, 92-106].
Further progress in this area will be very important in improving the reliability of
the predictions, at least for “small” solutes.

Next we discuss two aspects of the physical interpretation of the SCRF
method that are well worth emphasizing: (i) the time scales and (ii) the
assumption of linear response.

The natural time scale Telec Of the electronic motion of the solute is
S(/AE7) where © denotes “order of’, h is Planck’s constant, and AE7 is the
lowest electronic excitation energy. Assuming a typical order of magnitude of 101
eV for AE] yields Telec = 9(10-16 5). The time scale for polarization of the solvent
is more complicated. For a polar solvent, orientational polarization is the
dominant effect, and it is usually considered to have a time scale of H(1012 5).
Thus the electronic motion of the solute should adjust adiabatically to solvent
orientational polarization, and the solvent should “see” the average charge
distribution (i.e., the “mean field”) of the solute. This argument provides a
physical justification for the expectation value in (6) providing the field that
induces the solvent polarization, resulting in a net electric field given by (5). We
should not forget though that a part of the solvent polarization is electronic in
origin. The time scale for solvent electronic polarization is comparable to that for
electronic motions in the solute, and the SCRF method is not so applicable for this
part. A correct treatment of this part of the polarization effect would require a
treatment of electron correlation between solute electrons and solvent electrons, a
daunting prospect. This correlation problem has also been discussed from other
points of view [107-111].

Tapia, Colonna, and Angydn [112-114] have presented an alternative
justification for the appearance of average solute properties in the SCRF




14 C. J. CRAMER AND D. G. TRUHLAR

equations. Their argument is based starting with a wave function for the entire
solute-solvent system, then assuming a Hartree product wave function of the form
WsoluteWsolvent. This allows the “derivation” of a solute-only Schrédinger equation
identical to the one derived here. The appearance of the Hartree approximation
[115] in the derivation again makes it clear that solute-solvent electron correlation
is neglected in the SCRF equations. It also raises the question of exchange
repulsion, which is the short-range repulsion between two closed-shell systems
due to the Pauli Exclusion Principle. (I.e., if the systems start to overlap, their
orbitals must distort to remain orthogonal. This raises the energy, and hence it is a
repulsive interaction.) Exchange repulsion between two systems is properly
included in the Hartree-Fock approximation but not in the Hartree approximation.
The neglect of exchange repulsion is a serious limitation of the SCRF model that
prevents it from being systematically improvable with respect to the solute-
solvent electron correlation.

The assumption of linear response played a prominent role in the
derivation (given above) of the SCRF equations, and one aspect of the physics
implied by this assumption is worthy of special emphasis. This aspect is the
partitioning of Gp into a solute-solvent interaction part Gs and a intrasolvent part
Ggss. The partitioning is quite general since it follows entirely from the
assumption of linear response. Since classical electrostatics with a constant
permittivity is a special case of linear response, it can be derived by any number
of classical electrostatic arguments. The result is [114, 116-119]

1
Ggs =— 5 Ggs (39)
and hence
Gss = 2Gp (40)
and
Ggs =- Gp. an

The physical interpretation of these equations is that when the solute polarizes the
solvent to lower the solute-solvent interaction energy by an amount Ggg, half the
gain in free energy is canceled by the work in polarizing the solvent, which raises
its own internal energy.

Since these equations are general for a system exhibiting linear response,
we can illustrate them by the simplest such system, a harmonic oscillator
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(representing the solvent) linearly coupled to an external perturbation
(representing the solute). The energy of the system (excluding the internal energy
of the solute) is

1
=5 k2 + gys (42)

where k is the oscillator force constant, y is the oscillator coordinate, which is a
generalized solvent coordinate, g is the coupling force constant, and s is the solute
coordinate. We identify

Gp=V 43)
1. 9
Gss =7 ky (44)
Gss = g)s. (45)
Now, at equilibrium
oV _
a_y =0. (46)

Therefore, from the derivative of (42):

s =—kylg. “n
and putting this in (45) yields

Gss = —ky? (48)

Comparison of (48) to (44) agrees with (39).

A subject not treated here is the use of distance-dependent effective
dielectric constants as a way to take account of the structure in the dielectric
medium when a solute is present. This subject has recently been reviewed [120].
In the approaches covered in the present chapter, deviations of the effective
dielectric constant from the bulk value may be included in terms of physical
effects in the first solvation shell, as discussed in Section 2.2.

As a final topic in this section, we briefly consider the effect of electrolyte
concentration on the solvent properties. The linearized Poisson-Boltzmann
equation [31, 121] can be used instead of (2) and (3) when the dielectric medium
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is a salt solution, and this equation can be solved analytically for the case of a
single-point charge Z at the center of a cavity of radius p in a solvent of dielectric
constant €. The resulting electric potential at a distance r from the center of the
cavity is [122]

Z _€Xx r
otr) = Zp2PL =P oy (49)
Er 1+p/rp
where rp is the Debye screening length
1
rp=1/k= [eRT/(87tI)]/2, (50)

R is the gas constant, T the temperature, and / is ionic strength. We may write this
as

o(r) =

(51
8eff(r) )

which yields [123]

£or(r) = e(1+ )(’ ~P)/rp (52)

D

For 0.1 M NaCl in water, this yields geff(r) values of about 105 and 130 at r
equals 3 and 5 A, respectively, as compared to € = 78.5 for pure water. Since,
however, for homogeneous €, the dlelectrlc constant enters the solvation free
energy through the expression (1 - —) the relative effect of such an increase will
not be quantitatively large (whereas a decrease in € could be more significant). In
an organic biophase though, where ¢ is smaller, the relative effects of ions could
be very significant, but they tend to be excluded from such phases. Even in
aqueous solution and even when the relative change in the solvation free energy is
small, the absolute effect of ions may be significant, especially for reactions
involving ions [124] and electrostatics [125, 126], in both of which cases the
magnitude of the total electrostatic free energy is large.

2.2 NON-ELECTROSTATIC CONTRIBUTIONS

It should be clear from the presentation in the previous section that the SCRF
method is a model that by design focuses on only one physical effect
accompanying the insertion of a solute in a solvent, namely the bulk polarization
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of the solvent by the mean field of the solute. Thus the model admittedly neglects
all other physical effects. One of these, electron correlation between the solute and
the solvent, was mentioned explicitly already. This and other physical effects
missing in the SCRF method are discussed in more detail in this section. As a
shorthand we call these effects “non-electrostatic” (and abbreviate them N), but a
more precise wording would be that used in Section 1, namely and “non-bulk-
type electrostatic.”

Electron correlation between the solute and solvent has an important
quantitative effect on the solvation free energy. The most important qualitative
manifestation of this correlation is the existence of dispersion interactions
between solute and solvent (dispersion interactions are neglected in both the
Hartree and Hartree-Fock approximations). The solute-solvent dispersion
interactions are inseparable in practice from several other effects that are often
grouped under the vague heading of cavitation. If we make a cavity in a solvent B
to accommodate a solute A, the solvent molecules in the first solvation shell gain
A-B dispersion and repulsive interactions, but at the expense of B-B ones. This
tradeoff may have significant effects, both enthalpic and entropic, on solvent
structural properties. The dispersion and solvent structural aspects of cavitation
are two physical effects not accounted for in the treatment of the previous section,
with its assumption of an uncorrelated, homogeneous dielectric medium with
dielectric constant equal to the bulk value.

Certain aspects of the solvent structural changes in regions near to the
solute have received specialized attention and even inspired their own
nomenclature. Two examples, each with a long and distinguished theoretical
history, are the “hydrophobic effect” and “dielectric saturation.”

The hydrophobic effect refers to certain unfavorable components of the
solvation free energy when a nonpolar solute is dissolved in water. The most
generally accepted explanation (no explanation is universally accepted) starts
from the premise that a typical cluster of water molecules in the bulk makes
several hydrogen bonds and has several ways to do so. When a non-hydrogen-
bonding solute is introduced, the neighboring water molecules will still make
about the same average number of hydrogen bonds (although enthalpic
components of hydrophobicity, when observed, may sometimes be ascribed to a
reduced total number of hydrogen bonds), but they will have less ways to do so
since the opportunities for maximum hydrogen bonding will restrict the
orientation of solvent molecules in the first solvation shell, and flipping a
hydrogen-bonded cluster will not provide the same possibilities for hydrogen
bonding as it does in the bulk where the cluster is surrounded on all sides by
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water. Thus the water structure in the first hydration shell is more “rigid,” which
is entropically unfavorable.

Dielectric saturation refers to the breakdown of linear response in the
region near the solute. At high enough fields, the permittivity of a dielectric
medium is not a constant; it depends on the field [116, 127]. The field in the
vicinity of the solute may be high enough that this concern becomes a reality, and
the solvent may fail to respond with the same susceptibility as bulk water
responds to small applied fields. This will be especially likely to be a problem for
multiply charged, small ions [128, 129]. Bucher and Porter [130] have analyzed
the dielectric saturation effect quantitatively for ions in water, and they find that
the effect of this saturation on the electrostatic contribution to the hydration
energy comes primarily from the region within 3 A of the atomic centers and
hence only from the first hydration shell.

Another, related effect leading to non-bulk response in the first hydration
shell is electrostriction [131], which is the change in solvent density due to the
high electric fields in the first solvation shell of an ion.

A fourth solvent structural effect refers to the average properties of solvent
molecules near the solute. These solvent molecules may have different bond
Iengths, bond angles, dipole moments, and polarizabilities than do bulk solvent
molecules. For example, Wahlqvist [132] found a decrease in the magnitude of
the dipole moment of water molecules near a hydrophobic wall from 2.8 D (in
their model) to 2.55 D, and van Belle et al. [29] found a drop from 2.8 D t0 2.6 D
for first-hydration-shell water molecules around a methane molecule.

Dispersion is not the only short-range force that needs to be added to the
electrostatic interactions. For example, hydrogen bonding is not 100%
electrostatic but includes covalent aspects as well, and exchange repulsion is not
included in classical electrostatics at all. An accurate model should take account
of all the ways in which short-range forces differ from the electrostatic
approximation with the bulk value for the dielectric constant.

All these overlapping effects, namely cavitation, solute-solvent dispersion
interactions, other solute-solvent electron correlation effects, hydrophobic effects,
dielectric saturation, and non-bulk properties of solvating solvent molecules,
would be expected to be most significant in the first solvation shell, and numerous
molecular dynamics simulations have borne this expectation.out [133-137]. One
might hope, in light of this, to treat such effects by treating all solvent molecules
in the first solvation shell explicitly. In this section, however, we wish to make the
point that continuum models need not be abandoned for treating such effects. In
fact, continuum models have some significant advantages for such treatments, just
as they do for treating bulk electrostatic effects.
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The key to the continuum treatment of first solvation-shell effects is the
concept of solvent-accessible surface area, introduced by Lee and Richards [63]
and Hermann [64]. In a continuum treatment of the solvent, it is useful to define a
non-integer “number” of solvent molecules in the first solvation shell so that in
some sense this continuous number simulates the average of the integer number of
discrete molecules in the first solvation shell in a treatment with explicit solvent
molecules. If we imagine a continuous first hydration shell and pass a
hypersurface through the middle of the shell, then the simplest assumption is that
the average number of solvent molecules in the first solvation shell is proportional
to the area of this hypersurface. This area is called the solvent-accessible surface
area A. Other possible definitions of molecular surface area do not have this
interpretation [138]. Because the surface tensions are empirical they can make up
for many flaws in the model. For example, simulations have shown that, due to
the dominance of water-water hydrogen bonding, hydrophobic crevices are not
accessed by the solvent as much as would be predicted by the calculated solvent-
accessible surface areas. Environment-dependent surface tensions can and do
make up for such deficiencies in the model in an average way [139].

Since many of the effects that need to be added to the bulk electrostatics
are localized in the first solvation shell, and since the solvent-accessible surface
area is proportional to the number of solvent molecules in the first solvation shell,
it is reasonable to assume that the component of the free energy of solvation, G?V,
is proportional to the solvent-accessible surface area. A critical refinement of this
idea is the recognition that the contribution per solvent molecule of the first-
solvation shell in contact with one kind of atom is different from that in contact
with another kind of solute atom. If we divide the local surface environment of a
solute into several types of region, o = 1, 2,.... (e.g., 0. = 1 might denote amine—
like nitrogen surface, o = 2 might denote nitrile-like nitrogen surfaces, o = 3
might denote the surface of carbonyl oxygens, etc.), and if we partition A into
parts Ay, associated with the various environments of type a, then it is even more
reasonable to write

G =2 SoAa (53)
o4

where each 6 is some proportionality constant with units of surface tension.
Although entropy cannot be strictly localized, some contributing factors to
the solvent entropy change induced by the solute are localized in the first solvent
shell, and contributions to the entropy of mixing that are proportional to the
number of solvent molecules in the first solvation shell might sometimes
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dominate Gy as well. In assessing such entropic effects there has been
considerable attention paid to the effects of size and shape. A nice overview of the
current status of our understanding in this area, along with further original
contributions, has been provided by Chan and Dill [140]. From a more empirical
standpoint, we expect that these size effects, if and when present, may well scale
with solvent-accessible surface area [141].

Clearly, since it includes so many effects (see above), g can be positive
or negative. Sometimes one effect will dominate, e.g., dispersion or solvent
structural change. If the Gy are determined empirically, they can also make up for
fundamental limitations of the bulk electrostatic treatment (such as the
intrinsically uncertain location of the solute/bulk boundary and also for systematic
errors in the necessarily approximate model used for the solute. -

We summarize this section by emphasizing that we have identified a host
of effects, and we have seen that they are mainly short-range effects that are
primarily associated with the first solvation shell. A reasonable way to model
these effects quantitatively is to assume they are proportional to the number of
solvent molecules in the first hydration shell with environment-dependent
proportionality constants.

Some workers have attempted to treat particular effects more rigorously,
e.g., by scaled-particle theory [142] or by extending [95, 103] Linder’s theory
[143] of dispersion interactions to the case of an SCRF treatment of solute-solvent
interactions. We will not review these approaches here.

