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I. INTRODUCTION

Energy transfer in molecular collisions is a very fundamental problem
in chemical physics, both experimentally and theoretically. Quantitative
state-to-state cross sections for energy transfer processes are important
for understanding and modelling many kinds of systems, including lasers,
shocked gases, planetary atmospheres, and systems containing excited reaction
products of any kind. In theory these cross sections can be calculated from
first principles using gquantum mechanics but in practice this involves severe
computational difficulties. The first step is the calculation of molecular
interaction potentials, which are a consequence of the electronic structure
of the interacting molecules for various geometries. There has been enormous
progress in this area in the last few years,l_3 but we shall not consider it
further in this chapter. Instead we shall concentrate on the second step,
the dynamical problem that yields the desired inelastic cross sections from
the intermolecular potential. Only when both steps have been solved ade-
quately will the ab initio method have reached fruition, but the techniques
involved in the two steps are very specialized and to a large extent progress
on these steps may occur separately and in parallel. There are two basic
approaches to the dynamics problem. First, one can try to develop reliable
methods based on simplifying approximations, such as using semiclassical or
classical methods or low-order perturbation theory. Second, one can attempt
a direct solution of the Schroedinger equation. Since the Schroedinger equa-
tion for the systems of‘interest is not solvable analytically, we are forced
to use numerical methods. 1In this context an "exact' solution of the
Schroedinger equation is actually a '"converged' solution, converged to

within some acceptable but small margin of error (e.g., a few per cent in




2.
the cross section of interest) with respect to the relevant convergence para-
meters. We shall discuss a general and well studied method for obtaining
such a direct solution. This method is variously called the close coupling
or coupled-channels (CC) method.l"“6 It is based on a steady-state description
of the scattering process in terms of the time-independent Schroedinger par-
tial differential equation, and it converts this equation into a set of
coupled ordinary differential equations by expansion of the D-dimensional
solution in (D-1)-dimensional basis functions. The resulting CC equations
may be cast in many forms. One may directly solve for the wave function, or

b

one may use invariant imbedding. The particular invariant imbedding

5,6,9-12

algorithm we use is called R matrix propagation, where the R matrix
is Wigner's derivative matrix13 (not to be confused with another R matrix,
the reactance matrix,4 that also plays a role in the problem). This method
involves the calculation of large numbers of multi-dimensional integrals and
the diagonalization, inversion, and multiplication of large matrices, as
well as linear-equation solving; thus it is well suited to attack on vector
computers. Other methods of solving the CC equations involve somewhat dif-
ferent mixes of the various matrix operations, but do not differ in any
fundamental way. We shall not consider other methods of solving the
Schroedinger equation for dynamics problems in detail. Some of these, like
full multi-dimensional finite-difference14 or finite—element15 solutions,
have been applied successfully to problems of artificially reduced dimen-
sionality and are also well suited to modern vector computers, but at present
they seem less efficient for solving real problems in the three-dimensional
world.

We concentrate in this chapter on collisions in which both partners
start and remain in their ground electronic state and no rearrangements
occur. The techniques discussed here are also useful for electronically

inelasticl6’17
12,19

9,18 as well as for electron scat-

and reactive collisions,

tering.
The '"state of the art" for converged calculations is the calculation

of vibrational-rotational transition probabilities in atom-diatom colli-

sions involving a light diatoma’20

(heavy molecules have more closely spaced
states and hence require larger expansion bases and bigger matrices to obtain
converged results for all the states of interest) or the calculation of prob-
abilities for pure rotational quantum number changes in collisions of two
light diatoms assumed to be rigid.21 Already at the level of complexity of
rigid diatom-diatom collisions, the number of arithmetic operations scales

as the twelfth power of the maximum rotational quantum number involved, and

22

the computational expense rapidly becomes prohibitive. Here we report our
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attempts to converge vibrational-rotational state-to-state transitions in
diatom-diatom collisions, specifically the collision of two hydrogen fluoride
(HF) molecules with enough total energy for both molecules to be vibration-
ally excited. This allows, even with indistinguishable molecules, one to
observe vibfation—to—vibration (V-V) energy transfer in which a quantum of
vibrational energy originally on one molecule is transferred to the other,
€.8., a process in which initially each molecule has one quantum of vibra-
tional excitation and finally one molecule has two and the other has none.
Such V-V energy transfer processes are of great interest because they pro-
vide the dominant pathway to redistribute vibrational energy in many non-
‘equilibrium chemical mixtures. Prior to the availability of supercomputers,
though, accurate quantum mechanical calculations on V-V energy transfer were
prohibitively time consuming. Even with supercomputers these calculations
are very expensive; thus, for the work we discuss here, we limit ourselves
to the case where the total angular momentum is restricted to be zero.
Although one cannot calculate observable cross sections or rate constants
from this subcase, except at extremely low translational energies, it does
serve as a prototype, and exact solutions of the quantal dynamics for this
prototype can serve as practical benchmarks for testing approximate, but less
computationally expensive, methods for attacking this kind of problem.
Section II gives an introduction to the theory, section III describes
our numerical algorithm, section IV discusses the details of the inputs of
the calculation, section V discusses vectorizing our program on the Cyber
205 and Cray-1 computers, and section VI compares execution times for scalar
and vector versions of the code on one minicomputer and two supercomputers.
Section VII gives preliminary results, and section VIII gives our conclu-
sions. Our equations will be given in a form that is valid in any consistent
set of units; however we find it convenient to quote numerical parameters
in Hartree atomic units. In this system of units, the unit of length is the

bohr, abbreviated a, (1 a. = 0.5291771 «x 10_‘10 m), the unit of mass is the

0 31

electron mass, abbreviated m, (1 m, = 9.109534 x 10 kg), the unit of

4.359814 x 10 18

energy is the hartree, abbreviated Eh (1 Eh = 27.21161 eV

J), and b (Planck's constant divided by 27) has the value unity.

IT. THEORY
All of the information concerning a collision of molecule A with mole-
cule B is contained in the scattering wave function wno(x,?,E), which solves

the Schroedinger equation

Hy = Ey . (1)
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The symbol n, stands for all of the quantum numbers necessary to specify the
initial state of the system, x is the collection of all internal coordinates,
with the exception of T, which is the vector connecting the center of mass

of A to that of B, E is the total energy, and H is the system Hamiltonian:

H—_f-‘-?lv2 H, (%) + V(x,?) (2)
TR B P B ~? ’

where p is the reduced mass for relative translational motion of A with

nt
Hamiltonian", defined as the sum of the Hamiltonians of the isolated A and

2 : . . .
respect to B, Va is the Laplacian with respect to T, Hi is the "internal

B subsystems, and |/ is the interaction potential, which means that V
vanishes in the large-r limit. For the next step it is useful to separate
Vg into its radial and angular parts and to partition the internal Hamil-
tonian into a conveniently diagonalized part, ﬁint (which may in some cases
simply be Hint)’ and the rest AHint' Then we treat the angular part of
452V%/2p together with Hint; their sum is called the primitive Hamiltonian

H°. This yields

%21 3,2 3 0, u .
H= - 5;[:2‘3?“ 301+ H(x,1) + V(x,1) (3)
where
H = 2 + Hlnt()j) ’ (4)
2ur
V(§,r) = V(g,r) + AHint(g) s (5)

and %% is the quantum mechanical operator for the square of the orbital
angular momentum of the relative translational motion of A with respect to
B.

To determine wno, we expand it in terms of simultaneous matrix eigen-

vectors of ﬁ. and lz defined by
int r

~ * AN A ~
fdrfdf Xm(f’r)Hint(§)Xn(§’r) = Gmnen , (6)
22X (x,8) =B (1 + DX (x,8) (7)
a2’ - n'n n' =’ ’
and
~ 7‘( o) N
fdrfdf Xm(f’r)xn(f’r) = Gmn s (8)

where dmn is the Kronecker delta, and eq. (8) is an orthonormality condition.

The expansion is




il L
Il o~ 2

Wn (fs?aE) =

X (f,?)fnn (r,E) , (9)
0 n

1 0

and the terms in this expansion are called channels. In these equations,
T is the unit vector which has the direction as T. Substituting eq. (9)

into eq. (1), multiplying by rX;(x,?), and integrating over x and T yields

2
52 42 zm(zm.+1)h

- — * + € )f (r E) + J V_(o)f (r,E)
2u dr2 2ur2 m mn0 o mn nn
= EaMI(r’E) sy, m=1,2,...,N, (10)
0
where
v (r) = fdxsdf x;(§,§)v(§,§)xn(§,§) . (11)

Equations (10) are the close-coupling equations, and they can be written

in the form

&2
— £(r,E) = D(r,E)f(r,E) , (12)
dr

where ~ under a symbol denotes a matrix (except for x, for which it denotes
a collection of coordinates). The components of f are just the f N of eq.
2 m

(9), and the elements of D are given by

2u 2 ~2
D (r,E) = %5 an(r) + amn[mn(zn-+1)/r - kn] R (13)
where .
~2 ~ 2
ko = 2p(E-en)/ﬁ . (14)

~

kn is called the primitive wave number. 9 is real and symmetric. Notice
that the rows of E correspond to different channels, which are coupled, and
the columns to different initial conditions. The channels are ordered so
that Ei 2 Ei if and only if n > m.