Finally, we note that we have mostly limited attention so far to the self-
consistent reaction field limit of dynamical solvent polarization, which is the only
one that has been generally implemented (see next Section). Nevertheless, there
are problems where the solute-solvent dynamical correlation must be considered,
and we will address that topic in Section 5. ‘

3 Implementations

As reviewed above, when a solute is placed in a dielectric medium, it electrically
polarizes that medium. The polarized medium produces a local electrostatic field
at the site of the solute, this field polarizes the solute, and the polarized solute
interacts with the polarized medium. The interaction is typically too large to be
treated by perturbation theory, and some sort of self-consistent treatment of
polarized solute and polarized medium is more appropriate. At this point several
options present themselves. It promotes orderly discussion to classify these
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options, but because there are many aspects, one needs several classification
elements. The elements and the popular choices are as follows:

E.

How to treat the electrostatics (E):

E-A.

E-C.

Numerical or analytic solution of the classical electrostatic
problem (e.g., Poisson equation) with homogeneous
dielectric constant for solvent.

A model solution to the electrostatic problem, e.g., the
Generalized Born Approximation or a conductor-like
screening solution.

Electrostatics treated empirically, without reference to solute
charge distribution.

What shape (S) to assume for the boundary between the solvent,
considered as a continuum, and the solute:

S-A.

S-B.
S-C.

Taking account of molecular shape, e.g., treating the solute as
a set of atom-centered spheres.

Treating the solute as an ellipsoid.

Treating the solute as a sphere.

At what level (L) to model the solute:

L-A.

With polarizable charges obtained by an approximate
quantum mechanical method including electron correlation or
by a Class IV charge model.

With polarizable charges obtained by the ab initio Hartree-
Fock method.

With polarizable charges obtained by semiempirical
molecular orbital theory.

With polarizable charges obtained by A, B, or C combined
with a truncated multipole expansion, including multipole
moments up to some predetermined cutoff /, where [ > 1 but
not necessarily large enough for convergence.

Like D but with only / =0 and/or 1.

By non-polarizable charges, e.g., as might be used in a
molecular mechanics calculation, or an unpolarized charge
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density on a grid. (Use of non-polarizable dipole moments,
i.e., permanent rather than permanent plus induced, would
also fit in here.)

N. Whether to augment the electrostatics terms by an estimate of non-
electrostatic (N) contributions:

N-A. Yes, including empirical elements to make up for the
approximate character of the electrostatics as well as to
include other identifiable effects.

N-B. Yes, treating one or more non-electrostatic interactions non-

empirically.
N-C. Yes, by a single linear function of molecular surface area.
N-D. No.

Although the list of choices is lengthy, we should also note some choices
that are not present. With regard to the electrostatic (E) element, all models
currently in general use assume a homogeneous dielectric constant for the solvent,
thereby neglecting possible dielectric saturation in the first solvation shell and
also neglecting the fact that solvent molecules near to the solute have different
properties (average dipole moment, polarizability, geometry, size, and hence
dielectric constant) than bulk solvent molecules. (Note, though, that Hoshi [144]
and Tomasi and co-workers [145-148] have discussed algorithmic
implementations of an inhomogeneous dielectric continuum in SCRF models, and
note also that both dielectric saturation and the unique properties of the solvent
molecules in the first solvation shell are included in models that make choice A
for element N.) With regard to the shape () element, all choices assume a well
defined discontinuous change of dielectric properties at a fixed, sharp
solute/solvent boundary. In reality of course, this boundary is a fluctuating, finite-
width boundary layer. With regard to the level (L) element, we note that the ideal
choice of “by converged quantum mechanics” is missing, for reasons of
practicality. The missing choices have an important consequence for which
combinations of the other choices seem most suitable. For example, one asks,
given that the assumption of homogeneous dielectric constant, the assumption of a
rigid, sharp solute/solvent boundary, the assumption of an approximate solute
wave function, and the neglect of solute-solvent exchange repulsion all introduce
significant approximations into the electrostatics, is it still worthwhile to solve the
Poisson equation numerically, or would an approximate solution introduce errors
smaller than those already inevitably present? Different workers have answered
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such questions differently. We believe, in fact, that more than one answer to such
questions is justifiable, and there is room in the computational toolbox for more
than one tool, with the best choice depending on the application.

Tables 1 and 2 provide a list of recently proposed solvation models and
classifies them according to the above scheme. For convenience, each row of the
table is given a label. In some cases the label is based on a well established name
or acronym (e.g., PCM, SMx), or an acronym to be used in this chapter. The
acronyms to be used in labels are as follows:

SCME single-center multipole expansion

DO dipole only (SCME with / < 1)

DME distributed multipole expansion

PCM polarized continuum model

PE Poisson equation (direct solution in physical space)
GB generalized Born (approximation)

COSMO conductor-like screening model

GCOSMO  generalized COSMO
/ST or /SA  plus surface tensions

SASA solvent-accessible surface area

TBS truncated basis set

SMx Solvation model x (a name we give to our own
parameterized GB/ST models)

AMlag Austin model 1 aqueous

In other cases we base the label on the author's initials. Next we comment on the
methods in the tables and some aspects of the issues they raise.

The oldest methods are based on multipole expansions. Because these
methods have been around for a long time, and because they lend themselves to
appealing analytical solutions if further approximations are made, they have
developed a history of sometimes being used with additional, unrealistic
assumptions. The two most important of these further assumptions are truncating
the multipole expansion at the dipole term (DO) and replacing the solute cavity by
a sphere or ellipsoid. We now recognize, though, that these further
approximations are usually unwarranted; indeed, we recommend that methods
employing either or both of these approximations should be avoided for serious
work.
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TABLE I
Continuum models based on electrostatics only.
Elements

Label Authors Reference(s) E S L N
Models with S =B, C, and/or L=D, F

PE1 Honig group [149-151] A AF D
PE2 Rashin [152] A AF D
PE3 McCammon group [153] A AF D
PE4 Lim, Chan, Tole [154] A AF D
DO Kirkwood, Onsager [61, 155] A CFD
DO1 Tapia, Goscinski [91] A CED
DO2 Szafran, Karelson, Katritzky, Zerner [156, 157] A CED
DO3 Wong, Wiberg, Frisch [99, 158] A CED
DO4 Freitas, Longo, Simas [159] A CED
DOS Adamo, Lelj [160] A CED
GBl1 Tucker, Truhlar [161] B AF D
SCME Kirkwood, Onsager [61, 155] A CFD
SCMEI1 Rivail, Rinaldi [88] A CDD
SCME2 Rivail, Terryn [162, 163] A B DD
SCME3 Chipot, Rinaldi, Rivail [100] A B DD
SCMEA4 Dillet, Rinald, Rivail [164, 165] A ADD
SCMES5S Mikkelsen et al. [93, 106] A CDD
SCME6 Ford, Wang [166] A B DD
SCME7 Pappalardo, Reguero, Robb, Frisch ~ [167] A B DD
DME Huron, Claverie [168] A CFD
DMEIl Friedman [169] A CDD
DME2 Gersten, Sapse [170] A B F D
DME3 Karlstr6m [171] A CBD
DME4 Karelson, Tamm, Zerner [172] A CCD
TBS Kim, Bianco, Gertner, Hynes [173, 174] B CF D
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TABLE I (continued)
Continuum models based on electrostatics only.
Elements
Label Authors Reference(s) E S L N

Models with untruncated, polarizable charge distributions and shape sensitivity

PCM Miertus, Scrocco, Tomasi [175] A ABD
PCM2 Hoshi et al. (144,176,177 A A C D
PCM3 Ford and Wang [178,179] A ACD
PCM4 Fox, Rosch, Zauhar [180, 181] A ACD
PCM5 Negre, Orozco, Luque [182, 183] A ACD
PCM6 Rashin, Bukatin, Andzelm, Hagler [184] A A AD
PE4 Baldridge, Fine, Hagler [185] A AAD
PE5 Chen, Noodleman, Case, Bashford [186] A AAD
GB2 Peradejordi [187] B ACD
GB3 Kozaki, Morihasi, Kikuchi [188, 189] B ACD
DMES Tapia, Colonna, Angyan [112] A ABD
DMES6 Dillet, Rinaldi, Angydn, Rivail [164] A AAD
COSMO Klamt, Schiiiirmann [190] B ACD
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TABLE I
Classification of continuum models that include both electrostatic and non-
electrostatic contributions.

Elements

Label Authors Reference(s) E S L N
Models with§ < B, Cand/or L=D, F

SASA Hermann [64] C AF A
SASAl Eisenberg [191] C AF A
SASA2 Ooi, Oobatake, Némethy, Scheraga  [192] C AF A
GB/SA Still et al. [193] B A F C
SCME/RCR Rinaldi, Costa Cabral, Rivail [194] A B DB
SCME/RRR Rivail, Rinaldi, and Ruiz-Lépez  [95] A ADB
SCME/YGHB Young, Green, Hillier, Burton [195] A B DA
SCME/TSB Tuiién, Silla, Bertrdn [196] A B DA
DME/ST/LCCP Langlet, Claverie, Caillet, Pullman  [197] A ADB
DME/ST/SK Sato, Kato [198] A CBB
PCM7 Purisima and Nilar [199] A AF C
PCM8 Varnek et al. [200] A AF A
KH Karlstrom and Halle [201] B C DB
BCN Basilevsky, Chudinov, Newton [110] B CCB

Models with untruncated, polarizable charge distributions and shape sensitivity

PCM/ST/FTP  Floris, Tomasi, and Pascual-Ahuir [202, 203] A A BB
PCM/ST/OAT  Olivares del Valle, Aguilar, Tomasi [97,103,104] A A A B
PCM/ST/YGHB Young, Green, Hillier, Burton [195] A A BB
PCM/ST/A Amovilli [204] A ABB
PCMO9/ST Bachs, Luque, and Orozco [205] A AB A
PCM10/ST Orozco, Luque, coworkers [205-209] A ACA
GB/ST/SM1-3.1 Cramer and Truhlar [210-215] B ACA
GB/ST/SM4&5 Cramer and Truhlar [213,216-218]1 B A A A
PCM/D Rauhut, Clark, Steinke [219] A ACB
PE/ST/FGH Friesner, Goddard, Honig [220] A A AC
AMlaq Dixon, Leonard, Hehre [221] B ACA
GCOSMO Truong and Stefanovich [222, 223] B A AC
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If the cavity is not simplified and terms are added to the multipole
expansion until it converges, the result is exact and none of the unphysical
consequences of a truncated multipole expansion remain. One difficulty with this
approach though is that the multipole series is not necessarily convergent at small
distances. A second is that for large molecules, a single-center expansion is a very
unnatural way to represent the electrostatics. Even very small molecules may
require large numbers of terms in the multipole expansion to converge it. For
example, a treatment of electron scattering by acetylene that employed a single-
center multipole expansion contained terms with / up to 44 in an attempt to
converge the anisotropy of the electrostatics [224].

One way around the slow convergence of single-center expansions is a
multi-center multipole expansion [225-229]. Several workers have explored the
utility of DME within the SCRF framework [112, 164, 171]. Of course, when the
multipoles do not reside at atomic positions, it is clear that calculation of such
quantities as analytic energy derivatives will become more difficult.

Alternatively one can avoid multipole expansions altogether. There are
two main approaches in use for solving the electrostatic problem without a
multipole expansion. One of these solves the Poisson equation in terms of virtual
charges on the surface of the primary subsystem. This is usually called the
polarized continuum model (PCM) in quantum chemistry although it is called a
boundary element method in the numerical analysis literature. The second
approach solves the Poisson equation directly in the volume of the solvent, e.g.,
by finite differences. The latter approach will be called a Poisson equation (PE)
approach. We should keep in mind, however, that SCME, DME, PCM, and PE
methods will all lead to (the same) accurate electrostatics if the numerical
methods are taken to convergence and there is no difference due to the handling of
other “details.”. One such detail that might be mentioned is charge penetration
outside the cavity. By construction in the PCM model, the small amount of
electronic density outside the cavity is eliminated from the surface charge
computations and as a result the solute bears a very small charge. Tomasi has
emphasized the need to correct for this phenomenon [79], but his approach has yet
to be adopted by other groups doing PCM calculations.

As mentioned above, the PCM is based on representing the electric
polarization of the dielectric medium surrounding the solute by a polarization
charge density at the solute/solvent boundary. This solvent polarization charge
polarizes the solute, and the solute and solvent polarizations are obtained self-
consistently by numerical solution of the Poisson equation with boundary
conditions on the solute-solvent interface. The free energy of solvation is obtained
from the interaction between the polarized solute charge distribution and the self-
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consistent surface charge distribution [175]. The physics is the same for the PCM
and PE approaches (and for the fully converged SCME or DME, for that matter),
although the numerical methods are different.

The next question to be discussed was already mentioned in Section 2.1,
namely, since the electrostatic problem, with its sharp boundary and its
homogeneous solvent dielectric constant, already represents a somewhat
unrealistic idealization of the true molecular situation, how important is it to solve
that problem by exact electrostatics? We would answer that this is not essential.
Although it presumably can’t hurt to solve the electrostatics accurately, except
perhaps by raising the computer time, it may be unnecessary to do so in order to
represent the most essential physics, and a simpler model may be more
manageable, more numerically stable, and even more interpretable. This is the
motivation for the GB approximation and COSMO.

GB-like approximations [41, 71, 119, 161, 187, 189, 230-233] may be
derived from eq (1) by using the concept of dielectric energy density, as in the
work of Bucher and Porter [130], Ehrenson [131], and Schaefer and Froemmel
[234]. As the GB methodology has been extensively reviewed in the recent past
[81, 83, 213], we confine our presentation to a very brief discussion of the key
aspects of the theory. The polarization free energy in the GB model is defined as

Geag) = -1 (1-1) Y qyaytger (54)
€ kK’

where € is the solvent dielectric constant, q is the net atomic charge, k labels an
atomic center, and Ykk' is a coulomb integral, which in atomic units is the
reciprocal of an effective radius (monatomic diagonal terms) or effective distance
(diatomic off-diagonal terms). The descreening of individual parts of the solute
from the dielectric by other parts of the solute is accounted for in these effective
quantities. In particular, in our work we use an empirical functional form for vy that
was proposed by Still et al. for their GB/SA model [193]. The present authors
modified that form in several ways, including making it a function of atomic
partial charges, in the development of the SM1 [210], SM1a [210], SM2 [211],
SM2.1 [214], SM2.2 [215], SM3 [212], SM3.1 [214], and SM4 [213, 216, 217]
GB/ST solvation models. The SMS5 solvation model [218] further modifies ¥ so
that it may be expressed purely as a function of geometry, i.e., it has no explicit
dependence on elements of the density matrix, thereby facilitating the calculation
of analytic energy derivatives. The SM4 and SMS5 solvation models are based on
Class IV charge models [235], which provide the best available estimates of
partial charges for electrostatics calculations.
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The E, N, and P terms are then obtained from the density matrix P of the
aqueous-phase SCF calculation as

1 1 ZyZy

GENP = Euz\‘, PP-V(HI-W + Fuv)-l-— Y ZkZk

(55)
2xk#k kK

where H and F are respectively the one-electron and Fock matrices, (L and v run
over valence atomic orbitals, and Zg is the valence nuclear charge of atom k
(equal to the nuclear change minus the number of core electrons). When the net
atomic charge ¢ in equation 54 is determined by Mulliken analysis of the NDDO
wave function, the Fock matrix is simply given by [71, 210, 236]

Fop= B +8uv(1=¢) 2 (Zo=Pu) v Hek (56)
Kuek'

where 8y is the Kronecker delta function. This approach was used in the SM1,
SM1a, SM2, and SM3 solvation models. The SM4 alkane models [216, 217] an
interim SM4 water model specific for selected kinds of {C,H,O} compounds
[213], and SM5 models, on the other hand, use Class IV Charge Model 1 (CM1)
partial atomic charges [213, 235], which provide a more accurate representation
of the electronic structure. This renders eq 56 somewhat more complex [216], but
does not change its basic form. In all SMx models, the density matrix is
determined self-consistently in the presence of solvent.

Values of Ggnp calculated from the GB approximation compare well to
values obtained from numerical solution of the Poisson equation for similar
collections of point charges [83, 237, 238]. A very promising extension of the GB
methods is provided by a new scaled pairwise approximation to the dielectric
screening integrals [215].

The COSMO method is a solution of the Poisson equation designed
primarily for the case of very high € [190]. It takes advantage of an analytic
solution for the case of a conductor (€ = o). The difference between (1 -=) for the
case of € = 80 and € = is only 1.3%, so this is a good approximation for water.
Its use for the treatment of nonpolar solvents with ¢ = 2 depends on further
approximations which have not yet been sufficiently tested to permit an
evaluation of their efficacy.

Finally we address the issue of contributions. In our view it is unbalanced
to concentrate on a converged treatment of electrostatics but to ignore other
effects. As discussed in section 2.2, first-solvation-shell effects may be included
in continuum models in terms of surface tensions. An alternative way to try to
include some of them is by scaled particle theory and/or by some ab initio theory
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of dispersion. Table 2 summarizes continuum models that attempt to treat both
electrostatic and first-solvation-shell effects.

Some models carry the surface tension approach to extreme, and attempt
to include even the electrostatic contributions in the surface tensions. These pure
SASA models are obviously limited in their ability to account for such
phenomenon as dielectric screening, but they have the virtue of being very easy to
compute. Thus, they can be used to augment molecular mechanics calculations on
very large molecules with a qualitative accounting for solvation.

Also within the molecular mechanics framework is the molecular-
mechanics-type GB/SA model of Still et al. [193] In this instance, the
electrostatics are handled by a Generalized Born model, but the atomic charges
are parametric. They are chosen in such a way that Still et al. assign only a single
surface tension to the entire molecular solvent-accessible surface area; this is also
done in the PE/ST/FGH and PCM10 models. All these authors rationalize this by
calling the ST part a hydrophobic term, but it is clear that other non-electrostatic
effects must then be being absorbed into the cavity parameterization and, in Still
et al.’s MM case, possibly into the partial atomic charges.

Many groups have chosen to specifically calculate cavitation and/or
dispersion terms. The former typically are computed by the scaled particle theory,
following Pierotti [142], while several different approaches have been formulated
for the latter. Ultimately, however, there are non-electrostatic components of the
solvation free energy remaining that do not lend themselves to ready analysis.
Bearing that in mind, it is not clear that there is much point in spending resources
calculating any one non-electrostatic component more rigorously than the others.
Thus, the most general approach is to parameterize all non-electrostatic effects
into atomic surface tensions (so as to reproduce experimental free energies of
solvation after the electrostatic components have been removed). This is the
philosophy guiding the SMx, AM1laq, PCMY9/ST, PCM10/ST, and SCME/TSB
models, and an increasing number of workers appear to be moving in this
direction.

4 Solvation effects on equilibrium properties

As discussed in Section 2, one key assumption of reaction field models is that the
polarization field of the solvent is fully equilibrated with the solute. Such a
situation is most likely to occur when the solute is a long-lived, stable molecular
structure, e.g., the electronic ground state for some local minimum on a Born-
Oppenheimer potential energy surface. As a result, continuum solvation models
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based on reaction fields should be especially useful for the prediction of solvent
effects on equilibrium constants.

Equilibria may take a number of forms—constitutional, tautomeric,
conformational, etc. For any equilibrium problem in solution, one may consider
the free energy cycle depicted in the figure below, where A and B label different
molecules or different isomers of the same molecule, depending on the type of
equilibrium. The scheme below shows that the free energy change for a reaction
or tautomerization on going from the gas phase into solution is equal to the
difference in the free energies of solvation of the initial and final species (the
figure depicts a unimolecular reaction, but this statement is true in the general
case).

AR,
Afg) - B

AGPS(A) AG°s(B)

AG®aq = AG°g + AG°s(B) - AGOS(A)

Tautomeric equilibria involving populations of isomers that differ by bond
connectivity are of special interest for the study of solvent effects, and such
equilibria involving heterocycles have proven to be a favorite testing ground for
developers of continuum solvation models. For protomeric heterocyclic equilibria,
this is at least partly due to the very large changes in one-electron properties (e.g.,
the dipole moment) that affect the solvation free energy when the proton
substitution pattern changes.

In this section we will consider only equilibria in which the number of
moles of solute does not change. In such cases the population of a given
contributor to the equilibrium may be calculated by using a standard Boltzmann
formalism, i.e., the fraction of species A is
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,~GR/RT
F(A) = -{—Gﬁﬁ (57)
e
B

where G may be either a gas phase or a solution value, and the sum over B runs
over all equilibrium contributors. In below discussion we will take %(A) = 100
F(A). When free energies in both the gas phase and in solution are available, one
may calculate [239] the absolute free energy of solvation, AGg, as

-G2,(A)/RT
gas(A) ,~AGS(A)/RT

AGQ =-RT In{Y, -
A ze—GgM(B)/RT

B

(38)

where the sums over both B and A run over all contributors.

This section will focus on the application of dielectric continuum models
to equilibria like those described above. A special effort will be made to highlight
investigations that compared two or more solvation models. We emphasize that
some care must be taken to distinguish the degree to which different continuum
models have been extended to account for non-electrostatic effects, since these
effects may certainly play a large role in some of the equilibria under discussion.
Those continuum models that consider only electrostatics are of limited
applicability unless non-electrostatic effects cancel for all equilibrium
contributors.

We will begin with a discussion of reaction equilibria, including acid-base
reactions and more complex bond-making/bond-breaking reactions. We will then
move on to tautomeric equilibria. We note that Reichardt [240] has provided a
thorough compilation of many equilibria, including most of those discussed
below, where solvent effects had been studied experimentally and/or using some
theoretical model, as of 1990. On the theoretical side, at least, the number of
systems studied has greatly expanded since then.. Whereas Reichardt summarizes
the use of linear free energy relationships for predicting such equilibria, a large
amount of the recent work is based on SCRF models.

4.1 REACTION EQUILIBRIA

As one might expect, reactions that create, destroy, or separate charge tend to
exhibit very large solvation effects. The most common examples of such reactions
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are Brgnsted acid-base equilibria. A particularly striking example is available for
the special case of an internal acid-base proton transfer, which is also a special
case of a tautomeric equilibrium. This occurs, for example, when amino acids are
placed in water. Several continuum modeling studies have focused on this
equilibrium for glycine, and they are summarized in section 4.1.1. Intermolecular
proton transfers have also been the subject of several studies, particularly transfers
between amine bases; these investigations are described in section 4.1.2.

4.1.1 Intramolecular proton transfer

HQN/\COZH —_— *HN /\coa-

1 2

At biological pH, glycine exists exclusively in its zwitterionic form 2 [241],
whereas in the gas phase, only the non-zwitterionic species 1 is observed [242]. In
the absence of solvation, the zwitterion is not a stationary point, but instead
undergoes spontaneous proton transfer back to the neutral form. In an early study,
Bonaccorsi et al. [243], using the PCM model, showed that a continuum solvation
model can account for the stability of the zwitterion in aqueous solution. Although
they made some comparison to the experimental enthalpy for the transfer of 1
from the gas phase to 2 in aqueous solution (-19.2 * 1 kcal/mol) [244], this
particular study emphasized the sensitivity of the computational results to solute
geometries (many of those discussed were unoptimized), basis set, and cavity
size. Thus, the calculated gas-phase proton transfer energy ranges from 20 to 40
kcal/mol at the HF/4-31G [245] level, to 65 to 90 kcal/mol at the HF/STO-3G
level. Different prescriptions for choosing the zwitterion cavity yielded solvation
free energies varying from —36.2 kcal/mol to —57.3 kcal/mol. Since the zwitterion
is not stationary in the gas phase, the experimental enthalpy of transfer cited
above cannot be separated into proton transfer and solvation components (and the
entropic aspects are similarly unclear, making comparison to reaction field free
energies results difficult). Hehre et al. [246] used the AM1-SM2 model to study
the solvation of neutral and zwitterionic glycine, and found the zwitterionic form
to be better solvated by 25 kcal/mol in aqueous solution. Adding this differential
free energy of solvation to the relative gas phase free energy difference (using a
frozen zwitterion geometry) of 17.8 kcal/mol favoring the neutral form at the
HF/3-21+G level, they predict the zwitterion to be the preferred form in aqueous
solution by 7.6 kcal/mol.
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4.1.2 Intermolecular proton transfer

In the gas phase, simple deprotonations tend to be barrierless reactions leading to
a high-energy separated proton and anion, but solvation can change the situation
even qualitatively. Pietro has emphasized the pedagogical utility of employing a
continuum solvation model (in this case the SM1 model) in a computational study
on the deprotonation of nitromethane [247]. When reaction field calculations are
used to calculate standard state free energies of conjugate acids and bases in
solution, this permits direct calculation of the acid dissociation constant (pKg).
Such calculations of the absolute pK, are notoriously difficult, since very high
levels of theory are required to accurately calculate the gas-phase component of
proton affinities and since solvation energies of ions are very large, so that even
relative errors in solvation energies can be large on an absolute scale. As a result,
most methods for predicting pK, values tend to be empirical in nature [248-250].
A simpler alternative to calculations of absolute pK’'s is to examine trends in pKg
values for related molecules. In this vein, Rajasekaran et al. [251] have used the
finite difference Poisson-Boltzmann method to examine differences in pK, values
for aliphatic dicarboxylic acids. They identify the importance of solvent screening
of charge-charge interactions internal to the solute. Urban et al. [252] have
employed a similar approach in examining the relative pK, values for phenol and
ortho-, meta-, and para-fluorophenol, using the SM2 and SM3 quantum
mechanical solvation models, and the physically similar molecular mechanics
GB/SA model. They noted in particular the importance of accounting for non-
electrostatic hydrophobic interactions of the fluorine atom. The QM models agree
with experiment to within about 1 kcal/mol for the effect of solvation on the
relative pK, values. The MM model does similarly well when charges derived
from fitting to the molecular electrostatic potential (ESP) are employed.

Other workers have considered proton transfer reactions between different
bases and the effect of solvation on these processes. Terryn and Rivail [253],
Galera et al. [254], Pascual-Ahuir et al. [255], Tuifién et al. [256], and Young et al.
[195] have all focused on the interesting aqueous basicity trend of the series
ammonia, methylamine, dimethylamine, and trimethylamine. In the gas phase, it
is well established that the order of basicity for these amines is Me3N > MeaNH >
MeNH7 > NHj3 [257, 258]. This may be understood on the basis of simple
polarizability arguments. However, in aqueous solution, the basicity ordering
changes to MeNH, = MeaNH > MesN = NHj [259]. All of these studies indicate
that changes in basicity are dominated by the electrostatic component of the free
energy of solvation of the relevant ammonium ions. In aqueous solution, the
smaller ions are better solvated, and as a result have lower free energies. These
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studies also emphasize, however, how sensitive the results are to choices of basis
set and cavity size. In particular, Young et al. [195] compared an ellipsoidal cavity
SCRF model with multipole expansions of /=1 and I = 6 to the generalized-
cavity PCM approach. The ellipsoidal cavity model predicts considerably larger
differential solvation free energies between different members of the homologous
amine series than does the PCM model, but these differences tend to cancel so
that both PCM and the [ = 6 expansion gave qualitatively correct answers (i.e.,
proper sign and within about 1 pK, unit for ApK, on going from the gas phase to
aqueous solution). The / = 1 expansion, i.e., an ellipsoidal Kirkwood-Onsager
model, was less satisfactory, and did particularly poorly when comparing
ammonia and methylamine.

The present authors, using the SMx series of models, have considered
aqueous solvation effects on proton transfer for these same amines, together with
several other bases, and have arrived at similar conclusions to those detailed
above [83, 236, 260].

Tuiién et al. have considered the inversion of the alcohol acidity scale on
passing from the gas phase to solution [261]. They used gas-phase geometries, the
PCM method for electrostatics (with a radius for O of 1.68 A in the alcohol and
1.4 A in the conjugate base), and separate estimates of dispersion and cavitation
energies. They found that increasing the size of the alkyl group decreases the
solvation energy of the conjugate base in solution and concluded that this is the
primary source of the acidity order.