In order to discuss the large-r boundary conditions on eq. (12) we must
consider a transformation that diagonalizes 9 at large r. Furthermore, in
the R matrix propagation algorithm considered in the next section, we will

use transformations to basis functions that diagonalize D at finite r. At

any r we may define functions

N
Zm(f’?) = 1 Unm(r)xn(f’?) (15)
n=1
such that
v 2
) §:1 Uen(PIDy (e, EJU, () = 8 [x (r,E)]" . | (16)
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Notice that, because of the way that E appears in eq. (13), i.e., only
on the diagonal, the eigenvalues Aim depend on E, but the eigenvectors, which
are the columns of U, do not. If we use the Z as new basis functions,

i

called adiabatic basis functions, the expansion of the wave function becomes

=4

lpn ({,?;E) =
0 m

Ll
It~

Zm(g,?)gmn (r,E) (,17)
1 0
where the 8mn are easily related to the f . The terms in (17), like
those in (9), are called channels. The boundary conditions on the solutions
to the close coupling equations may be given in many equivalent forms, but

the one that is most convenient for our algorithm is

Bmn o, 1 <n, mSN, (18)
r+0

Gmn sin[km(E)r-—lmn/Zj + amn(E) cos[km(E)r-zmw/Z] ,

gmn ~ 1 <n, m SPO, (19)
r+ o
Gmnb exp[km(E)r]+-amn(E)exp[—km(E)r] ,
Po+1Sn,mSN s
where b is arbitrary and kn is an asymptotic wave number defined by
k= lim Ixnn(r,E)l . (20)

T + ©

"Open'" channels are defined as those with positive ki, and P° is the number

of open channels in the basis. Channels that are not open are called

""closed". If Hint is the same as Hint’ then kn equals]kn|and the boundary

conditions (18)-(19) apply to the fmn as well as the 8mn"
The final result of the calculation is the P° x P° unitary scattering

matrix S defined by

~

il

s = [1+ D1 - irE)] T, (21)

. . . .2 . . o} o
where 1 is the unit matrix, i~ =-1, and R is the real symmetric P~ xP reac-

tance matrix with elements

(Nog

-1 o

anm(E)km y 1 <n, m< P, (22)

R =k
nm

3

All physical observables may be calculated from the scattering matrix by
standard formulas.

The size of N, the number of terms in eq. (9), is determined by in-
cluding all of the states of interest plus a sufficient number of other

states in order for eq. (9) to accurately represent wn . For the present
0

study, the quantum numbers specified bynorn are?3 vy and v2,thevibrational




~d
.

quantum numbers of the two molecules, j1 and j2, the rotational quantum

numbers of the two molecules, the angular momentum quantum number

Y
associated with the vector sum of the rotational angular momenta of the two
molecules, & (called ln above when necessary to indicate that % may be dif-
ferent for different n), the orbital angular momentum for relative motion,

J and M, the total angular momentum and its projection on a laboratory-fixed
Z axis, and n, the symmetry under interchange of the two molecules. The
indistinguishability of identical molecules in quantum mechanics makes it
impossible to distinguish which molecule has which set of v and j quantum
numbers. The parity ¢ is (—1)j1+j2+2 and it too is specified by these
quantum numbers.

Since J, M, n, and ¢ are good quantum numbers, the matrix D is block
diagonal in them, and using simultaneous eigenfunctions of their associated
operators as our basis functions uncouples the solutions into noninter-
acting components and reduces the computational work. In the numerical
applications considered below we shall only consider the block specified by

J=M=0 and n= ¢t =+1.

ITI. NUMERICAL METHODS
We solve eq. (12) using R matrix propagation. In this method one first

subdivides the coordinate r into NS sectors with sector midpoints rél) and

widths h(i) such that
réi+1) _ réi) . [h(i+1) N h(i)]/Z . (23)

In sector i, it is convenient to expand the wavefunction wn‘in terms of

sector-dependent functions defined by

. N . ‘ .
AR S-S U L2 U SO 1 <msp, (24)
m =~ nm n ~
n=1
The N xP(l) rectangular matrix T(l) is made up of the first P(l) columns
of the N xN matrix U(l), where U(l) diagonalizes D:
E] U(i)D (r(i) E)U(i) =& [;\(i)(E)]2 (25)
kn "kk'*"Cc k'm = “nm-nn '
k,k'=1
In terms of the new functions Z;l), the wave function is
p(i)
- 1 i A i
bGP = 1 AR ER (26)
m=

The new radial functions g(l)

~

are related to the functions f by




N
(1) N (1) (1)
g, (T:E) = ) T fren(T2E) 1<m ng<P e (27)
k=1
(1) .
The g solve the equation
2 . , :
-q—z- g(l)(r,E) = L(l)(r,E)g(l)(r,E) , (28)
dr” 7 - b
where
(1) AED (1) (1)
L' (r,E) = § TlD(E)T , 1<n,m<pP . (29)
nm kn k&
k, %=1
According to eq. (28), the channels of eq. (26) are uncoupled at r =ré1).
In order to enforce eq. (18), it would be convenient if rél) —h(l)/2

were equal to zero. However, in atom-molecule and molecule-molecule col-

lisions one finds
\Y rl(r) >> E |, all n, r << o, (30)

where ¢ is the distance at which the two subsystems begin to repel strongly.
This implies that, as a function of r in the decreasing r direction, all
fmn(r) and hence all gmn(r) decrease rapidly and are totally negligible for

r less than some finite nonzero value. We chose such a nonzero value of r

()

as 1. and thereby avoid the work of propagating the solution to the equa-

tions over the region where it is known to be essentially zero(in the pre-
(1)
C

= N. At large r, because of eq. (19), fmn for

sent calculations we use T

equal to 3.0 ao).
(1)

We begin with P

o . . . . .
m > P rapidly decays to zero. In this region we use a criterion des-

cribed below to allow P(l) to decrease. We constrain P(1+1) (1)

(1)

to equal P

or P -1 in all cases to simplify the algorithm. We also enforce the

constraint P(l) 2 P° for all (i). Tkhe 2P(1) x2P(1) sector propagator g(l)

is defined by

where the ZP( 1 xZP( ) matrix §<i) is given by
g(l)(r,E)
(i) -
G "'(E) = . ; (32)
- gV (r,m)
where g (i)(r E) denotes dg(i)/dr and where L and R denote the left
[r (1) (1) (1)/2] and right [r(l) = él) (1)/2] sides of a sector.

We partltlon P( )(E) so that




(1) (1)

5 ~1 (E) ~2 (E)
P*(E) = ’ (33)
h p(1) p(1)
e e
(i)

and the matrices Pj (E) are all square.

(1),

We use the first-order Magnus method24 for P

. . N2
8§ o cosh[~h(1)lxé;)(E)|] s liz) (E) >0,
(1) (1)
(e, (®)] = [B," ()] = : 2
nm s cos{—h(l){ (1>(E)|] Ar(];) (E) <0,
(34)
. , N2
Sl (17 st P Ry, WD s,
(1)
(e, (B)] _ = . 2
s I (l)(E)I sin[-—h(l)lk(l)(E)I] , Ali:l) (E) <0,
(35)
2
(D)7 (1) (1)
xnn [22 (E)]nm ’ (E) >0,
(esP ] - ) ) (36)
()7, (1) (i)
Mn [B(E)] Ao (E) <o.
I ¢ thi . . ()3, (i)
e error of this propagator is proportional to h dL /dr.

~

We can choose the stepsize so that the error term is small. We esti-

mate the error in sector (i +1) by

(i+1)° 1 dD(l) 5
error « h''* [ 2 ( ) ]2 (37)
This translates into the algorithm
N (i) (1 1)
1 -1/6

EPSLY JX (=7 (1) r(l 5"
RO in e ¢ (38)

h

max

. . a s .
where EPS and hmax are input parameters, and mln{b means the minimum of a

and b.
(i)

Continuity of the functions g across sector boundaries can be

~

expressed by

ge T (®) = T-1, 00V ) (39)
g @ = Ta-1,0g Ve (40)
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where the overlap matrix T(i-1,i) is defined by

N
X . o(i- 1), (1) (1)
T o (i-1,1) = N Ten  Tkm 1<n, m<P 7. (41)
k=1
Thus when P(i—l) # P(i) only the upper left P(i) xP(i) part of g(l D is
used to calculate gil). We now define the sector R matrix r( )
(1 1) D) (1) , (i-1)
(E) (E) (E) (E)
&r . t1 L2 E'R (42)
(1) - (1) (1) , (1)
g (E) 5@ @ | gy e
[ e
=D - : (43)
SP@® (P
where the £§i) matrices are P(i) xP(i). It is easy to show that
e D@ - TG-noe V@Y @1 Te-n, 07, (44)
2P @ - Ta-LoePm1, (45)
RO N S CIS Rl (CREUE S R (46)
D@ - M@V e . (47)

Note that the matrix P3 is diagonal so its inversion isnot time consuming.
The global R matrix which spans from the left-hand side of the first

sector to the right-hand side of sector (i) is defined by

(1)( E) ~§l)( E) ~§1)( E) §'£1)(E)
= , (48)
gl (®) RV D@ | | g P®
where the Rgi) matrices are all square. It can be shown that if [l(l)]Z
>> 2pE/ﬁ for all n, then Ré b nd Rg 2 are approximately zero and that all
scattering information, i.e., the a , 1 < m, n < PO, can be determined
only from E(NS). In the present cas:, it is true that [A(l)(E)]
ZpE/fl2 for all n, and we only propagate R( ). This matrix depends only on
~21 D and the gl)
r(E)

R P - eV - P or o P eV e (49)
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and

When P(l—l) # P(l), only the upper-left P(l) xP(l) part of 321—1)

(i)

(E) is

used in the calculation of R (E). The determination of the number of

channels propagated in a given sector proceeds as follows. If rél) is less

than a pre-determined value (10 a, for the calculations presented here) or
(1) o (i+1) _ P(i)

if p has already been reduced to P, we set P

(1)y ,| <EPSRED and |(r(l)

Otherwise we

check whether |(r (1),

ap(i

where EPSRED is a pre- set parameter (set equal to 10 ~ for the calculations
(i+1) _ P(i) 1
- 3

) (i) | '€ EPSRED, 1 <n <P

reported here). If both inequalities are satisfied, then P

otherwise P(i+1) = P(i).

Before applying the boundary conditions of eq. (19) to %(i) it is some-

(1) and so?etimes it is neces-
(i

sary to make linear combinations of the channels in g . It is convenient

times convenient to reorder the channels in g
. -2 L
to reorder the channels if V(x,T) falls off faster than r ~. This is

because for large r it will be approximately true that
2 ~2
Dnm(r,E) = 5nm[zn(zn+1)/r - kn(E)] ; (51)

and, depending onrand r', it may be possible that Dnn(r,E) > Dmm(r,E) and

(r',E) < Dmm(r',E). Since the subprogram that calculates I(i) and
{5(1)]2 orders the eigenvalues from lowest to highest, the relative position
of channel n and m may change in g when going from r to r'

It is necessary to make new linear combinations of the channels in

(1) (1)]2 _ [A(l)]z

g if there exist degenerate channels, i.e., those with [A
and n # m. This is because our matrix diagonalization routine will mix
these states. Degenerate channels will occur in the current calculations
at very large r where the term 2(% +1)/2pr2 is negligible since there are
channels with the same En but different values of Ln. (Additional acciden-
tal degeneracies would occur if we used the harmonic oscillator and rigid-

rotor approximations to calculate asymptotic energies, but we do not make

these approximations.) In order to sort out these effects, we make the

(i)

transformation to new radial functions h defined by
(1)
N P . .
PAACR N J(L;) Zkhlil)(r,la) c1smer®, 1ot
%=1 k=1

(52)

o . . . . .
where U diagonalizes Hint in the Xn basis, and has the channels in some

fixed order that dces not mix degenerate channels. This equation can be

written in matrix notation as

¢ Ve, = 1 Py (53)




We then define a new global R matrix satisfying

12.

(D) () ][
~L _ ~1 ~2 ~ L (54)
(1) (1) (1) o (1)
~R ~3 ~4 ~ R
where
:il) _ {[I(l)]Tgo}—lgii)[z(l)]TUo (55)
~§1) - (T (1)] 1~§1)[ (1)]TU0 (56)
R e O P R (57)
:21) - {[T (1)1 1~(1)[T(1)] u° (58)
The matrix a of eq. (19) is determined by
g(E) = lim a(i)(E) (59)
i+ o
where
2P = r P+ ZP e P @ - gV @
(60)
and — (i)
cos[k (E)r."’ - g T/2] , 1 <mg<pP®,
(1) m R m
F U/(E) = 5 < (61)
nm nm (1) o (1)
exp[“k (E)r 1, P <m<P ’
P51n[k (E)r(l) - LHF/ZJ s 1 <m< p° ,
B ey -5 < (62)
nm nm (1) o (1)
exp[k (E)r 1 . P <m<?P s
Dy - s 1 <m<ptP, (63)
o V) =k @r D) tcmse™, (o)
1, 1 <m< P,
“om = Com b, P < m<plt), (03)
If it is true that for a given m > Po (R(l)) = (R (1)) =0 for all
n < p° » channel m is not required in the calculatlon of a_ '), 1 <n, m¢g P°.

Our program determines the smallest m > P

&)

| <

some small number (EPSDR equals 10—3

2 O, called P

(1)

s such that

< EPSDR and I(Ril))mn' < EPSDR for all n g P°, where EPSDR is

in the present calculations), and then
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uses the upper left Pil) xPil) subblock of Ril) to calculate a(l).
It should be noted that the total energy E appears in eq. (13) only as

. . . . (i .
a multiple of the unit matrix, so that the matrices T( ) are independent of

the total energy, and the eigenvalues [xﬁ;)]z at a new energy can easily be
determined by
(1) 2 (1),L,y12 , )
[ 7(E)]7 = [a (ED]T + 2u(B' -E)/RT . (66)

We use this fact to save computer time on multiple-energy runs by reusing
the i(i) and I(i—l,i). This makes the calculation df Vnm(r), I(i), and
T(i-1,i) unnecessary for second energies and results in a great savings in
computational time for such energies. The possibility of reusing this
information is one of the reasons for preferring the present algorithm.
Notice, however, that although it decreases the computation time, it
greatly increases the storage requirements. There are two ways we have
implemented the second-energy calculations. In the first method, the cal-
culations for a given energy are. done completely before the calculation for
the next energy begins, and to do this as efficiently as possible requires
(1) | (1)

the storage of the P matrices T(i-1,i) and [T(i—l,i)]—l. Since in

the current calculation we will require on the order of 300 sectors, this
option requires a great deal of storage space when P(i) is large. The
second method we use is to propagate all energies together, that is, the
global R matrix for sector (i) is calculated for all of the energies before
the global R matrix for sector (i +1) is calculated for any of the energies.
In this case it is only necessary to store the P(i) xP(i) matrix Bii) for
each energy. If there are fewer energies than sectors, which is ordinarily
the case, this decreases the storage requirements. For the large—scalé cal-
culations described here, we performed calculations for 2-7 energies in a

given run, and we used the second method for performing second-energy runs.

IV. THE HF-HF SYSTEM

Our calculations are for the collision of two identical hydrogen
fluoride molecules. We take the hydrogen mass to be 1837.15 m, and the
fluorine mass to be 34631.94 m We partition the Hamiltonian into the

true diatomic and three-body parts, so that Hint equals Hint’ which is

given by
(D (2) .

int Hint * Hint ’ (67)
2

(i) h 1 3,2 3 2 2

H. = - —= i~ ’

int w2 ar Ry aR0) ¢+ IR J2MRY ¢V (R (68)

HF Ri i i i
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where Hyp is the reduced mass for an HF molecule, Ri is the bond length of

molecule i, is the quantum mechanical operator for the square of the

jv\
Ry
rotational angular momentum of molecule i, and Vvib is the vibrational

25

potential. For Vv' we use the function proposed by Murrell and Sorbie,

ib
which is a fit to an RKR potential curve determined from experiment. The

. . » 0] . ~ 3
primitive basis functions Xn(x,r) are given by

R 1 . j1+j2+j12+£ .
X (x,7) = {2(1 + ¢ §, . )1 %[¢ (x,T) + n(-1) o-(x,T)] ,
- V1V2 I1d2 &~ @~
(69)
o (x,8) = (RR)™X . (ROY, . (R)ET .  (RLRLE) (70)
11 232 3132312
M (R,,R8) = 1 Giymydom |3 i, m ) (5, m, om | 8IM)
[PRTR PN A Rv 1M132M2 13139 312M127 4 310M12% e 112
1°2712 m, m
12
vy RYy L @y, &) (71)

where ij is a vibrational wave function that solves

2 2
P ST + DR /2, R

= | . ) 7
T VLR (R = e (R) L (72)

viTvj

eee sse sse ees) is a Clebsch-Gordan coefficient,26 and

Y%m is a spherical harmonic. The unit vector ﬁi describes the orientation
of molecule i in the laboratory-fixed frame of reference. As discussed at
the end of section II, n stands for the quantum numbers Vs jl’ Voo j2,
j12, %, J, M, and n, where it is understood that it is not possible to dis-
tinguish which molecule has which set of v and j quantum numbers; in con-
trast, o stands for the quantum numbers Vi jl’ Vos j2, j12, £, J, and M,
where formally the two molecules are distinguished so that molecule 1 is
known to have vibrational and rotational quantum numbers v, and ji’ and a
means that the quantum numbers for the two molecules are exchanged. For our
calculations we obtained the ij by solving eq. (72) by the linear varia-
tional method in a basis of harmonic oscillator functions. The eigen-
energies, €, were obtained, however, from the experimental spectroscopic
parameters of Ref. 27. [These are in good agreement with the variational
ones from eq. (72).] Notice that

€n=gn=€v. + € . (73)
131
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In the final calculations the potential V(f’;) is the recent fit of