Finally, studies of proton transfer reactions in aqueous solution where an
individual water molecule plays a role that distinguishes it from the bulk solvent
have also recently appeared. Rivail et al. [105, 262] have examined the water-
assisted ionization of HF and HCI in both nonpolar and polar solutions. Using a
generalized multipole reaction field method (with multipoles up to I = 6) within an
ellipsoidal cavity (to facilitate geometry optimization), they concluded that
ionization of HCI requires the specific assistance of two water molecules, and that
the resultant cation is better described as H5O,* than as (H30%)*H7O. They also
concluded that ionization of HF does not proceed in a polar continuum even with
two explicit water molecules included in the cavity. This may be compared to a
study by Ando and Hynes [263] in which the bulk water solvent is treated not
within the framework of a reaction field formalism, but instead is represented as a
generalized solvent coordinate [264]. The energetics associated with the solvent
coordinate were determined from Monte Carlo simulations using explicit water
molecules for various points along an assumed proton transfer reaction path.
Ando and Hynes also included two explicit water molecules in their quantum
mechanical treatment. Their key conclusions were that two proton transfer steps
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occur adiabatically; the first has a negligible free energy barrier and proceeds with
significant motion along the solvent coordinate (i.e., solvent structural
rearrangement is required), while the second free energy barrier is about 0.9
kcal/mol and arises primarily from the requirement for nuclear reorganization of
the two water molecules. The free energy change associated with this ionization
was calculated to be —6.9 kcal/mol (an estimate of —7.5 kcal/mol was offered that
includes complete separation of the ions), which may be compared with the
experimental ionization free energy of —8 to —10 kcal/mol [265]. Ando and
Hynes’ findings agree with those of Rivail et al. in that the transferred proton is
associated about equally strongly with both of the explicit water molecules;
however Ando and Hynes observe this to be the case only after inclusion of zero
point vibrational energy, while Rivail et al. find only a single equilibrium
structure in the appropriate region of the (C1-)*HsO2* potential energy surface.

4.2 TAUTOMERIC EQUILIBRIA

A tautomeric equilibrium is a unimolecular equilibrium in which the various
contributors differ based upon bond connectivity. In the special case of a
protomeric tautomeric equilibrium, they differ only in how many protons are
attached to each heavy atom. In-text figures throughout this section illustrate
molecules for which multiple tautomers exist. When the molecules of interest are
heterocycles, different tautomers may exhibit very large differences in electronic
properties [266]. In particular, they may span a wide range of polarities. That
being the case, tautomeric equilibria can be quite sensitive to solvation effects,
and they have thus proven to be attractive testing grounds for continuum solvation
models. o

In a recent review [83], the present authors discussed the tautomeric
equilibria of 2-hydroxypyridine/2-pyridone and the 5-(2H)-isoxazolone system in
considerable detail, focusing on the application of several different continuum
solvation models. The following presentation will be somewhat more broad in
terms of the different equilibria discussed and will not recapitulate all of the
analysis previously presented for the above two systems.

Section 4.2.1 will be devoted to heterocycles, section 4.2.2 will cover
other kinds of protomeric tautomeric equilibria (e.g., enol/ketone, formic acid,
formamidine, etc.), and section 4.2.3 will discuss an example of a ring/chain
tautomeric equilibrium. The order of presentation will be approximately by
increasing molecular weight within each section. A review by Kwiatkowski et al.
[267] covers work on formamide, pyridines, pyrimidines, purines, and nucleic
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acid bases up to 1984, so for these systems our focus will predominantly be on
more recent investigations.

We note one general point prior to addressing individual systems.
Computational studies aimed at providing quantitative predictions of equilibrium
populations in solution must accurately predict total free energies in solution. In
particular, if the theory employed involves calculating solvation free energies to
be added to a gas-phase potential energy surface with thermal rovibrational effects
included (and essentially all calculations in solution may be viewed as conforming
to this separation of components), then either the gas-phase free energies and the
free energies of solvation must both be calculated accurately, or errors in one part
of the calculation must be offset by errors in the other. Clearly, the former
situation is the more desirable. Where possible, we will provide some analysis of
the quality of the gas-phase portions of the following calculations as well.
Naturally, when the point of the calculation is merely to provide qualitative
indications of relative free energies of solvation for different tautomers,
requirements on the accuracy of the levels of theory are less stringent.

421 Heterocycles

This section is divided into eight subsections, covering imidazoles, pyrazoles,
isoxazoles, oxazoles, triazoles, tetrazoles, pyridines, and pyrimidines, purines, and
nucleic acid bases respectively.

4.2.1.1 Imidazoles
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Two tautomeric equilibria have been considered for substituted imidazoles, that
between 2-imidazolone 3 and its 2-hydroxyimidazole tautomer 4 [268] and also
that between the 1H and 3H tautomers of 4-nitroimidazole, 6 and 5, respectively
[269, 270]. Karelson et al. used the DO2* model with a spherical cavity of 2.5 A
radius and found 2-imidazolone to be better solvated than its tautomer by 7.7
kcal/mol at the AM1 level. [The asterisk in DO2* indicates that the reaction field
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was derived from solution of an incorrect non-linear Schrodinger equation, i.e.,
not eq 30 [157]. In the DO2* model, a factor of 0.5 precedes the operator Kop in
eq 30; the result is reduced polarization of the wave function in response to
solvation.] AM1 further predicts the gas phase energy difference to favor the oxo
tautomer by about 8 kcal/mol. The observed tautomer in solution is the 0xo
tautomer [266].

Using the same theoretical model, Karelson et al. [269] and later Rzepa et
al. [270] examined 4-nitroimidazole. The latter work corrected incomplete
geometry optimizations present in the former study. In this instance, AM1
predicts 5 to be 1.4 kcal/mol lower in relative energy than 6. However, the DO2*
model predicts the aqueous solvation free energies to be —25.3 and —7.1 kcal/mol
for 6 and 5, respectively, rendering 6 considerably lower in energy than § in
solution, which agrees with the experimental situation.

It is clear in both of these studies that the small cavity size (which fails to
entirely contain all of the atoms given standard van der Waals radii) causes
electrostatic solvation free energies to be seriously overestimated—the difference
in the 4-nitroimidazole system seems much too large to be physically reasonable.
This overestimation would be still more severe were a correct DO model to have
been used (i.e., one which accounted self-consistently for the full solute
polarization using eq 30). Nevertheless, the DO2* results may be considered
qualitatively useful, to the extent that they identify trends in tautomer electrostatic
solvation free energies.

One measure of the inaccuracy associated with the small cavity radius may
be had from the calculations of Orozco et al. [207], who also studied the
4-nitroimidazole system using the PCM8/ST model. The general cavity in this
case was constructed from atom-centered spheres having typical van der Waals
radii [207]. At the AM1 level, the differential electrostatic free energy of
hydration is predicted to be only 4.5 kcal/mol; this may be compared to the value
of 18.2 kcal/mol noted above for the DO2* model. Orozco et al. [207] also
included first-solvation-shell effects, which they found to favor § by 1.2 kcal/mol,
leading to a net differential free energy in solution (AM1 + PCMB8/ST) of 2.1
kcal/mol.
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4.2.1.2 Pyrazoles
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Karelson et al. [268] also used the AM1 DO2* method with a spherical cavity of
2.5 A radius to study tautomeric equilibria in the 3- and 4-hydroxypyrazole
systems, 7-9 and 10-12, respectively. Rzepa et al. [270] later corrected the results
for incomplete geometry optimization in the latter heterocycle. Although the
observed [266] forms in aqueous solution are the oxo tautomer 8 (ie., the
pyrazolone) in the first case and the zwitterion 12 in the latter case, gas-phase
AMI1 calculations predict these tautomers to be much higher in relative energy
than the corresponding hydroxy tautomers 7 and 10, respectively. In each case, it
was found that the DO2* method successfully predicted the observed aqueous
tautomer. However, the DO2* electrostatic solvation free energy for 12 was
predicted to be —57.3 kcal/mol! As for the nitroimidazole results discussed in the
last section, this number is incredibly large, probably as a result of the small
cavity radius chosen. However, so large a solvation free energy was required in
order to overcome a very unfavorable gas-phase energy predicted by AM1 (about
40 kcal/mol higher than the other two tautomers). It seems likely that the AM1
relative energy is inaccurate, given the experimental situation and the very small
likelihood of two tautomers differing in solvation free energy by so large an
amount.

One qualitative result of particular interest arises in the study of
3-hydroxypyrazole. The electronic structure of the oxo tautomer 8 may be thought
of as having two mesomeric (i.e., resonance) contributors 8a and 8b, as illustrated
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above. In the gas phase, Karelson et al., using the DO2* model, found the C-O
bond length in 8 increased by 0.098 A on going from the gas phase into a solution
with a dielectric constant € of 78.4, which implies increased contribution from the
zwitterionic mesomer.

Parchment et al. [271] have provided more recent calculations on the 3-
hydroxypyrazole equilibrium at the ab initio level. They noted that tautomer 9,
which was not considered by Karelson et al. [268], is the lowest-energy tautomer
in the gas phase at levels of theory (including AMI1) up to
MP4/6-31G**//HEF/3-21G [271]. Although 8 is the dominant tautomer observed
experimentally in aqueous solution, in the gas phase 8 is predicted to be nearly 9
kcal/mol less stable than 9 at the MP4 level [271]. Using a DO model with an
unphysically small cavity radius of 2.5 A, Parchment et al. [271] were able to
reproduce at the ab initio level the AM1-DO prediction of Karelson et al. [268],
namely that 8 is the most stable tautomer in aqueous solution. With this cavity,
though, 8 is predicted to be better solvated than 9 by —22.2 kcal/mol [271]. This
result is inconsistent with molecular dynamics simulations with explicit aqueous
solvation [271], and with PCM and SCME calculations with more reasonable
cavities [271]; these predict that 8 is only about 3 kcal/mol better solvated than 9.
In summary, the most complete models used by Parchment et al. do not lead to
agreement with experiment

The comparisons made by Parchment et al. [271] illustrate the importance
of combining electronic polarization effects with corrections for specific solvation
effects. The latter are accounted for parametrically by the explicit simulation, but
that procedure cannot explicitly account for the greater polarizability of tautomer
8. The various SCRF models do indicate 8 to be more polarizable than any of the
other tautomers, but polarization alone is not sufficient to shift the equilibrium to
that experimentally observed. Were these two effects to be combined in a single
theoretical model, a more accurate prediction of the experimental equilibrium
would be expected.

4.2.1.3 Isoxazoles
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Karelson et al. [268] used the AM1 DO2* method with a spherical cavity of 2.5 A
radius to study tautomeric equilibria in the 3-hydroxyisoxazole system (the keto
tautomer 13 is referred to as an isoxazolone). AM1 predicts 13 to be 0.06
kcal/mol lower in energy than 14 in the gas phase. However, the AM1 dipole
moments are 3.32 and 4.21 D for 13 and 14, respectively. Hydroxy tautomer 14 is
better solvated within the DO2* model, and is predicted to be 2.6 kcal/mol lower
in energy than 13 in a continuum dielectric with € = 78.4. Karelson et al. note,
however, that the relative increase in dipole moment upon solvation is larger for
13 than for 14 (aqueous AM1 dipole moments of 5.05 and 5.39 D, respectively).
This indicates that the relative magnitude of gas-phase dipole moments will not
always be indicative of which tautomer will be better solvated within a DO
solvation approach—the polarizability of the solutes must also be considered. In
any case, the DO2* model is consistent with the experimental observation [266]
of only the hydroxy tautomer in aqueous solution.

Woodcock et al. [272] also studied the 3-hydroxyisoxazole system,
making several comparisons to the above work of Karelson et al. They noted in
particular that the hydroxy tautomer has two possible rotamers about the C-O
bond, one which places the hydroxyl proton syn to nitrogen (14) and one which
places it anti (15). Karelson et al. considered only 14, which is 4.3 kcal/mol lower
in energy in the gas phase at the MP4/6-31G**//HF/3-21G level. Woodcock et al.
also demonstrated that AM1 agrees poorly with this correlated ab initio level of
theory for the relative energies of 13 and 14: the MP4 calculations predict 13 to
be 7.1 kcal/mol higher in energy than 14. Finally, AM1 also disagrees with HF/6-
31G**//HF/3-21G with respect to the molecular dipole moments. Tautomers 14
and 13 are predicted to have gas-phase dipole moments of 2.5 and 3.8 D
respectively at the ab initio level, reversing the order found at the AM1 level.
Moreover, the anti hydroxyl tautomer 15 has a gas-phase dipole moment of 6.2 D
at the HF/6-31G**//HF/3-21G level! Thus, when Woodcock et al. considered the
effects of solvation using a correct DO model (as opposed to DO2*) but
continuing with the small spherical cavity radius of 2.5 A used by Karelson et al.,
they find the relative energies in aqueous solution of 14, 15, and 13 to be 12.8,
0.0, and 1.8 kcal/mol respectively. Note the difference between AM1 and the ab
initio level of theory with respect to 14 vs. 15: the former predicts 15 to be the
more stable tautomer by 2.6 kcal/mol while the latter predicts a reversal of this
ordering by about 15 kcal/mol. Note as well that the relative energies of the two
hydroxyl rotamers differ by 12.8 kcal/mol—this is a very large difference in
electrostatic solvation free energies for rotamers, and, if we recall that the DO
model calculates the free energy of solvation as being proportional to the square
of the molecular dipole moment and inversely proportional to the cube of the
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cavity radius., we can reasonable conclude that this large difference reflects both
the problems of truncating the multipole expansion at the dipole and of choosing
unreasonably small cavity radii.

Woodcock et al. also examined a different continuum model, namely the
PCM model with a solvent accessible surface area defined according to the
prescription of Aguilar and Olivares del Valle [273] based on basis set and partial
atomic charge. This much more realistic cavity still predicts 13 to be better
solvated than 14, but by only 2.4 kcal/mol at the HF/6-31G**//HF/3-21G level.
When combined with the MP4 gas phase energies, 14 is predicted to predominate
by 4.7 kcal/mol. This is remarkably consistent with molecular dynamics
simulation studies carried out by Woodcock et al. using frozen ab initio
geometries for the solutes, solute partial atomic charges derived from electrostatic
potential fitting [274], and the Transferable Intermolecular Potential 3-Point
(TIP3P) [275] water model with the AMBER [276] force field. The simulations
predict 13 to be better solvated than 14 by 2.2 + 0.4 kcal/mol. They also make the
much more reasonable prediction that the difference in solvation free energies for
the two hydroxyl rotamers is only 1.7 £ 0.5 kcal/mol, favoring the anti rotamer.
When either the PCM or the MD solvation results are added to the MP4 relative
gas-phase energies, 14 is predicted to be the most stable in aqueous solution.
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Karelson et al. [268] used the AM1 DO2* method with a spherical cavity
of 2.5 A radius to study tautomeric equilibria in the 4-hydroxyisoxazole system
(they did not specify which hydroxyl rotamer they examined). Tautomer 17
predominates in aqueous solution. Although AMI predicts 16 to be about 10
kcal/mol more stable in the gas-phase than 17, its dipole moment is only predicted
to be 0.68 D. Tautomer 17 has a predicted dipole moment of 2.83 D in the gas-
phase. With the small cavity, the two dipole moments increase to 0.90 and 4.56 D,
respectively, and this is sufficient to make 17 0.3 kcal/mol more stable than 16 in
solution. Zwitterion 18 is much better solvated than either of the other two
tautomers, but AM1 predicts its gas-phase relative energy to be so high that it
plays no equilibrium role in either the gas phase of solution.




CONTINUUM SOLVATION MODELS 43

H
Nz N N
10’ - H ol V H Ol VD H
5 —
4 .'IH
O H 0] H HO H
19 20 21

The present authors have discussed the 5-hydroxyisoxazole tautomeric
equilibrium at length in a previous review [83]. For the sake of completeness, we
note that Karelson et al. [268] studied this equilibrium with the DO2* model and a
spherical cavity radius of 2.5 A and came to the conclusion that 19 should slightly
predominate (hydroxyl rotation in 21 was not specified). Woodcock et al. [272]
found that AM1 gas-phase energies differed from MP4/6-31G**//HF/3-21G
energies by up to 5 kcal/mol, although predicted dipole moments were in better
agreement between the two levels of theory than was the case for
3-hydroxyisoxazole (vide supra). Although Woodcock et al. found that adding
solvation free energies from an ab initio DO model with a 2.5 A spherical cavity
radius also predicted that 19 should slightly predominate, this was not consistent
with either PCM results or MD simulations, both of which suggested 20 to be
lower in energy in aqueous solution. The present authors [277] employed ab initio
levels of theory that effectively converged the gas-phase relative energies, noting,
as had Rzepa et al. [270], that inaccurate geometries had been used for 19 in the
earlier studies. When SMx solvation free energies were added to these gas-phase
energies, the present authors predicted that both isoxazolone tautomers should be
present with 20 slightly predominating. This is consistent with trends apparent in
the tautomeric equilibria of the 3-methyl, 4-methyl, and 3,4-dimethyl homologs of
this heterocyclic system, for which experimental equilibrium data are available
[278, 279], and for which the SMx models are in good agreement with experiment
[277]. Gould and Hillier [280] subsequently revisited this system and illustrated
that the DO model was incapable of providing accurate predictions even when
accurate geometries and a more reasonable cavity were employed. However,
when higher solute multipole moments were included in the reaction field, the
results were more consistent with the SMx predictions for the unsubstituted
system. Finally, both the present authors as well as Gould and Hillier emphasized
the importance of accounting for non-electrostatic components of the free energy
of solvation.
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4.2.1.4 Oxazoles
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Karelson et al. [268] used the AM1 DO2* method with a spherical cavity of 2.5 A
radius to study tautomeric equilibria in the 2-, 4-, and 5-hydroxyoxazole systems
(the keto tautomers are referred to as oxazolones). Tautomers illustrated above in
parentheses were not considered and hydroxyl rotamers were not specified. In the
first two systems, tautomers 22 and 25 are predicted by AM1 to be about 14
kcal/mol more stable than the nearest other tautomer in their respective equilibria.
Differences in tautomer solvation free energies do not overcome this gas-phase
preference in either case, and the oxazolones are predicted to dominate the
aqueous equilibrium, as is observed experimentally [266].

In the 5-hydroxyoxazole system, AMI1 predicts the 5-(4H)-oxazolone
tautomer 28 to be the lowest in energy in the gas phase by 12.4 kcal/mol. This
tautomer is experimentally observed in the solid state [266]. The employed DO2*
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model, however, predicts that the zwitterionic tautomer 29 should predominate in
aqueous solution by about 20 kcal/mol with a solvation free energy of nearly —40
kcal/mol; this is probably a large overestimation of the magnitude owing to the
arbitrarily small size of the DO2* cavity employed. Experimental solution data
are not available. The AM1 gas-phase energies are also not quantitative,
suggesting that this might be an interesting system for which to make higher level
predictions.

4.2.1.5 Triazoles
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Tomds et al. [281] have calculated the tautomeric equilibrium of 1,2,3-
benzotriazole in the gas phase and compared their results to experimental data
[282] derived from ultraviolet spectroscopy. Experiment suggests that 35 is about
4 kcal/mol more stable than 34; this result is consistent with calculations [281] at
the MP2/6-31G* level, which predict 35 to be 2.5 kcal/mol more stable than 34.
The same level of theory predicts 33 to be 5.0 kcal/mol more stable than 32 in the
parent triazole system. Although experimental data are available indicating 35 to
be the dominant tautomer in CDCl3 and dg-dimethyl sulfoxide solutions [279,
283], this equilibrium does not appear to have been the subject of any modeling,
continuum or otherwise. It may prove to be somewhat challenging, however.
Tomds et al. point out that correlation effects favor 35 by about 5 kcal/mol at the
MP2 level; AM1, PM3, and HF calculations with moderate basis sets all predict
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34 to be the lowest in energy in the gas phase. Moreover, Fabian [284] has noted
significant discrepancies between experimental tautomeric equilibria and
predictions from both AM1 and PM3 when one or more tautomers has adjacent
pyridine-like lone pairs, as is the case for 34. This suggests that the electronic
densities calculated at these levels may not be sufficiently accurate for solvation
modeling.

In conjunction with the present review we have carried out AM1-SM4
calculations in solvent n-hexadecane (€ = 2.06) for the benzotriazole equilibrium.
We find that 35 is better solvated than 34 by 0.9 kcal/mol, with all of the
differential solvation being found in the AGgNp term. Not surprisingly, PM3-SM4
results are very similar. This seems to be out of step with the data from CDCls,
the most nonpolar solvent for which experimental results are available. It is not
clear, however, whether this difference is attributable to (i) the smaller dielectric
constant of n-hexadecane compared to CDCl3 (for CHCl3 € = 4.8 at 293 K [240]),
(ii) specific interactions between weakly acidic chloroform and the basic
benzotriazole tautomers, (iii) inadequacies in the semiempirical electronic
structure, (iv) inadequacies in the SM4 model, or (v) some combination of any or
all of the above. When SM5 models are available for CHCl3 and DMSO, it will
be interesting to revisit this system.

Another challenging triazole system, 3-amino-1,2,4-triazole, has been
discussed by Parchment et al. [285]. In aqueous solution, ISN-NMR indicates
[286] a 2:1 mixture of 37:36, with no detectable amounts of 38 present. Tautomer
38 is the least stable in the gas phase: at the CCSD/6-31G*//HF/6-31G* level, 36,
37, and 38 are predicted to have relative energies of 0.0, 0.4, and 7.8 kcal/mol,
respectively [285). With a DO model using a cavity radius of 3.0 A at the
HF/6-31G** level, Parchment et al. [285] predicted the relative energies of 36,
37, and 38 in aqueous solution to be 2.5, 0.0, and 1.4 kcal/mol, respectively;
although the relative ordering of 36 and 37 is correct, 38 is too low in energy
based on the above NMR data. PCM calculations at the same level of theory
predicted the relative energies of 36, 37, and 38 in aqueous solution to be 0.0, 1.8,
and 5.0 kcal/mol, respectively. This prediction of the electrostatics is more
consistent with the observed equilibrium, and it appears that correcting for
specific solvation effects could easily reverse the relative energies of 36 and 37.
However, it may be that the proximity of the primary and secondary amino
functionality in tautomer 37 requires inclusion of a specific water molecule in the
continuum calculation as there is an opportunity for a unique hydrogen bonding
pattern possible only for that tautomer (each amino group hydrogen bonding to
one lone pair of a single water molecule).
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4.2.1.6 Tetrazoles
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Tetrazole can exist as three tautomers, as illustrated above. Wong et al. [287] have
summarized the experimental and theoretical data for the gas-phase equilibrium;
there is general agreement that 40 is more stable than 39 by about 2 kcal/mol,
while 41 is about 20 kcal/mol higher in free energy. Wong et al. also used the
DO3 model to examine electrostatic solvation effects on the tetrazole equilibrium
at the MP2/6-311+G**//HF/6-31G* level. At this level they predict the
equilibrium to barely reverse in a continuum dielectric of € = 2, so that 39 is
favored over 40 by about 0.1 kcal/mol. For € = 40, they predict 39 to be favored
over 40 by about 3 kcal/mol. This ordering is consistent with the experimental
observation [283] of only 39 in dimethylsulfoxide (e = 46.5 at 298 K [240]). The
possible differential effects of specific interactions between tetrazole tautomers
acting as hydrogen-bond donors to DMSO were not considered. Tautomer 41
remained much higher in energy for both dielectric constants.

For comparison purposes, we have carried out for the present review
AM1-SM4 calculations in n-hexadecane (¢ = 2.06). We find the solvation free
energies of 39 and 40 to be -3.5 and -2.7 kcal/mol, respectively. Thus, the two
solvation models agree that 39 is better solvated than 40. However, we calculate
the differential solvation free energy, 0.8 kcal/mol, to be smaller than that found
by Wong et al., 2.0 kcal/mol (in a hypothetical solvent with € = 2.0). Moreover,
we calculate AGgnp for 39 and 40 to be —4.4 and -3.6 kcal/mol, respectively.
These values may be compared to the DO3 (also electrostatics only) results of
Wong et al., which were —2.4 and -0.4 kcal/mol. These differences, as noted
above for the 5-hydroxyisoxazole system, are probably attributable to the failure
of the DO model to take account of higher multipole moments. The net result is
that the two models differ for ¢ = 2—the DO3 model predicts a very slight
prevalence of 39, while the SM4 model predicts about a 7:1 ratio of 40:39.
Unfortunately, limited solubility of tetrazole in solvents less polar than DMSO
has not yet permitted an experimental measurement of this equilibrium.
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4.2.1.7 Pyridines
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Hydroxypyridine/pyridone equilibria have been extensively studied. Numerous
experimental [240, 266, 288, 289] and modeling studies of these systems in the
gas phase [284, 290-293] and in solution [157, 159, 160, 195, 236, 260, 294-300]
have appeared. An earlier review [83] by the present authors includes a summary
of the literature through 1993. We briefly review that earlier work and include
some more recent contributions.

The 2-substituted system has proven especially attractive to modelers
because the experimental equilibrium constants are known both in the gas phase
and in many different solutions. As a result, the focus of the modeling study can
be on the straightforward calculation of the differential solvation free energy of
the two tautomers, without any requirement to first accurately calculate the
relative tautomeric free energies in the gas phase. However, in 1992 Les et al.
[290] suggested that prior experimental data [240, 266, 288], primarily in the form
of ultraviolet spectra in the gas phase and in low-temperature matrices, had been
misinterpreted and that the reported equilibrium constants referred to homomeric
dimers of tautomers (i.e., (42) == (43);). Parchment et al. [291] contested this
assertion and suggested an incomplete accounting for correlation in the modeling
studies of Les et al. Simultaneously, a gas-phase microwave experiment appeared
that unambiguously established the two tautomers to be monomeric in the gas
phase [289].

Calculations on the differential solvation free energies of the two relevant
tautomers are presented in the following table for several different models
implemented at a number of levels of theory. The following discussion will focus
on comparing specific calculations in the table. :

We begin with a comparison of the various DO models to each other.
Based on a parametric procedure that takes account of the molecular volume
encompassed by the 0.001 a.u. electron density envelope, Wong et al. [297]
suggested that an appropriate spherical cavity radius is 3.8 A. Szafran et al. [157]
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TABLE I1I
Differential free energies of solvation (kcal/mol) for 2-pyridone 42 and
2-hydroxypyridine 43 for different dielectric constants and solvent models.4

Dielectric Constant

Model/Hamiltonianb e=2 e=5 £=36 £=78 Cavity Ref
DO2*/AM1 43 rad.3.15Ac¢  [295]
DO2*/AM1 08 1.5 20 21 rad.38A [157]
DO2*/PM3 07 13 18 19 rad.3.8A [157]
DO2*/AM14 1.5 rad.3.8A [157]
DO2*/PM34 1.7 rad.38A [157]
DO/AM1 48 rad.3.0A [159]
DO/AM1 09 1.6 23 23 rad.38A [157]
DO/PM3 07 14 20 21 rad38A [157]
DO/AM14 2.7 rad.3.8A [157]
DO/PM34 24 rad.3.8A [157]
DO/HF/3-21G 57 rad.3.8A [298]
DO/HF/6-31G** 1.1 3.0 rad. 3.8 A [297]
DO/HF/6-31+G** 1.2 3.4 rad. 3.8 A [297]
DO/MP2/6-31+G** 1.0 3.2 rad. 3.8 A [297]
DO/VWN/DZP 6.4 rad.3.8A [160]
DO/BP/DZP 6.2 rad.3.8A [160]
SCME(l = 6)/HF/6-31G** 1.5 42 43 rad.38A [195]
SCME(l = 6)/HF/6-31G** 3.3 45 4.6 ellipsoidal [195]
PCM/AM1 1.6 3.3 4.8 5.0 vander Waals [301]
PCM/HF/6-311G** 2.6 57 5.8 vander Waals [195]
AM1-SM4 cyclohexane¢ 0.6 van der Waals f
PM3-SM4 cyclohexane¢ 1.6 van der Waals™ f
AM1-SM1 water¢ 4.4 van der Waals [260]
AM1-SM2 water® 2.6 van der Waals [236]
PM3-SM3 watere 4.3 vander Waals [236]
PCMS8/ST/AM1 water 4.1 vander Waals [207]
PCMB8/ST/PM3 water 3.0 vander Waals [207]
Experiment 1.1 1.8 38 43 [288]