Redmon to the extensive ab initio calculations of Binkley.28 (Some of our
early calculations, including the 10l-channel timing runs discussed in sec-
tion VI, used the function of Poulsen et 3}.29 These early runs also

involve somewhat different values of several of the numerical parameters of
the calculations. Except when stated otherwise, the numerical parameters
given in the rest of the chapter are the values used in the production runs
with the Redmon-Binkley potential.) To evaluate the V matrix elements we

first express Vnn' in terms of matrix elements over the L

-}

vV _,(r) =1[4(1 + 38 §, .0+ 8, ,8.,. 0] %v ,(r)
nn ViV, dqdy vivs i3, oo
Jy+iati, o8 Jregl+jl 0
172712 17-°2°-12
+ n(-1) Vig: (¥) + n'(-1) V=, (1)
PPN
12712
+ an'(-1) V—— (r)] , (74)
aa
where
Voo (T) = JfdxsdE o (x,8)V(x,0)0 ,(x,7) , o (75)
Jl+J2+E
and we have used the fact that Vnn' is diagonal in (-1) . Since Vn .
is diagonal in n, eq. (74) implies that
Jo+iati, ,+2 Jr+jlejr +8!
1°-2712 172712
V(m,(r) + n(-1) V&a,(r) = n(-1) Va&"(r)
AP
12712
+ (-1) V&&'(r) . (76)
Thus
' 1
V (r) =6 _,[(1 + 8 S, . )1+ &, 8., .01 7%[v (v
nn nn ViV, iyd, vivs 343, ao
Ja+ia+ti, o +2
s E T2y ()] . (77)

One implication of eq. (77) is that only states with n = +1 will couple with
the states with jl + j2 =0
The determination of Vaa' requires the evaluation of eq. (75), which is

an 8-dimensional integral. We proceed by making the expansion

V(X,r) = 2 v (R »R ,r)y (? a’f ) s (78)
Vo o p(Epofy) = —T——lv GV, _(B,) v (EDY (F)],
192 [2(]. . Gpo)]2 qlu q2 M ql H qzu




16.
where fi is in the same direction as Ri but is expressed in the body-fixed
frame of reference where the z axis is in the direction of T. Equation

(75) then becomes

qlqu qquu

aa'(r) = ) BBQB'Q' CYY' (r) (80)
qq9,H
where
q,9,H *
1 2 JM N [ ~ ~ ~ J'M' i fa PN
B~ T, = de dR, fd? e 5 (R,,R,,D)Y (t,,t,00%,.,., ., (R, ,R ,T),
ILI .
BLB'L 2 1 2 122 1’72 qlqzu 1’72 3132312 1°72
(81)
S RO (RY) ( ) Ry, ., (R)
c_ =, r) = fAR SR, x ., (R,)x . (R,)V R ,R,,0)x_, R Xy, R y
i U2 Tvydy 1oy 20 g, 1727 vy g Vals

(82)

B stands for the quantum numbers jl’ jZ’ j12’ J, and M, and y stands for the
quantum numbers vy jl’ Voo and j2. Equation (81) is a 6-dimensional inte-
gral which is independent of r and can be evaluated analytically. Equation
(82) is a two-dimensional integral which must be performed at every sector

for every vibrational-rotational quantum number pair yy' and every set of

9y 9,H for which B:i:?:, is nonzero. However, before eq. (82) can be eval-
uated, it is necessary to determine the valqzu which are given by
. 1 1 2 1 1
Vi q p(Rl,Rz,r) =7z [1 - cos (6, -0,)1" d[cos(¢, -9,)] / d(cos 6,)
172 -1 -1
1 " A
x {1 d(cos 62)V§1q2u(r1,r2)v(§,r) , (83)

where Bi and ¢i are the inclination and azimuthal angles of ?i' The three-
dimensional integral in eq. (83) is independent of the channel indices

By, Y, and 2.

q199u
The BBEB?R' are independent of sector and are evaluated as follows.
~JM . . . .
Let OJ 5oy o0 be the simultaneous eigenfunctions of the operators with
172°12
eigenvalues 3y GGy +1)y 3,0, +1), §3,,(5,,+1), J(J+1), M, and @, where ©
1 272 12°-12 _IM 31
is the prOJectlon of J on the body-fixed z axis. 8% o 1s given by
132312
O s oty ®) = T (GGymidomy |3, 3,5,,0Y, (F)
Jedadlaft 1272 1M132M 13139 12 1
1°2-12 m, m, 1 1
(J)
(%, Y[ (20 +1) /4] Dyg (9,0,0) , (84)
2 2

2
where Dég) is a rotation matrix 6 and ¢ and 6 are the azimuthal and inclina-

tion angles of T. The integral of an expansion function of the potential
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between these body-frame basis functions is

q q ],l e ' 1
~11712 A ~ ~JM* PN A ~ ~ A ~J'M
B 1o, = Jdr fdr, 677, . (r,,t.,t)Y (r,,r.,)6e,,.,.
BRB n. 17772 T33,3,,% 1702 SPEPY RS S PR PR PP

! (85)

(38,0,

and is given by3

q,9,H 1
~1172 -3 . y .
BBQB'Q' = GJJ,GMM,SQQ,[Z(I +6u0)] [(231 +1)(2q1 +1)(2_]1 +1)(2J2 +1)

1 Jipti tigHa +a,+0
% 12°°1°-°2°7*1° 72
y . . 20
x (2q2 +1)(2_]2 +1)(2312 +1)(ZJ12 +1)1%(-1)
. . . . . .
J1 9 d1) (2 92 d2 ) J12 912 12
0O 0 © 0 0 © 949 -2 0 Q
319 945 ]
912 94 9 12 712 12 94+dy+d 5
e . _
e .
2% )
where e ees e is a 9-j symbol.26 The laboratory-frame basis func-

tions used for the wavefunction expansion are related to these body-frame

functions by the transformation31’32
% i, Jd
ol L JRLR,D) = ] (2m+1)(0 .2 _Q) EO R DN A R
J1d2312 Q I132312
(87)

cee tee e 26
where ( ) is a 3 - j symbol (which is simply a re-phased and
9,9
re-normalized Clebsch-Gordan coefficient), and the BS%B%E' which we need to
evaluate are related to the body-frame integrals by

2 ' 1t '
s 102" e e § [T ‘]) (” 31 7 ) (e i1
BRB'L T * T g \0 2 - 0o Q' -q Q000"

(88)
Substituting (86) into (88) yields
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q,q,H Jyo+ig+is+q,+q,+J
B L2 s s (e 12722 o0 s

1
TR
BiABR'R! JJ' MM! )] [(2J1+l)(2ql+l)

e

x

(Zji +1)(2j2 +1)(2q2 +1)(2jé +1)(2j12+1)(2ji2 +1)

v fiy 44 14 iy a4 5
(22 +1)(28' +1)]7? ( 1 1) ( 272 2) 2(2q12+1)

X

0 0 0 o o o) qi,
' ' Ji, Q49
(Z b q12) (q12 q qz) R g, ;? ;2 ;2
0 0 O 0O u -p 312 312 J g 1 .1
Jp 9 I
q,+9,+q
x [1 4+ (=1) b 2 12y (89)

e e e o L)

where is a 6 -j Symbol.26 For the special case of J=0, eq.

(89) can be simplified to

q,9,H .
1 2 = _/2 j 3! .
BB%B-g,v = Sj y,sj' %.(1 +6}10) [2(231 +1)(2q1 +1)(231 +1)(232 +1)
127 J12
3 Jyotis+is+a,+q
x (2q2+1)(2jé+1)(29/+1)(22,' +1]%(=1) 12°°1°-°2 7122
¥ L
0 0 0 00 0/ m |0 m -m 0 —u-m wem
NI PR it a9, ]
S P C ’ (90)

~{-m § m M+m -y -m

In terms of Clebsch-Gordan coefficients eq. (90) is

q,9,H APE AP AR S PETPEY P
172 1°-°2 1 72 . . -3
BBZB'!L' = GJ. ZGJ., 2,(-1) [(232+1)(232+1)(1+6u0)]
12 12
« 2020 + 1)(20" +1)(2q, +1)(2q. +1)1%(5.0q.0]j,q,§.0)
94 92 117979
. . . . . YOt Varae_
x (3,09,013,9,350) g (203 m{ 23, jom) (%'0j ~p-m|L"j]jy—n-m)
L cros . o late
x (3p-w-mq uliiq;3;-m) (Gourmdy=p| j5q,5,m) . (91)
q1q2“
The CY'Y' arecalculated using a recently proposed optimized quadrature

. 33 . . .
scheme using Gauss-ground-state™  nodes. Seven points per vibrational coor-
dinate were found sufficient to converge the final S matrix elements for the
initial state v =V =1, j1 =j2 =0 to better than 1%. These convergence

2
tests were performed with a basis with V1 v, = 2 and j1 + jzg S5 at a
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relative translational energy of 76 meV. N was 54 for these calculations.
Thus the integrand of eq. (82) is required at 49 points for each 9qs 9yr W
Y, ¥', and r, and this was evaluated as discussed next.

The three-dimensional integral of eq. (83) must be evaluated numerically
in each secﬁor for each of the 49 values of R1 and R2 required. The 61 and
62 integrals were evaluated using Nq—point Gauss-Legendre quadrature and the
®

we took N to be q +1 where ¢ is the maximum value of q, and q, used
q max max 1 2

—¢2 integral was evaluated using Nq—point Gauss—Chebyshev quadrature, and

in eq. (78). Note that 0 £ u < min(ql,qz) where min(ql,qz) is the minimum

of 9, and q,- Nq ranged from 11 at small r to &4 gor r greater than 24.5 aye
Thus the potential function must be evaluated 49Nq times per sector. This

is an important number because the evaluation of the potential at a given
geometry is very time consuming. As coded by us, the Poulsen-Billing-
Steinfeld29 potential requires the evaluation of 3 exponentials, 23 additions
or subtractions, 36 multiplications, 1 division, 1 square root, and 6 raisings
to a power per potential evaluation. The Redmon—Binkley28 potential is even
more complicated; our version requires 34 exponential evaluations, 303 addi—
tions or subtractions, 405 multiplications, 19 divisions, 5 square roots,

and 2 raisings to a power per potential evaluation. Note, however, that the
number of potential evaluations is independent of the number of channels in
the close-coupling expansion.