@ In every case, 2-pyridone is the better solvated isomer by the amount indicated.
b See text for description of Hamiltonians/acronyms. ¢ rad. denotes radius of a
spherical cavity. 9 Includes one explicit water of hydration. ¢ The SMx and
PCMRS/ST models include non-electrostatic effects; the other models do not.
f This work.
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arrived at a similar cavity radius based on van der Waals volumes of the solutes.
At the semiempirical level, Szafran et al. [157] compared the DO2* model to the
normal DO approach. Although the DO2* model does not polarize the wave
function as much as the full DO model, the effect on the differential solvation
energy is fairly small at the AM1 and PM3 levels, amounting to only 0.2 kcal/mol
at € = 78. The agreement with experiment is good for the two smallest dielectric
constants and rather poor for the two largest dielectric constants. When the cavity
radius is treated as a free parameter, it is of course possible to improve the
agreement with experiment for & = 78. Karelson et al. [295] and Freitas et al.
[159] chose unrealistically small cavity radii (2.5 A) for their DO2* and DO
calculations, respectively, at the AMI level, and were able to increase the
differential solvation free energy to more than 4 kcal/mol. Using the more
reasonable cavity radius of 3.8 A, Szafran et al. [157] considered the addition of
one explicit water molecule. It is not clear, however, what the differential
solvation energy of the monohydrates should be, since the tautomeric equilibrium
constant for the monohydrates in the gas phase is not known (at the AM1 and
PM3 levels, Szafran et al. found the monohydration energies to be identical for
both tautomers—ab initio results focusing on the monohydrates in the gas phase
have also appeared [293, 298-300]). What is noteworthy about the monohydrate
calculations is that the difference between the DO2* and DO models becomes
considerably more pronounced—the differential solvation energy differs by
almost a factor of 2 at the AM1 level.

At ab initio levels of theory, Wong et al. [297] examined the effects of
basis set and correlation (evaluated at the MP2 level) on the differential solvation
free energy at € = 2 and € = 36. They did not calculate the € = 78 case, noting that
specific interactions not accounted for by the continuum model might be expected
to be significant in aqueous solution. Within the DO model, however, the
difference between € = 36 and € = 78 is almost negligible, as can be seen from
many of the other calculations. In any case, Wong et al. achieve excellent
agreement with experiment for € = 2 and somewhat underestimate the differential
solvation free energy for £ = 36. The effects of adding diffuse basis functions and
taking account of electron correlation at the MP2 level are fairly small: each
changes the differential solvation free energy by about 10%, albeit in opposite
directions. Barone and Adamo [298] use the same cavity radius as Wong et al.,
(3.8 A) but obtain a much larger differential solvation free energy at € =78, 5.7
kcal/mol, than would be expected based on the HF results of Wong et al. at
£ = 36. The situation is not entirely clear, since the paper of Barone and Adamo
states the calculation to be at the HF/3-21G level, while another paper by Adamo
and Lelj [160] refers to this result as being at the HF/6-31G** level, which should
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certainly agree closely with the results of Wong et al. at € = 36. Assuming the
calculations to be at the HF/3-21G level, it appears more likely that the
discrepancy arises from the lack of polarization functions in the smaller basis set,
since the reported geometries do not differ markedly. This seems to suggest a
potentially important point, namely that at ab initio levels polarization basis
functions appear to be crucial in permitting a realistic relaxation of the solute
wave function in the presence of a reaction field. Adamo and Lelj [160] found a
similarly large differential solvation free energy for € =78 using density
functional theory (DFT). In this case, the local density approximation of Vosko,
Wilks, and Nusair [302] (VWN) was used; the nonlocal corrections of Becke
[303] and Perdew [304] for exchange and correlation energy, respectively (BP),
were also employed. In both cases the results significantly overshoot the aqueous
experimental values. Hall et al. [292] have found very similar density functional
approaches to do poorly with respect to prediction of the gas-phase tautomeric
equilibrium constant, so it appears that the DFT density for one (or both) of the
two tautomers is inaccurate.

Young et al. [195] have provided a calculation in which they compared
expanding the multipole series up to / =6 in a spherical cavity of 3.8 A. These
results may be compared directly to those of Wong et al. [297] at the identical
level of theory/basis set in order to assess the effect of including higher moments.
In each case, the differential solvation free energy increases by about 40%. This
illustrates nicely the relationship between cavity radius and model
approximations—it is apparent that the prescription used by Wong et al. to
calculate cavity radii may be useful when the effects of higher multipole moments
are ignored (i.e., for a DO model) but it will not necessarily be useful for more
general reaction field approaches. In this case, inclusion of higher order
multipoles improves agreement with experiment for € = 36 but agreement is now
less good for € = 2. As noted earlier, there is effectively no difference between the
results for € = 78 and € = 36—for a cavity radius of 3.8 A, the former are in
quantitative agreement with experiment. Upon switching from a spherical cavity
to an ellipsoidal one, however, the agreement with experiment is degraded [195],
especially for € =2. This is in opposition to the general observation that
ellipsoidal cavities are to be preferred over spherical ones (although both are
inferior to more general cavities).

Results for continuum models having more general cavities are available.
In particular, Wang and Ford [301] and Young et al. [195] have carried out PCM
calculations at the AM1 and HF/6-311G** levels, respectively. Both sets of
calculations significantly overestimate the differential solvation free energies.
This may reflect a difficulty with charge penetration outside the cavity.
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The GB/ST-type SMx models also employ a general cavity. Since they
include non-electrostatic effects, they require parameterization on a solvent-by-
solvent basis, and at present results for 2-pyridone are only available for € =2
(using the SM4 cyclohexane model [217]) and € = 78 (using the SM1 [210], SM2
[211], and SM3 [212] water models). The cyclohexane solvation model brackets
the experimental result depending on whether the AM1 or PM3 Hamiltonian is
used. This is somewhat surprising, since the CM1 charge models should minimize
differences between the two Hamiltonians. Indeed, for the pyridones the AM1-
CM1 and PM3-CM1 atomic partial charges are very similar and the absolute
solvation free energies agree closely (6.7 and —6.9 kcal/mol for AM1-SM4 and
PM3-SM4 cyclohexane, respectively). For 2-hydroxypyridine, the charges remain
quite similar; the largest deviation is 0.06 charge units on the pyridine nitrogen (-
0.53 with AM1-CM1 and —0.47 with PM3-CM1). Nevertheless, the solvation of
this tautomer appears very sensitive to these small charge differences, and the
absolute free energies of solvation are —6.1 and -5.3 kcal/mol for AM1-SM4 and
PM3-SM4 cyclohexane, respectively. This effect is discussed in somewhat more
detail for formamidic acid in section 4.2.2.1. Non-electrostatic contributions to the
differential solvation free energy, as measured by GSDS values, are less than 0.1
kcal/mol. This is intuitively reasonable and consistent with the assumptions of the
electrostatics-only continuum studies.

The aqueous solvation results are in good agreement with experiment for
the SM1 and SM3 models, but quantitatively too small for the SM2 model. The
present authors have provided a detailed analysis of these results that emphasizes
the importance of (i) relaxing the electronic wave function in the presence of the
reaction field and (ii) reoptimizing the geometry in the presence of the reaction
field .[236]. The latter effect is small in terms of changes in bond lengths, angles,
etc.; but, it permits additional electronic relaxation which contributes to the
overall solvation free energy.

Using the PCM&/ST model, Orozco et al. [207] arrive at values similar to
those found by the SMx models. Interestingly, in this case it is the AM1-based
model that is more accurate than the PM3-based one. This illustrates the subtle
balancing that goes into the parameterization of models that include electrostatic
and non-electrostatic effects simultaneously.

One point of particular interest is that it is not clear from the electrostatics-
only models whether non-electrostatic phenomena affect the aqueous tautomeric
equilibria. For instance, the DO results of Wong et al. [297] would suggest there
are differentiating non-electrostatic phenomena, while the results of Young et al.
[195] for a multipole expansion in a spherical cavity suggest that there are not.
Since the SM1, SM2, and SM3 GB/ST models use Mulliken charges rather than
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CM1 charges in the calculation of AGENP, corrections for charge inadequacies
appear in G?JDS and it is not possible to separate the electrostatic and non-
electrostatic components of the free energy of solvation.

Finally, we note that Karelson et al. [295] have used the DO2* model with
small cavity radii to consider aqueous solvation effects on other tautomeric
equilibria of substituted pyridines. In particular, they examined methyl/methylene,
amino/imino, hydroxy/oxo, and mercapto/thiono substitution at the 2-, 3, and 4-
positions of pyridine. They observed methyl/methylene equilibria to be only
slightly perturbed by aqueous solvation. Amino/imino equilibria were slightly
more perturbed, followed by hydroxy/oxo equilibria. Mercapto/thiono equilibria
were very significantly affected by aqueous solvation; Karelson et al. predicted
pK shifts of up to 16 units. This sensitivity of the thiono group to solvation is also
discussed in the next section. Overall, the tautomeric equilibria of 3- and 4-
substituted pyridines were more sensitive to aqueous solvation than were those of
2-substituted pyridines.

4.2.1.8 Pyrimidines, Purines, and Nucleic Acid Bases
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Some of the impetus for studying tautomeric equilibria in heterocycles arises
because of the postulate that point mutations in genetic material may be
introduced when a given base exists in a tautomeric form during replication [279,
305-307]. Cytosine, in particular, has imino and hydroxy tautomers that are within
3 kcal/mol of the global minimum illustrated above (because of the very large
number of possible tautomers for the purines and pyrimidines, only the lowest
energy tautomers are presented). This analysis has been made based on a
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combination of matrix infrared spectroscopy [308] and theoretical [309-313] (gas
phase) results. In the latter case, it is worth noting that Estrin et al. [314] found
both local and gradient-corrected implementations of density functional theory to
be effective in computing the relative tautomeric energies. This is in contrast to
the observations of Hall et al. [292], discussed in the previous section, with
respect to 2-pyridone. Even for the other nucleic acid bases, there has been
interest in the possibility that solvation might influence the tautomeric equilibrium
sufficiently to play a role in biological systems.

Continuum models have been employed by a number of groups in an
effort to address this question. Scanlan and Hillier [309] considered the effect of
aqueous solvation on uracil, thymine, 5-fluorouracil, and cytosine using a non-
self-consistent DO reaction field model and HF/3-21G electronic structures. They
observed that the model gave qualitative agreement with experimental results for
solvation effects on the tautomeric equilibria, but that the predicted aqueous
populations of non-standard tautomers were too small to be consistent with the
observed rates of mutation in DNA replication. They concluded that other factors
associated with the macromolecular system could not be ignored in this regard.
Katritzky and Karelson [315] used the DO2* model with the AM1 and PM3
Hamiltonians to evaluate tautomeric equilibria for all of the nucleic acid bases, as
well as for the 1-methylated pyrimidine bases. Cavity radii ranged from 3.45 to
3.83 A for the pyrimidines, and the qualitative results were reported to be
insensitive to 10% changes in these values; cavity radii were not reported for the
purines. Katritzky and Karelson emphasized that the semiempirical dipole
moments were in good agreement with experiment for uracil and thymine, and
that the semiempirical structures also agreed well with higher level ab initio
results. Similar points have been made by Fabian with respect to the success of
semiempirical levels of theory in predicting the geometries and dipole moments
for these and related heterocycles [284]. Katritzky and Karelson provide detailed
comparisons between theory and experiment for the relative tautomeric energies
of each base. Although uncertainties in some of the experimental relative free
energies are quite large, nevertheless, the DO2* results were in quite reasonable
qualitative agreement.

Young et al. [316] examined the cytosine tautomeric equilibrium using
both the DO model (cavity radius of 3.54 A) and a multipole expansion through
[ = 6 in both spherical and ellipsoidal cavities. They also employed the PCM
model. All of their results were at the HF/6-31G** level. They observed that the
absolute free energies of solvation were quite sensitive to choice of model, but
that relative free energies were much less sensitive. They also noted that only the
DO model gave good agreement with experimental estimates for the solvation
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free energy of a high-energy oxo-amino tautomer. Finally, they noted that in some
cases the AMI results of Katritzky and Karelson benefited from a cancellation of
errors in the gas phase and solvation energies. Ford and Wang [178] also
examined the solvation of the three lowest energy tautomers of cytosine using an
AM1 PCM model, and arrived at similar conclusions to those discussed above.

Orozco and Luque [317] have examined the tautomerism and protonation
of 7-aminopyrazolopyrimidine (a drug component resembling adenine) using free
energy perturbation and the SM2, PCMY9/ST, and PCM10/ST continuum models.
In this case, they note good agreement between the ab initio PCM9/ST model and
their simulations with respect to which tautomer is the best solvated. This appears
to be supported by experimental data. The AMI1-based SM2 and PCM10/ST
results, on the other hand, predict a different tautomer to be better solvated,
apparently illustrating a case where the semiempirical wavefunction fails to
provide an adequate representation of the solute electronic structure.

Lastly, some studies have recently appeared examining thiosubstituted
purines (commonly used in the treatment of human leukemia) and
thiopyrimidines. In particular, Contreras and Alderte [318] used the AM1-SM1
model to examine the tautomeric equilibrium of 6-thiopurine, and Alhambra et al.
[319] used an HF/6-31G* PCM model to examine the tautomeric equilibrium of
6-thioguanine. Both studies noted very large polarization free energies associated
with thiono tautomers, the net effect being a large shift of negative charge onto
sulfur and a corresponding large gain in solvation free energy. These observations
are consistent with the results of Karelson et al. [295] for thiosubstituted
pyridines. In each case, aqueous solvation reversed the relative stability of the
lowest energy thiol and thiono tautomers compared to the gas phase. Alhambra et
al. also considered the solvation of protonated forms of 6-thioguanine [319].
Contreras and Alderete [320, 321] calculated free energies of solvation of
prototropic tautomers of 2-thiopyrimidine using the SM2 and DO models. They
found considerably larger solvation energies for the thione than the thiol by both
approaches.