To complete the specification of our calculations it is necessary to
assign values to the number of channels N, i.e., eq. (9), and to the number
of terms in the potential expansion, eq. (78). We choose the number of terms
in eq. (78) by including all 995 Gy» and p with 9 + 9, < Yeum and increasing
qéum until eq. (78) accurately represents V(f,r) at a given value of r. 1In
our case accurately means that the expansion differ from V(f,r) on the order
of 1% for r > & a, and slightly more for r < 4 aye This yields qsun1=10 at
Equation (78) then contains
d197u
9 BRB'R!
are zero and to avoid storing up to 322N° numbers, many of which are zero,
9199w

BLB'L"’
word which indicates the values of ql, dys Hs B, &, B', and &'. This

small r and Ueym = 3 for r larger than 24.5 ay.
from 161 to 13 terms. It should be noted that a large number of the B

our program only stores the nonzero values of B alternating with one

requires approximately 3ON2 words of storage for qsum:=10, with the exact

coefficient of N2 depending on N.
9195k
BQ{SI‘LI
y+ In fact at small r, Vnn' has no zero elements, but as

The fact that many B are zero does not necessarily translate into
zero values of V
nn
r increases and we decrease the number of terms in eq. (78), we do obtain
zeroes in the V matrix. Table 1 summarizes the percentage of zero elements

as a function of r.
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Table 1. Potential and sector information

Number % zero Number of

r (a.) N of terms elements in sectors in

0" q in eq. (78) V matrix? this range@
3 to 6.06 11 161 0 52
6.06 to 6.54 10 125 0 8
6.54 to 7.02 9 95 1.1 8
7.02 to 7.56 8 70 3.8 9
7.56 to 11.0 7 50 9.8 51
11.0 to 12.6 6 34 20 12
12.6 to 24.7 5 22 34 51
24.7 to 150 4 13 54 100

abased on N =530

There are many ways to choose N. 1In the present chapter, the only
block of the Schroedinger equation that we attempt to solve is the one with
J=M=0, and the only initial state considered explicitly is the one with

v, =v, =1 and j1 =j2 =0. As a consequence we need only consider the sub-

1 2
block with n=¢ =+1. Consider a total energy with the vy =v2:=1, j1 =j2 =0
channel open, and the vy =V, = 1, j1= o, j2= 1 channel closed. One possible

choice for N is to include all open channels plus selected closed channels.
However, this would lead to an extremely large value for N since the rota-
tional energy spacing is so much smaller than the vibrational spacing. For
the energy under consideration there are 1548 open channels with J=M=0 and
n=¢=+1, and this number increases rapidly as either J or the energy in-
creases. We have found previously,11b for model diatom-diatom collisions
with central potentials, so that only vibrational energy and not rotational
energy is transferred, that a good way to choose channels is to include all
channels with vy +Y, < Veum’ where Veum is large enough to include at least
one closed vibrational level of each molecule. We assume (based on experi-
encelo with rotational energy transfer in atom-molecule collisions) that
highly closed rotational channels may also be excluded, and we also assume
that channels with very high ji’ even when open, do not have significant
dynamical coupling to an initial state with j1 =j2 =0. Thus we finally
arrive at a scheme in which we include all channels with v, +v, £ v y

1 2 - “sum

. . s . . .
Jptdy S iy where Joum 18 allowed to depend on vy and Vo In the final

analysis we must converge the calculations with respect to Veum and all the
jsum' If convergence is obtained the assumptions behind our channel-

selection scheme do not affect the accuracy of the final results, but they
do affect the rate of convergence with increasing N. Because the HF mole-

cules are indistinguishable and we properly include the interchange
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symmetry, it is not a further restriction to generate the channels from a

list in which vy < v, and j1 < j2 when V=V, For the present chapter we

consider four sizes of the basis set, with N = 55, 101, 400, and 530. The

first two are small basis sets used only for debugging and timing analyses;

the third and fourth are an attempt to test convergence. The 400-channel
L . . _ . _ < . _

basis is obtained using Veum 3, Jgum 8 for vy +v, < 2, and Jeum 6 for

v, +v, = 3, and the 530-channel basis is obtained using v =3, j =9
1 2 sum sum

< i - - 3. . .
for vy v, < 2, and Joum 7 for vy +Y, 3 (Another difference is that

the 55, 400, and 530-channel runs are for the Redmon-Binkley potential with
proper inclusion of interchange symmetry, whereas the 10l1-channel calcula-
tions are simplified as discussed in section VI.) None of these basis sets
includes all open channels with v_ +v

1 2
excluded. These open channels should not be too important since channels

< 1; channels with high j1 +j2 are

with intermediate j1 +j2 will have poor translational overlap with the
initial state because of the large energy defect and coupling to channels
with higher j1 +j2 require ferms in eq. (78) with high 94 and qy> and these
become relatively less important as 44 and 9, increase.

We integrate eq. (12) using a fixed stepsize of 0.06 a, for r less

than 10 a_ and then allow the stepsize to increase according to eq. (38)

0 -
with EPS equal to 0.1 and hmax large enough to not limit h(l+1). By the
time the calculation is stopped at r = 150 ays the stepsize has increased
to about 3 agys requiring approximately 290 sectors.

V. VECTORIZATION OF THE COMPUTER CODE

On the basis of the theory discussed in section II and the algorithm
reviewed in section III, the solution of the close coupling equations may
be broken into six segments, as described in Table 2.

A general name for the work of segment V is asymptotic analysis. In
general it need only be performed in the last sector, but as a check that
the integration has been carried out to large enough r it is usually per-
formed more than once. As mentioned above, runs at second and subsequent
energies require less work if appropriate matrices are saved from the cal-
culation at the first energy. For a first energy run with N sectors for
which the asymptotic analysis is performed Na times, segmentz I, II, and IV
are performed NS times, segment III is performed NS-—l times, and segment V
is performed Na times. Segment VI contains some tasks performed only once,
as well as some tasks performed Ns times or Na times, but the tasks per-
formed more than once all involve very little computational work compared

to those singled out as segments I-V. For the various runs discussed here

NS = 288 or 291 and Na = 4. Thus most of the computational work is in
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Table 2. Segments of the computation

Principal
Segment subprogram Task
1 : POT Calculation of V (r(Cl))
nm
II DCALC Assembly and diagonalization
of D(l) to obtain Aﬁi) and T(l)
111 TAUMTS Calculation of T(i-1,i) and/or
its inverse
v RCALC Calculation of Ril) and p¢itD)
A GENSCAT Calculation of S from Ril)
VI cee everything else

segments I-IV. For convenience in discussing the segments in the rest of
this chapter, segments I-V will be named after their principal subprograms
and segment VI will be called overhead.

Segment I involves the computation of a very large number, approximately
%Nz, of multi-dimensional integrals, and segments II-V include a number of
matrix operations for which the number of arithmetic steps becomes asymptoti-
cally proportional to N3 or [P(i)]3 as the matrix orders are increased.
Such matrix operations are called ”N3 steps". Most of the computer time
goes into the potential calculation and these N3 steps, and these are thus
the operations for which vectorization offers the most potential benefits.
We will next concentrate our attention on the N3 steps. Table 3 lists the
number and type of such steps for each segment. It is useful to comment
briefly on the appearance of an inversion step in the table. 1In general
whenever possible, it is more efficient to solve linear equations Ax = §
directly than to perform the separate steps of inverting A followed by the
matrix multiplication ofé_1 times § to give the solution X = é_IE. How-
ever, eqs. (44) and (46) are of the form X = gé—l. Although this is equi-
valent to ET = (éT)_lgT, we instead solve it by first inverting T(i-1,i),
which plays the role of A, and then form the matrix products B é—l for eq.

(44) and B A"1 for eq. (46). Note that B, is diagonal. Multiplying a

matrix by a diagonal matrix is, like a mairix times a vector or a matrix
plus a matrix, only an ”N2 step'", and such operations are not included in
Table 3. Figure 1 gives a flow chart of our program, showing the flow of
the calculation between the various program segments discussed above. On
the first energy, POT, DCALC, TAUMTS, and RCALC are called once per sector.

For calculations at second energies, TAUMTS is called once in each sector
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Table 3. Number and type of ”N3 steps' per program section®

operation
solve multiply
invert linear matrix by
Segment diagonalize matrix equations matrix Equations
I. POT 0 0 0 oo
II. DCALC  (1,0)° 0 0 0 (16)
c ,

IIT. TAUMTS 0 [1,0] 0 (1,0) (41),(46)
IV. RCALC 0 0 1 2 (44),(49)
V. GENSCAT 0 -0 L 4 (21),(58),(60)

a . ... . . .
significant operations are ones which scale for large matrix orders
as the cube of the matrix order

b(l,O) means 1 for the first energy and O for subsequent energies

c .
[1,0] means 1 for all segments at the first energy and for sectors
in which the number of channels is decreased at any energy, but O
for other sectors at second and subsequent energies

for which P(i) (1)

at this energy is different from P at the last energy,

and RCALC is called once in every sector. For the production runs P(i)
differs from one sector to the next in about half of the sectors. At
selected distances near the end of each calculation, for every energy,
GENSCAT is called to perform an asymptotic analysis.