4.2.2 Non-heterocyclic Tautomeric Equilibria

In addition to heterocycles, other molecular systems have attracted theoretical
attention with respect to prediction of tautomeric equilibria and solvation effects
thereon. The most commonly studied example in this class is the equilibrium
between formamide and formamidic acid, discussed in the next section. In
addition, some continuum modeling of solvation effects on keto/enol equilibria
have appeared; these are presented in section 4.2.2.2. We note that the equilibrium




56 C. J. CRAMER AND D. G. TRUHLAR

between glycine and its zwitterionic form, discussed in section 4.1.1, is also
formally a tautomeric equilibrium.

4.2.2.1 Formamide
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High-level gas-phase calculations unambiguously establish formamide 46 to be
roughly 13 kcal/mol more stable than formamidic acid 47 [198, 297, 322]. It will
be noted that these molecules represent the critical “fragment” of 2-pyridone
involved in that molecule’s tautomeric equilibrium. As such, it comes as no
surprise that modeling of solvation effects indicates the amide form to be further
stabilized in solution [198, 297]. As a result, no experimental data are available to
which to compare. It remains instructive, however, to compare different
theoretical studies. Wong et al. [297] used the DO model with a spherical cavity
radius of 3.15 A at the QCISD/6-31+G** level and concluded that the amide
tautomer had the larger electrostatic free energy of solvation by 1.5 and 4.1
kcal/mol for dielectric constants of 2 and 36, respectively. Sato and Kato [198]
also examined this system using a multicenter multipole expansion within a
spherical cavity of radius 3.7 A. These authors concluded that the amide tautomer
had the larger electrostatic free energy of solvation by only 2.3 kcal/mol for a
dielectric constant of 36 (¢ =2 was not examined). The reduction in magnitude of
the differential solvation free energy may be a manifestation of either the more
complete multipole expansion favoring the imine tautomer (which has a smaller
dipole moment), or the considerably larger cavity radius employed, or both. The
cavity radius is probably playing a significant role, since Wong et al. found
AGENP (€ = 36) for formamide to be —4.3 kcal/mol, while Sato and Kato [198],
with a more complete multipole expansion, obtained a value of only -2.8
kcal/mol.

For the present review we examined the € = 2 case using the PM3-SM4
n-hexadecane model. This model is particularly appropriate because the PM3-
CM1 dipole moments (3.4 and 1.2 D for formamide and formamidic acid,
respectively) agree well with values obtained from MP2/6-31G** wave functions
(3.9 and 1.2 D, respectively) [235]. The predicted differential free energy of
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solvation is 1.9 kcal/mol, which is fairly close to the value obtained by Wong et
al. [297]. However, the PM3-SM4 model predicts AGENp to be —4.4 kcal/mol at
€ = 2; the DO model of Wong et al. [297] predicts a value of only —1.7 kcal/mol.
Evidently, although solvation terms arising from multipole moments larger than
the dipole and/or the approximation of a spherical cavity are not small, they
appear to cancel in the differential free energy calculation. The PM3-SM4 results
predict the change in G(()JDS to be 0.3 kcal/mol on going from formamide to
formamidic acid, a not entirely negligible change.

Finally, we note that the AM1-SM4 model is less satisfactory for this
problem (predicted differential free energy of —0.2 kcal/mol in n-hexadecane),
apparently because it overestimates the polarity of the functional groups in
formamidic acid, especially the imine group (the AM1-CM1 dipole moment is 1.7
D and the atomic partial charges are up to 0.2 units larger than found for PM3-
CM1). This deficiency is probably also reflected in the AMI1-SM4
underestimation of solvation effects at € =2 for the 2-pyridone/hydroxypyridine
tautomeric equilibrium discussed above. The greater generality of the PM3-CM1
model for nitrogen-containing systems has been previously noted [235].

4.2.2.2 Keto/enol equilibria

o o e o o o o e o-" o
AN — A AT A
48 49 50 51

Substantial populations of intramolecularly hydrogen bonded enol tautomers of
B-diketones and B-ketoesters are found in the gas-phase and in nonpolar solvents
[240]. In water, on the other hand, the dione form is better solvated than the enol,
causing the equilibrium to shift; for example, for ethyl 3-oxobutanoate 50, the
differential free energy of aqueous solvation for the two tautomers is 1.4 kcal/mol
[323, 324]. The present authors examined this equilibrium with the SM1, SM2,
and SM3 aqueous solvation models and found the differential free energies of
solvation to be 1.1, -1.2, and 1.2 kcal/mol, respectively [236, 260]. The sizable
difference between the predictions of the SM2 and SM3 models, with the latter
being in much better agreement with experiment, arises from the AGgnp term of
the enol, which is very sensitive to the partial atomic charges on the oxygen atoms
and on the hydroxyl proton. For 2,4-pentanedione, the differential free energy of
aqueous solvation favors the dione tautomer 48 by 2.4 kcal/mol [323, 324] (note
that a tabulation error occurred in our earlier work [236, 260]; our previously
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tabulated experimental value of 1.0 kcal/mol is for gas to dimethylsulfoxide, not
to water). The SM1, SM2, and SM3 aqueous solvation models predict differential
free energies of solvation of 0.9, —1.6, and 0.6 kcal/mol, respectively [236, 260].
Again, the AGgENp term of the enol 49 is very sensitive to variations in partial
charges from the AM1 and PM3 Mulliken population analyses.

The 2,4-pentanedione system is interesting, since it seems to represent a
challenge for the earlier generation SMx models. Moreover, data are also
available for the tautomeric equilibrium constant in cyclohexane [324]. This
allows us to explore the performance of the SM4 cyclohexane model, and the
SM4-SRP water model (developed originally for hydrocarbons, ethers, and
aldehydes [213], and later extended to include alcohols {325]; we observe that the
performance of the SM4-SRP water model is about as good for ketones as for
aldehydes). The situation is made particularly interesting because the direction of
the equilibrium perturbation relative to the gas phase is opposite for the two
solvents. In cyclohexane, the differential free energy of solvation for 48 and 49 is
—0.7 kcal/mol (i.e., favoring 49) while in water it is 2.4 kcal/mol (i.e., favoring
48). Obviously, the differential free energy of transfer from cyclohexane to water
favors 48 by 3.1 kcal/mol.

This system is ideal for illustrating many issues associated with
continuum solvation modeling, and we note several points that particularly merit
discussion. Table IV provides the relevant details of the calculations.

To begin, the shift of the equilibrium constant in one direction in
cyclohexane, and in the other direction in water (relative to the gas phase) could
arise from several different phenomena. For instance, it could be that the enol is
more polar than the dione in the gas phase, but the dione is more polarizable than
the enol. In such a situation, the low dielectric medium would not induce
sufficient polarization in the dione, and AGENp would be larger for the more polar
enol; in water, the greater polarizability of the dione would permit a reversal of
the relative magnitudes of the two AGgNp terms. This does not appear to be the
case, however. Instead, AGgNp favors the dione slightly in cyclohexane, and by a
still larger margin in water, i.e., it is both more polar and more polarizable than
the enol. Instead, focusing on the AM1-SM4 models, specific solvation effects

associated with G%DS sufficiently favor the enol in cyclohexane to overcome the

small difference in AGgnp. That preference is found entirely in the CD
component; since the two tautomers are essentially equal in size, there is no
distinction between them in the CS term. In the enol, there is a greater exposure of
more polarizable (now in the sense of participating in favorable interactions
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TABLE IV

Predicted solvation free energies and solvent-accessible surface areas (SASA) of
2,4-pentanedione tautomers in cyclohexane and water.&b

Dione 48 Enol 49
AMI PM3 AM1 PM3
SM4 (cyclohexane)
Gp -3.0 -3.5 2.4 -1.9
AEEN 0.5 1.0 0.2 0.2
AGENP 2.5 -2.5 22 -1.7
Gep ~17.0 -17.1 -17.5 -17.4
Ges 14.8 14.8 14.8 14.7
Geps 2.1 -2.3 -2.6 2.7
AGg —4.6 4.8 4.8 4.4
relative AGg¢ 0.0 0.0 -0.2 0.4
SASA(CD)4 358.2 361.6 360.1 357.9
SASA(CS)e 596.0 593.9 596.7 591.6
SM4-SRP (water)

Gp -16.5 -16.1 -9.1 7.7
AEEN 7.8 69 2.2 1.7
AGENP -8.7 -9.2 -6.9 -6.0
Geps 0.3 0.3 0.2 0.3
AGg -8.4 -89 -6.7 -5.7
relative AGyg 0.0 0.0 1.7 32
SASAS 304.6 304.8 300.8 298.2

a Free energies in kcal/mol. SASA in A2. b All geometries were fully optimized
both in the gas phase and in solution. ¢ Relative solvation free energy of dione
and enol using the same NDDO Hamiltonian. d Solvent radius 2.0 A for
cavitation and dispersion. ¢ Solvent radius 4.9 A for cavitation and solvent
structural rearrangement. f Solvent radius 1.4 A.
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associated with dispersion) hydrocarbon surface area at the expense of less
polarizable oxygen surface area compared to the dione. This effect is worth about
0.4 kcal/mol favoring the enol in both of the SM4 models. In the AM1 case, that
is sufficient to perturb the gas-phase equilibrium in the correct direction, although
the magnitude of the perturbation is underestimated by about 0.5 kcal/mol. In the
PM3 case, the difference in AGENp between the dione and the enol is larger,
(apparently this term is quite sensitive to small charge variations in the enol—note
that both SM4 models give much more consistent answers for the dione than the
enol) and the net prediction is a very small shift of the gas-phase equilibrium in
the wrong direction. Still, this is a fairly small quantitative error and the
qualitative observation that these two terms are opposed remains unchanged.

While the PM3-SM4 model does appear to slightly underestimate the
polarity of the enol component, there is some cancellation of errors upon
considering the differential transfer free energies between cyclohexane and water.
As noted above, experiment indicates that the differential free energy of transfer
of the dione and the enol is 3.1 kcal/mol; the PM3-SM4 model predicts this value
to be 2.8 kcal/mol, in excellent quantitative agreement. AM1-SM4 is less
satisfactory in this regard, predicting only 1.9 kcal/mol.

Optimized 2,4-pentanedione geometries:

Gas phase Cyclohexane Water

The analysis is complicated, however, because the dione undergoes a
dramatic change in geometry upon optimization in aqueous solution. As
illustrated above, the dihedral angle between the planes containing the two
carbonyl groups and their respective substituents changes from 137° in the gas
phase, to 113° in cyclohexane, to 59° in water. Reducing this dihedral angle aligns
the carbonyl bond dipoles (1.36, 1.43, and 1.92 D in the gas phase, cyclohexane
and water, respectively, using AM1-CM1A [235] charges) and improves the
solvation of this tautomer. Note that Gp is increased dramatically in water
compared to the twofold increase one would expect over cyclohexane due to
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polarizability and geometric relaxation. That geometry change comes at the cost
of an increase in solute internal energy, reflected in AEgN being a very sizable 7
to 8 kcal/mol for the two models. The quantity AEEN is the difference in the
expectation values of the gas phase Hamiltonian operating on the optimized gas-
phase and solvated wavefunctions. That is the complicating factor in the
differential free energy of solvation analysis, because it brings the gas-phase
potential energy surface back into the problem. It is not at all clear that the
semiempirical levels accurately represent the gas-phase energetics of the observed
change in geometry, and this may result in quantitative differences between
experiment and the two SM4 models. In any case, the 2,4-pentanedione system
should be interesting to study with ab initio solvation models that employ levels
of theory adequate for the gas-phase torsional aspect of the problem. It would also
be of interest to see how well this large change in geometry is reproduced by
models that employ idealized cavities compared to ones that more accurately
represent the solute’s shape.

00 N =0
0 \ H o \ OH
HO H
3-acetyltetronic acid 3-acetyltetramic acid

Finally, although they have not yet been the subject of any modeling study
that has included solvation effects, 3-acetyltetronic and 3-acetyltetramic acid are
very interesting solutes to consider. Each has more than 10 plausible tautomers—
only the lowest-energy structures, as calculated at both the AM1 and MNDO
levels by Broughton and Woodward [326], are shown above. The experimental
situation in chloroform, as determined by NMR, remains unclear with respect to
preferred structure. Gelin and Pollet [327] and Saito and Yamaguchi [328] have
offered contrasting interpretations of the spectral data. Broughton and Woodward
note that their semiempirical gas-phase calculations are in accord with the spectral
interpretation of Gelin and Pollet, and as a consequence they suggest that
solvation effects do not affect the tautomeric equilibrium. It seems evident that an
investigation using a suitable chloroform continuum model would be worthwhile.
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4.2.3 LACTOLIZATION
o OH LY

—_— @)
CHa

52 53

The present authors have examined the equilibrium between the lactol 2-hydroxy-
2-methyltetrahydrofuran 52 and its corresponding open chain hydroxyketone 53
using the SM1, SM2, and SM3 models. The experimental situation indicates that
the two structures are present in roughly equal proportions in non-polar media,
while in water none of the lactol form is observed [329]. Making a reasonable
assumption about detection limits, this sets a lower bound on the differential free
energy of solvation for the two isomers of about 4 kcal/mol. Calculation of the
differential free energy of transfer from the gas phase to aqueous solution using
the SM1, SM2, and SM3 models gives values of 4.1, 3.6, and 4.4 kcal/mol,
respectively. These results are probably somewhat too small since available
experimental values are for the free energy of transfer from cyclohexane to water.
Moreover, only one conformation of each tautomer was considered. For the
hydroxyketone, the semiempirical models all predict the illustrated conformation
having the intramolecular hydrogen bond to be lowest in energy, but this system
should be revisited with an SM4 water model. Unfortunately, the gas-phase
energies are required in order to calculate the free energy of transfer from one
solvent to another when multiple conformations are involved, and this makes the
problem somewhat more challenging.