We now discuss the practical implementation of these calculations on
three computers. The first is the University of Minnesota Department-of-
Chemistry Digital Equipment Corporation VAX 11/780. This is a '"minicomputer"
equipped with a scalar floating point accelerator and 4 Megabytes of physical
memory (equivalent to a half million 64-bit words). The second is the
Colorado State University (CSU) Control Data Corporation Cyber 205 equipped
with a scalar processor and two vector pipelines and two million 64-bit
words of physical memory. (We also performed some of our Cyber 205 calcu-
lations on similarly configured machines located at the Control Data Corpora-
tion offices in Arden Hills, Minnesota; timing analyses will be given only
for the CSU machine.) The third is the University of Minnesota University-
Computer-Center Cray-1, equpped with scalar and vector processors and one
million 64-bit words of physical memory, of which 0.91 Megawords are
available to an individual user. These second and third machines are ''class
VI supercomputers'. These three machines will henceforth be called simply

the VAX, the Cyber 205, and the Cray-1, respectively. The VAX and the

Cyber 205 are virtual-memory machines, while the Cray-1 is not. In our
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discussion of implementing the codes we will pay special attention to
utilization of the vector modes available on the two supercomputers.

There are two aspects of vectorizing a program. The first concerns
memory usage. Since our calculations require the manipulation of matrices
which are quite large, the finite amount of memory and mass storage available
to us limits the size and number of matrices which can be used in a given cal-
culation. Thus a considerable amount of effort was spent to modify our code
to use the smallest amount of memory possible. This is especially important
on the Cray-1 which is not a virtual memory machine. Our vectorized code
on the Cray-1 holds only two N xN matrices in memory, with other N xN
matrices and the B matrix elements stored on disk. This limits us to N
less than about 640. It is possible to hold up to four N xN matrices in
memory for N less than about 470, but to avoid presenting results with more
than one Cray-1 vector version of our code, we present results here only for
the version holding only 2 N xN matrices in memory. The second aspect of
vectorization is to modify the program to use the supercomputers' vector
capabilities. This can be done in several ways, as discussed next.

A portion of code that can be vectorized, that is, that which can be
replaced with a vector instruction, is a DO-loop that performs exactly the
same arithmetic operation on each element of a vector. Examples of DO-loops
which cannot be vectorized include those involving recursion, subroutine
calls, input or output statements, branch instructions, and most conditional
statements. Different machines have different definitions of a vector. On
the Cyber 205, a vector is a series of contiguous memory locations. The
Cray-1 has 8 vector registers, each capable of containing 64 words (one word
is 64 bits), and it can fill these registers with values from a series of
memory locations, each incremented by a constant amount.

To understand how a vector machine achieves high-speed arithemtical
throughput, it is necessary to first discuss how a scalar machine works.

A typical operation, such as the multiplication of two numbers, can be
broken down into a series of suboperations. The amount of time required

by a suboperation is at least one minor cycle. On a scalar machine, each
suboperation must wait until the preceding one has completed before it can
start. Thus the multiplication of two numbers will take many minor cycles;
the exact number of minor cycles will depend on whether or not the operands
were initially in registers or in memory. In a vector machine, the units
which perform the suboperations on vectors are more independent. The set
of units that perform these suboperations on vectors are called pipelines
and the units can be operating simultaneously on different operands, the

different vector elements. It is then necessary to wait several minor
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cycles wuntil the first element of a vector has received all of the sub-
operations, and after that, the results of the operation on the following
vector elements will come out at the rate of one per minor cycle. There
are several ways to increase the speed even further. For example, one can
add more pipelines, as on the Cyber 205 machine we used, which has two.
Then, after the startup time, the time necessary for the first result to
emerge, a result will be obtained from each pipeline every minor cycle.
Another way to speed up the arithmetic is to perform more than one operation
at a time; an example of this is multiplying a scalar times a vector and
adding it to a different vector (a scalar is a vector of length 1). This
is called linking (or chaining), and using it produces the results of two
operations per pipe per minor cycle. On the Cyber 205 linking is restricted
to two vector operands and each of the four units (add/subtract, multiply/
divide, logical, and shift) in the CPU can be used only once. On the
Cray-1, all 8 of the vector registers can be used, but again each unit in
the CPU can be used only once. On the Cyber 205 it is also possible to use
half precision (32 bits) rather than the normal 64-bit precision. 1In this
case one obtains twice as many 32-bit results as 64-bit results. All of
these techniques increase the startup time, so it is necessary to have
vectors as long as possible to get the maximum speed. The maximum vector
length on the Cyber 205 is 65,355. The Cray-1 uses only 64 elements of a
vector at a given time, but it has no maximum vector length. In our cal-
culations, we use linking whenever possible and we always use 64-bit pre-
cision. For the processes which take up most of the time in segments II-V,
the vector length is always less than or equal to P(i). For some operations
on the Cyber 205, such as setting a matrix equal to another matrix, we
exceed the maximum vector length and have to split up the operation into
parts, each of which does not exceed the maximum vector length. In our
vectorized version of POT we use vector lengths of up to 1331, however,
most of the time required is spent on operations on vectors of length 49.

As stated already above, most of the work in our calculaﬁions is spent
on matrix manipulations. To take advantage of vectorization one can write
utility routines which are vectorizable or use pre-existing library routines
supplied by the system. On the Cyber 205 we have used the Math-Geophysical
Vector library (MAGEV), which contains routines to diagonalize matrices
(these are modifications of EISPACK routines) and solve linear equations
and to perform other useful tasks. On the Cray-1, we have used the SCILIB
library, which contains similar routines as the MAGEV library.

To help make the vectorization process more clear, we will now con-

sider in detail how one would write a utility routine to multiply two
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matrices. We first consider doing this on the Cyber 205, which has the
restriction that the components of the vectors be contiguous memory loca-
tions. A typical FORTRAN code to multiply an N xM matrix A times an M x P
matrix B to produce an N xP matrix 9 using the inner product method is

DO 1 I=1,N
DO 1 J=1,P
C(1,J)=0.0
DO 1 K=1,M

1 C(I,J)=C(1,T)+A(I,K)*B(K,J).

In FORTRAN the elements of arrays are stored in memory in the order produced
by varying the first index most rapidly. Thus in the above example only the
elements of B are accessed sequentially from memory. Since the elements of
A are not accessed sequentially from memory, the inner-most loop cannot be
vectorized (this loopcould be vectorized on the Cray-1). One possible solu-
tion is to store the transpose of the matrix A, but it is much more effi-
cient to simply re-order the loops as follows (this is sometimes known as
the outer product method):

DO 1 J=1,P

DO 1 I=1,N

1 ¢(1,J3)=0.0

DO 2 J=1,P

DO 2 K=1,M

DO 2 I=1,N

2 C(I1,J)=C(I,J)+A(I,K)*B(K,J).

Here the inner-most loop can be replaced with the linked vector instruction:
add element I of the vector starting at C(1,J) to the scalar B(K,J) times
element I of the vector starting at A(1,K) and store the result in element

I of the vector starting at C(1,J). Since this uses the linking capabili-
ties of the Cyber 205, the matrix multiplication can be performed extremely
fast. (The method is not the only efficient way to vectorize a matrix
multiply on the Cyber 205, but is the one we use.)

In Cyber 205 FORTRAN there are two ways to indicate vector instruc-
tions. The first is to simply turn on the compiler option (after of course
modifying the program to allow vector instructions). There are two options,
V (for Vectorization) and U (for Unsafe vectorization). The U option causes
some classes of DO loops to be replaced with vector instructions which the
V option does not vectorize. We found that these options were not useful
to us because the V option will not vectorize DO loops with variable limits,
and the U option sometimes caused incorrect results., The second way to

indicate vector instructions uses an explicit notation. An example of
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this notation is A(I,J,K;N) which indicates a vector containing N elements

starting with A(I,J,K). Using this notation the matrix multiply example

becomes
Do 1 J=1,P
1 C(1,J;N)=0.0
DO 2 J=1,P
DO 2 K=1,M

2 C(1,J3N)=C(1,J;N)+A(1,K;N)*B(K,J).

On the Cray-1, vectorization is accomplished differently. Since the
Cray-1 can fill its vector registers from memory locations which are not
contiguous, the first as well as the second multiplication example can be
vectorized. We have found that, of the methods we tried, the fastest way
to multiply two matrices is to use the DO loops ordered as in the first
example but replacing the inner-most DO loop with a call to the Cray-1 dot
product function:

DO 1 I=1,N
DO 1 J=1,P

1 ¢C(1,J)=SDOT(M,A(I,1),N,B(1,J),1)
where it has been assumed that the array A has N as its first dimension.
Cray-1 FORTRAN does not contain a special explicit notation for vectors;
thus to make the compiler use vector instructions it is necessary to use
the compiler option V. However, unlike Cyber 205 FORTRAN, Cray-1 FORTRAN
allows for what are called compiler directives. These allow one to control
whether or not specific DO loops are vectorized.

In the final version of our scattering code on the Cyber 205 we use
in-line FORTRAN statements to perform matrix multiplications, and we call
routines from the MAGEV library to solve linear equations, invert matrices,
and diagonalize matrices. These routines use Gaussian elimination to solve
linear equations and modifications of EISPACK routines for matrix diagonal-
ization. In comparison to our own vectorized FORTRAN utility routines to
perform these operations, the MAGEV linear equations solver (GEL) is
slightly faster and the MAGEV matrix diagonalization routines are signifi-
cantly faster. The matrix diagonalization routines from the MAGEV library
are faster than our FORTRAN routines because matrix diagonalization (first
a Householder transformation to tridiagonal form followed by an implicit QL
diagonalization of the tridagonal matrix) involves many steps which cannot
be vectorized, and the MAGEV routines use many special calls (to what are
called STACKLIB routines) which cause the compiler to generate in-line
code which efficiently performs these non-vectorizable steps. We have

not included any STACKLIB routines in our own coded sections.
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On the Cray-1, the final version of our scattering code uses in-line
FORTRAN statements and the dot product function SDOT to perform matrix
multiplications. To diagonalize the matrix 9 we use the SCILIB version
of the EISPACK routine RS, and for matrix inversion and linear-equation
solving, we use our own vectorized version of a routine made up of LINPACK
routines. OQur routine consists of the LINPACK routines SGEFA, SGEDI, and
SGESL combined together and modified to avoid all unnecessary subroutine
calls. The original LINPACK routines use BLAS (Basic Linear Algebra Sub-
routines) routines to perform the innermost DO loop operations. In our
routine, we found it faster to substitute FORTRAN statements to perform the
operations done by the BLAS routines rather than to call the BLAS routines
contained in the SCILIB library. 1In contrast to the Cyber 205, the SCILIB
EISPACK routines are only slightly faster than using our own vectorized
FORTRAN versions. The SCILIB inversion and linear-equation-solver sub-
program MINV is faster than our own vectorized FORTRAN routine (based on
modified LINPACK routines as discussed above); however we do not use it
because the SCILIB version requires matrix input in an augmented matrix
form that is inconvenient and also since the ratio of the time required by
MINV to the time required by our vectorized FORTRAN routine was approaching

one as the matrix size is increased.

VI. EXECUTION TIME ANALYSIS

In this section we present actual execution times for various runs and
tasks within runs and for various computers and versions of our code. First
we consider a special set of early runs with N =101 for which we made the
most detailed timing comparisons. These calculations used the simpler
Poulsen—Bi1ling—Steinfeld29 potential with a smaller number of terms in eq.
(78); in particular, we restricted qq and p to O and q, to be less than or
equal to 2. These calculations also differ from the production runs in
several other respects; the most important of which are: we used 27-point
quadrature (3 points per dimension) to evaluate eq. (83), the vibrational
dependence was expanded in a Taylor series, keeping up to quadratic terms
in each oscillator coordinate for a total of nine terms; we did not enforce
interchange symmetry, we restricted the basis to functions with j1 =0 (so
that the potential is effectively spherically averaged over the first
rotor's orientation), and we used 4 sectors and multiplied the times
obtained by the appropriate factors to mimic a calculation using NS =291.
In the second part of this section we consider calculations with the
Redmon—Binkley28 surface with N =155, 400, and 530 and with the production

values of the numerical parameters, e.g., Nq = 4 to 11, depending on r.




Table 4. CPU times (in sec) for various versions of the six program segments on various machines. The times are based
on N (number of channels) =101, NS (number of sectors) =291, and Na (number of asymptotic analyses) =4.

Tasks done only at 1st E Tasks done every E Totals
TAUMTS TAUMTS
. a . b c d d b c
Machine Version POT DCALC (1st E) (2nd E) RCALC GENSCAT 1st E 2nd E
VA scalar 3170 18800 14600 4740 29200 894 66800 34800
cY scalar 69.0(46)e 654(29) 427(34) 145(33) 889(33) 27.8(32) 2070(32) 1060(33)
cY scalar with 69.0(46) 634(29) 425(34) 141(34) 889(33) 27.4(33) 2060(32) 1060(33)
compiler
vectorization
(options V and U)
CcYy explicitly 69.0(46) 81(232) 29(490) 8.8(538) 43(684) 4.45(201) 226(294) 56(628)
vectorized
CR scalar 95(33) 551(34) 536(27) 86(55) 1250(23) 35.2(25) 2470(27) 1370(25)
CR scalar with 98(32) 269(70) 386(38) 12(393) 1110(26) 28.2(32) 1890(35) 1150(30)
compiler
vectorization
CR explicitly 130(24) 117(160) 63(233) 13(375) 116(252) 5.58(160) 432(154) 134(261)
vectorized

3va: VAX 11/780; CY: Cyber 205; CR: Cray-1

b . .

time for first energy
c .

time for second energy or any subsequent energy
d . .

time for these tasks is same for 1st or any other energy

e . . . . .
numbers in parentheses are the ratio of the VAX time to the time of that particular entry

‘o€
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Table 4 presents the execution times for each of the segments I-V for
the 101-channel runs. The times for segment VI (overhead) are not given
in this table because they comprise less than 1% of the total time. As
stated above, it is assumed that the integration range may be divided into
291 sectors, but an asymptotic analysis to calculate the scattering matrix
need be performed 4 times (the fourth to actually obtain the scattering
matrix and the first three as convergence checks of the maximum r value
rmax)' For the 101-channel test runs, the segment POT was not vectorized;
it was only modified as required to interface with the other program modi-
fications. Table 4 shows that running in scalar mode on the Cyber 205
results in a speedup factor of about 32 as compared to our VAX for both
first and second energies. On the Cray-1 this speedup factor is a factor
of 26. Vectorizing our program by just turning on the compiler vectoriza-
tion options (options V and U on the Cyber 205 and option V on the Cray-1)
produces very little difference on the Cyber 205, while on the Cray-1 some
program sections are significantly speeded up, resultiﬁg in an overall
speedup factor compared to our VAX of 35 times for first eneriges and 30
times for second energies. Our utility routines to perform diagonalization,
determine inverses, and solve linear equations are speeded up significantly
on the Cray-1, while our routines to multiply matrices were not speeded up
at all, since they were written in a manner which did not allow the compiler
to use vector instructions. Explicitly vectorizing our code as described
above results in substantial speed increases for both the Cyber 205 and
Cray-1. The speedup factor for the Cyber 205 over the VAX increases to 294
times for first energies and 628 times for second energies. The large
speedup for second energies is mainly due to the fact that the processes
which vectorize relatively less well on the Cyber 205 (the potential eval-
uation and matrix diagonalization) are not performed for second energies.
The situation is similar on the Cray-1 where the speedup factor over the
VAX increases to 154 times for first energies and 261 times for second
energies. The reason why TAUMTS at second energies is slightly faster in
the compiler vectorized version of our code than the explicitly vectorized
version is that a different routine to invert matrices is used. We use the
slightly slower inverter because it is the routine we have chosen to use to
solve linear equations. Some program segments are speeded up even more,
e.g., we achieve a factor of 684 for the RCALC segment on the Cyber 205;
this indicates that other problems or other algorithms for this problem
might be speeded up even more than the cases reported here. Thus it is
possible to achieve very large speedup factors if the effort is made to

make efficient use of the vector capabilities of a machine.
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As discussed in section IV, the Poulsen-Billing-Steinfeld potential is
simpler than the Redmon-Binkley one, and as mentioned in an earlier part of
this section, we restricted Ymax® ¥ and Yy max to O, O, and 2 for test runs
with this potential, and the angular integration of eq. (83) was carried out
by 27—point.rather than Nz—point quadrature for the 101-channel timing runs.
Nevertheless, the POT segment still consumes about 30% of the total time when
the rest of the code is vectorized. 1In our production runs we used the
Redmon-Binkley potential, larger values of Uax’ and Nz—point quadratures
with Nq = 4-11 (see Table 1); these improvements, which are necessary for
good accuracy, resulted in POT requiring much more time in production runs.
Thus we spent extra effort to vectorize our final potential routine for
these runs, as described next.

The vectorization of the POT segment proceeded as follows. The first
part of the potential matrix evaluation, which is independent of sector, is
the calculation of the B:i:?;, via eq. (91). This is the most time consuming
part of the calculations with the versions of the code used for the timing

analyses presented here, and it cannot easily be vectorized because most of

91991
the BBﬁB'z'
our routines to calculate 3j symbols (or Clebsch-Gordan coefficients) are

require different numbers of terms in the sum of eq. (91) and

not easily vectorizable. The sector—-dependent parts of POT are also time
consuming, but are more amenable to vectorization, as discussed next.