5 Dynamic effects in kinetics and spectroscopy

The simplest generalization of free-energy-of-solvation concepts to dynamics in
solution is provided by transition state theory. In conventional transition state
theory, the rate constant of a chemical reaction at temperature T is given by

k(T) = &?-ZK*&'O exp[-AG™O(T) / RT] (59)

1

where kp is Boltzmann’s constant, 4 is Planck’s constant, k*0 is unity for
unimolecular reactions and the reciprocal of the standard state concentration for
bimolecular reactions, and AG™"(T) is the standard-state free energy of
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activation of the saddle point. For reactions in solution, AG*’O(T) contains a
solvation contribution which equals the free energy of solvation of the transition
state minus the free energy of solvation of reactants [65-67]. To go beyond the
conventional theory, we must define a reaction coordinate s and generalize the
free energy of solvation to be a function of that coordinate; this is done by
generalizing [330-333] the concept of potential of mean force [41, 82, 334-337] to
treat generalized transition states defined at arbitrary locations along the reaction
coordinate. The resulting standard-state free energy of activation as a function of s
(called, for short, the free energy profile) is given by

AGETO(T,5) = AGSTO (T, 5) + AGY (5, T) - AGS(RIT) (60)
where all quantities are standard-state ones at temperature 7, and the first term on
the right-hand side is the internal standard-state free energy of the solute at s, the
second term is the free energy of solvation at s, and the third term is the free
energy of solvation of the reactant species. Note that the last term is an

equilibrium quantity, but AGS (s,T) is a generalized equilibrium quantity
(sometimes called a quasiequilibrium quantity) for any choice of s, even the gas-
phase saddle point, because both the conventional and generalized transition states
have one less degree of freedom than equilibrium species.

Even at this level of dynamical theory, one is not restricted to considering
equilibrium solvation of the gas-phase saddle point or of configurations along the
gas-phase reaction path [109, 338-344], and to the extent that the solvent is
allowed to affect the choice of the reaction path itself, dynamic (i.e.,
nonequilibrium) solvation effects begin to appear in the theory.

To more fully appreciate the equilibrium models, like SCRF theories, and
their usefulness and limitations for dynamics calculations we must consider three
relevant times, the solvent relaxation time, the characteristic time for solute
nuclear motion in the absence of coupling to the solvent, and the characteristic
time scale of electronic motion. We treat each of these in turn.

First, consider the solvent. The characterization of the solute-solvent
coupling by a relaxation time is based on analogy to Brownian motion, and the
relaxation time is called the frictional relaxational time Tg. It is the relaxation time
for momentum decay of a Brownian motion in the solute coordinate of interest
when it interacts with the solvent under consideration. If we call the subject solute
coordinate s, then the component of frictional force along this coordinate may be
written as
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ds
F,=—-uc— , 61
s = ~HG 7 (61)
where | is the reduced mass for motion along coordinate s, { is the frictional
constant, and ¢ is time. Then the momentum (or velocity) for Brownian motion in
coordinate s decays as [32, 345, 346] 'S 1. .
Writing the momentum decay function as e F yields

Tp =—, (62)
F=s

Even if we consider a single solvent, e.g., water, at a single temperature, say
298K, £ depends on the solute and in fact on the coordinate of the solute which is
under consideration, and we cannot take Tr as a constant. Nevertheless, in the
absence of a molecular dynamics simulation for the solute motion of interest, Tx
for polar solvents like water is often approximated by the Debye model. In this
model, the dielectric polarization of the solvent relaxes as a single exponential
with a relaxation time equal to the rotational (i.e., reorientational) relaxation time
of a single molecule, which is called tp or the Debye time [32, 347]. The Debye
time may be associated with the relaxation of the transverse component of the
polarization field. However the solvent fluctuations and frictional relaxation occur
on a faster scale given by [348, 349]

L = (€= /20)TD (63)

where € is the infinite-frequency relative permittivity, and g is the static (i.e.,
zero-frequency) relative permittivity. (At constant temperature and pressure, the
relative permittivity is the dielectric constant.) The quantity 77 is called the
longitudinal relaxation time [350, 351]. Dielectric dispersion measurements [352]
on water yield €. = 1.8, &9 = 78.5, and Tp = 8.5 ps, and hence 77, = 0.2 ps. Thus
tr=0.2 ps.

Next consider the solute. We will again call the relevant solute nuclear
coordinate s and the characteristic time now Ts. For a thermally activated barrier
crossing, where s is the reaction coordinate for passage over an effective potential
Vest(s) at temperature T, a reasonable expression is

1, =1/t (64)

where the barrier is written in the vicinity of its maximum as
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1 2
Ve () = Vigax - ;u(m*) s%. (65)

Note that the imaginary frequency associated with such a barrier is i@w¥. For a
bound mode with frequency ®yip, an analogous approximation would be

Ts = 1/@yip- (66)

The solute electronic time scale will be called Tejec. It may be
approximated as h/AE1, where AE1 is the lowest (spin-allowed) electronic
excitation energy of the solute.

A fully realistic picture of solvation would recognize that there is a
distribution of solvent relaxation times (for several reasons, in particular because a
second dispersion is often observable in the macroscopic dielectric loss spectra
[353-355], because the friction constant for various types or modes of solute
motion may be quite different, and because there is a fast electronic component to
the solvent response along with the slower components due to vibration and
reorientation of solvent molecules) and a distribution of solute electronic
relaxation times (in the orbital picture, we recognize different lowest excitation
energies for different orbitals). Nevertheless we can elucidate the essential
physical issues by considering the three time scales TF, Ts, and Tejec.

The SCRF models assume that solvent response to the solute is dominated
by motions that are slow on the solute electronic motion time scales, i.e., TF >>
Telec- Thus, as explained in Section 2.1, the solvent “sees” the solute electrons
only in an averaged way. If, in addition to the SCRF approximation, we make the
usual Born-Oppenheimer approximation for the solute, then we have Ty >> Telect.
In this case the solute electronic motion is treated as adjusting adiabatically both
to the solvent motion and to the solute nuclear motion.

For gas-phase molecules the assumption of electronic adiabaticity leads to
the usual Born-Oppenheimer approximation, in which the electronic wave
function is optimized for fixed nuclei. For solutes, the situation is more
complicated because there are two types of heavy-body motion, the solute nuclear
coordinates, which are treated mechanically, and the solvent, which is treated
statistically. The SCRF procedures correspond to optimizing the electronic wave
function in the presence of fixed solute nuclei and for a statistical distribution of
solvent coordinates, which in turn are in equilibrium with the average electronic
structure. The treatment of the solvent as a dielectric material by the laws of
classical electrostatics and the treatment of the electronic charge distribution of
the solute by the square of its wave function correctly embodies the result of
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statistically averaging over a thermal solvent in equilibrium with an average
(adiabatic) solute charge distribution. Because the self-consistent calculation of
the adiabatic solute electronic distribution and the equilibrium polarization of the
solvent is carried out at fixed solute atomic coordinates, the treatment corresponds
most precisely to the case Tg >> TF >> Telec.

There are cases where the time scales do not satisfy these assumptions.
Effects due to the violation of T >> TF are often called nonequilibrium solvation;
and effects due to the violation of Tf >> Tejec are often called nonadiabatic effects.
The latter effects have been studied primarily in the context of electron transfer
reactions. In electron transfer theory the interesting case of Telec >> TF arises, and
this is called nonadiabatic electron transfer. It occurs commonly for outer-sphere
electron transfers in which AE1 is very small in the critical configuration. For
example AE1 might be the energy difference of the symmetric and antisymmetric
delocalized combinations of the two localized configurations Fe3+Xg--Fe2+Y¢g
and Fe2+Xg-Fe3tYg, where X and Y are ligands, and -~ indicates only weak
interaction between the ferrous and ferric centers. In contrast, for typical chemical
reactions involving the making and/or breaking of bonds, as well as for many
inner-sphere electron transfers (“inner-sphere” electron transfer refers to the case
in which a ligand is part of the coordination sphere of both the donor and the
acceptor), we have Tf >> Telec, Which is called the adiabatic case. For adiabatic
electron transfers it is often assumed that Ty >> TF in which case the rate constant
decreases as T decreases. This regime is variously called high-friction [67],
overdamped [333], or solvent-controlled adiabatic [356]. In adiabatic bond
rearrangements (i.e., ordinary chemical reactions) on the other hand, one typically
finds T = O(ts), in which case frictional effects are small but not necessarily
completely negligible [357-359]; if tF > T, this might be called bond-coordinate-
controlled adiabatic. The other adiabatic case, Tg >> Tg >> Telec is called the low-
friction [67], energy diffusion [333], or strong adiabatic [356] limit. In this case
reaction is controlled by the rate of activation of reactants to the transition state,
which is not in equilibrium with the reactants. The scenario just sketched leads to
a pattern of the rate constant increasing with increasing friction at low friction,
then becoming independent of friction, then decreasing as friction increases
further [67]. This pattern can also be observed in the nonadiabatic case, but in that
case the friction-independent region is wider [360]. When quantum mechanical
effects are important, nonequilibrium effects may be very large [361]—this
regime needs further study.

The SCRF models should be useful for any of the adiabatic cases, but a
more quantitative treatment would recognize at least three time scales for
frictional coupling based on the three times scales for dielectric polarization,
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namely electronic, TF elec, vibrational, TF,vib, and orientational, TF rot, With TF ot
>> TFvib >> TFelec- The convenient adiabatic limit is never totally appropriate
because TF elec = V(Telec), €ven when Tr,yib >> Telec.

One important phenomenon that sometimes occurs when Telec 2 TF is
solvent-induced charge localization. Thus, even though the adiabatic states are
delocalized, the solvent-induced states are not. Consider the system
Fe3+Xg-Fe2+Xg, which is the reactant of the outer-sphere electron transfer
reaction mentioned above when X = Y. Clearly the ground state involves a
symmetric linear combination of a state with the electron on the right (as written)
and one with the electron on the left. Thus we could create the localized states by
using the SCRF method to calculate the symmetric and antisymmetric stationary
states and taking plus and minus linear combinations. This is reasonable but does
not take account of the fact that the orbitals for non-transferred electrons should
be optimized for the case where the transferred electron is localized (in contrast to
which, the SCRF orbitals are all optimized for the delocalized adiabatic structure).
The role of solvent-induced charge localization has also been studied for ionic
dissociation reactions [109].

Having obtained the charge-localized state, the dynamics of electron
transfer can be treated as a time-dependent configuration interaction problem
[356, 362-364]. In this case the two configurations would be taken as the left
localized and right localized ones. A more general treatment, applicable in the
regime [365] where electronic coupling is larger (i.e., Telec is smaller), but
electronic motion is still not adiabatic, would involve a 3-state CI composed of
the delocalized adiabatic state interacting with the two localized diabatic ones.

In electron transfer reactions one studies the conversion of an electron
state localized on A to one localized on B. One can also consider the relaxation of
a charge localized state to the adiabatic delocalized state [366].

The most general available treatment of solute electronic structure that
does not make the SCRF assumption that solvent electronic motion is slow
compared to solute electronic motion is provided by the coherent-state
formulation introduced by Kim and Hynes [109] and generalized by Bianco et al.
[111]. Hynes and coworkers denote the SCRF limit simply as SC. They call the
opposite limit [109, 173], in which the solvent polarization is fast compared to the
vacuum solute electronic time scale, the Born-Oppenheimer (BO) limit, which
should not be confused with the usual Born-Oppenheimer approximation for
separating the electronic and nuclear motions of a gas-phase molecule or of the
solute. Kim and Hynes note that one might also call this an adiabatic limit, which,
they correctly note, would introduce other possible confusions. [Adiabatic and
sudden limits have a long history of introducing confusion in many fields since
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the opposite of an adiabatic limit is always another adiabatic limit. Consider for
example, the case where x has a time scale that is rapid compared to the
controlled, slow motion of y; then x adjusts almost adiabatically to that motion,
and one can treat x by an adiabatic approximation or y by a sudden approximation.
But the opposite limit, where x moves slowly compared to the timescale of y is
also an adiabatic limit with y adjusting almost adiabatically to x, and x may be
treated by a sudden approximation. Furthermore, even under the same conditions
x may be sudden with respect to y, but adiabatic with respect to z. To avoid
ambiguity one must be specific about which two variables are under consideration
and which one is considered to be fast and adiabatic. This may, of course, be
obvious from context, but often it is more obvious to the author than to the
reader!]

The effective frequencies that characterize solvent response can be
characterized more quantitatively from several points of view, including
generalized Langevin theory [367-372], Brownian oscillators [373, 374], and
instantaneous normal modes [375].

In addition to the intrinsic time scales of the system Tf, Ts, and Tejec, One
may introduce an additional time scale by the nature of the measurement. For
example, electronic absorption spectroscopy may probe events on a time scale
Tspect that satisfies TF vip >> Tspect >> TFelec- In this case the excitation would
occur to a state with the electronic contribution to solvation operative but the
nuclear solvation coordinates frozen in their initial state. A direct analog would be
gas-phase ultraviolet or visible spectroscopy with Tg >> Tgpect >> Telec- This leads
to the familiar Franck-Condon principle [115] according to which the electronic
state is changed but the nuclear motion is frozen during the excitation. In solution,
this leads to the general observation that emission is red-shifted relative to
absorption, since the orientational components of solvation are optimal only for
the initial (in this case, excited-state) configuration.

Because of the economic importance of dyes, the calculation of solvent
effects on electronic spectroscopy using the SCRF methods has been a subject of
significant interest. The interesting dynamical issue that arises in this context is
the fact that solute electronic excitation may be viewed as occurring essentially
instantaneously on the solute reorientational time scale, as discussed in the
preceding paragraph. We refer the reader to the original source literature for
further details [167, 180, 181, 219, 298, 299, 376-380].

The reader is referred to review articles concerned with dynamic solvent
effects for further discussion of the interesting issues involved in applying
continuum and explicit solvation models to dynamical situations [333, 381-385].
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6 Concluding remarks

There has been tremendous progress in the development and practical
implementation of useful continuum solvation models in the last five years. These
techniques are now poised to allow quantum chemistry to have the same
revolutionary impact on condensed-phase chemistry as the last 25 years have
witnessed for gas-phase chemistry.
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