We calculate the Uqlqu of eq. (78) by performing the three-dimensional
quadrature of eq. (83). 1In carrying out this integration we evaluate the

potential function at all Nz different orientations with fixed R and

1> B
r using vector arithmetic prior to doing any of the quadratures. This
requires considerable storage, but it enables us to use fairly large vector
lengths, equal to Nz, which varies from 1331 at small r, and decreasing to

64 at large r. Note that these vector lengths are independent of the number

of channels. The sum in the three-dimensional integral to get the Vg, q. 1
172

is done using the vector dot product functions. To do this we write

N N N
v (R,R,e) = T 1 ; v (e L0 L0 )
yRyp ) = A ’ ’
9q0 172 n,=1 no=1 n,=1 " T2 3 939% g7 n, T ng
1 2 3
X V(en ,en ’¢n )Rlszyr) (92)
1 2 3
3
= E W, V(x.,r) (93)
i=1 t ~1

where Wy mi, ei and ¢i are the appropriate quadrature weights and nodes,
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and w?1QQH is a product of three weights times the expansion function, and
we use the vector dot product function (SDOT on the Cray-1, Q8SDOT on the
Cyber 205) to evaluate eq. (93). The W?lqzv depend on the value of Nq and
thus on the.value of r for which eq. (93) is evaluated; they are calculated
once and stored for each r range given in Table 1. As for the evaluation of
the potential function, the three-dimensional integral in eq. (83) is inde-
pendent of the total number of channels. The vector length used in this part
of the calculation is again Nz, which varies from 1331 to 64.

Our routine then loops through the channel pairs and calculates the
Cji?zp, the Vaa' viaqeg. (80), and finally the V ot using eq. (77). The
calculation of the CYi'zu requires a 2-dimensional integral and this too is

done using the vector dot product functions; that is, we write

q,9,H 7 7 v, i, viil v, j vlij!
c 172 (r) = X 2 5.1 1171 &.2 2272

. v (x,,x,,1) (94)
Y i=1 j=1 * . Ay9H 1]
49 Yy'
= kzl Wk vqlqzu(xlk’XZk’r) (95)

and evaluate eq. (95) using the Cray-1 or Cyber 205 dot product function.

AN

The GYJV 3" are independent of r and are computed once before the start of
i RN

Viv']

~ ! -~
the R matrix propagation. The WEY are calculated from thevwi at each
1
sector for each yy' pair. We compute the wl* on the Cyber 205 by first
using the vector Q8VGATHR function to form two vectors of length 49 con-

2 t st
taining the appropriate GZJV 3" then by multiplying these two vectors. The

'
w;Y are recomputed rather than stored because storing them would involve,
for the 530-channel case, an array of length 11.6 million words, whereas

S s
the amount of storage required for the GZJV J ~is only 3.4 thousand words.

The integrals in eq. (95) must be performed for each 9y 9yH with nonzero
BQ1Q2H

BLB'Y! 5
thus proportional to N°, and depends on the value of r, because the number

for each of the B4B'%' pairs. The number of these integrations is

of terms in eq. (78) depends on the value of r (see Table 1). On the Cyber
205, in the large channel limit where the evaluation of eq. (92) is negli-
gible, these procedures result in a total speedup factor of about 3 for the
vector version of segment POT as compared to the scalar version. On the
Cray-1, the speedup factor is about 2.

We now consider some computer times for cases with N = 400 and 530.
Table 5 gives the times for calculations of 7 energies. (For N = 530 on
the Cray-1 these times are estimated from a two-energy run.) The Cyber 205
uses 70% of the time required by the Cray-1 for N = 400 and 50% of the time

for N = 530. Also included in Table 5 is the cost of the calculations in




Table 5. Execution times for N =400 and N =530 for
7 energies

billing units

Machine CPU hours (equivalent hours)
N = 4002
Cray-1 11.7 18.1
Cyber 205 7.6 9.2
N = 5307
Cray-1 21.0 31.8
Cyber 205 9.4 15.5
ay = 288
S
by = 291
S

Table 6. Breakdown of execution times (in hours) into program
sections for N =400 and N =530 on the Cray-1

Program section N = 400° N:=530b

first energy

c 419oH
Angular integrals (BBRB‘W) 1.2 2.4
Potential function evaluation 0.2 0.2
Radial integralse 1.4 2.2
Subtotal for POTf 2.8 4.8
DCALC 1.1 1.8
TAUMTS 0.6 1.2
RCALC 1.0 .
Total® 5.5 9.4
second or subsequent energy

TAUMTS 0.1 0.3
RCALC 1.0 1.6
Total® 1.1 1.9
Ng = 288

Py, = 291

“eq. (91)

Time spent in subprogram FUN, which evaluates the interaction
potential

eeq. (95)

f
The evaluation of eq. (92) for all q19oH and all sectors is
included in this total but requires only 28 seconds.

gThe time for GENSCAT is included but is less than 2 minutes.
Overhead is also included but is less than 1%.

34,
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equivalent hours. The difference between the CPU time and the equivalent
time is due to charges for memory usage, input/output requests, permanent
file usage, and, on the Cyber 205, paging to virtual memory. On the Cyber
205, to minimize page fault charges and turnaround time, we mapped all of
our large arrays onto large (65,356 word) pages. We let the Cyber 205
operating system schedule all the page requests.

Table 6 shows a breakdown of the total times into those for individual
program segments and subsegments for first and second energies on the Cray-1.
For first energies for both N = 400 and 530, POT requires about half the

total time, while in POT, about half of its total time is spent evaluating
99"
szalzl *
these calculations were performed, we were able to implement a new algorithm
quzp )
BBQ;B"L'

q,9,¥
time. Our original routine for calculating the BB%B%Q' used eq. (91) and

evaluated the Clebsch-Gordan coefficients using recursion over one of the

the sector-independent coefficients B It should be noted that after

for which the calculation of the requires about a factor of 4 less

j indices.:u+ The faster version evaluates the Clebsch-Gordan coefficients
using recursion over one of the m indices.Ba This saves time since most of
the Clebsch-Gordan coefficients required are in a sum over one of the m
indices, thus the recursion needs to be performed only a maximum of 6 times
as compared to 2 + 4(mmax-—mmin) times for the original version, where M ox
and m in are the range of m in eq. (91). For consistency the CPU times in
Tables 5 and 6 are based on the slower version.

The bulk of the remaining time in POT is taken up with the 2-dimensional
integrals of eq. (95). This is largely as a consequence of the facts that
(i) we have not assumed the separability of rotation and vibration and so
our vibrational eigenfunctions depend on the rotational state, and (ii) we
have retained a very large number of terms in eq. (78) to accurately repre-
sent a realistic diatom-diatom potential. The seven points per radial coor-
dinate is essentially optimal33 and use of any less optimal numerical quad-
rature in this step would greatly slow the calculations. The program sec-
tions DCALC, TAUMTS, and RCALC all require about the same amount of time,
about one hour for N = 400 and 1.5 hours for N = 530. GENSCAT and overhead
require a very small fraction of the total time. For second energies, the
majority of computer time is spent on RCALC.

Table 7 shows times per sector on the Cray-1 for N = 55, 101, 400, and
530. We see that, on this computer, the time required‘scales approximately
as N;2 for N going from 55 to 101, N3 for N going from 101 to 400, and N2 for
N going from 400 to 530. On the Cyber 205 the approximate scaling for N

going from 400 to 530 is Nl.
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Table 7. Execution times (in seconds) per sector for N =
55, 101, 400, and 530 on the Cray-1

Program section

N ) DCALC TAUMTS (1st E) RCALC GENSCAT
552 0.074 0.043 0.060 0.41
101° 0.33 0.15 0.27 1.1
400 14. 7.6 12. 8.8
5302 22. 14. 19. 23,

aRedmon—Binkley potential

bPoulsen—Bil1ing—Steinfe1d potential

VII. RESULTS

We have computed probabilities for the transitions
2HF(v=1,j=0) + HF(vi=0,j1) + HF(v}=2,j3) (96)

for several energies for N = 500, 530, and 694. However, the results are
not converged with respect to increasing N. More complete discussion of the

physics will be possible when convergence is achieved.

VIII. CONCLUSIONS (

We have successfully used supercomputers to set up and solve quantum
mechanical scattering problems representing diatom-diatom collisions with
up to 694 coupled equations. These problems are already considerably larger
than the biggest calculations performed so far without supercomputers, and
thus we may say that the use of supercomputers has definitely extended our
capability. Converged solutions of the vibration-vibration energy transfer
problem studied here will require even more coupled equations than considered
here. We anticipate though that convergence, at least for the prototype case
of total angular momentum zero, may be achievable by a combination of (i)
further code optimizations, (ii) possible use of algorithms that make more
efficient use of vector processors, (iii) use of even more powerful super-
computers, and/or (iv) longer runs.

The speed enhancements we have achieved with respect to the most popular
minicomputer, the VAX 11/780 with floating point acceloerator, are very sig-
nificant. For the total problem, based on 10l-coupled-equations test runs
and for a case in which seven energies are calculated simultaneously, the

speed enhancement corresponds to a factor of 490 on the Cyber 205 and a
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factor of 223 on the Cray-1. Some individual program segments are speeded
up even more, for example a factor of 684 on the Cyber 205 for a segment
involving linear-equation solving and matrix multiplication. We did not
run more than 101 coupled equations on the minicomputer but the supercompu-
ters become relatively even more efficient as the equation order and hence
vector length increases.

These early calculations were often frustrating and slow because of the
difficulties of using new systems, remote usage, and access. At present
though many of the problems have been or are being ironed out, and the future
looks rosy for wide progress, by other groups as well as our own, for solving

very-large-scale quantum mechanical scattering problems on these machines.
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