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Several approximate methods for calculating resonance
energies and widths for atom-diatom reactive collisions
are discussed. In particular, we present resonance
energy calculations by semiclassical and quantal vi-
brationally adiabatic models based on minimum-energy
and small-curvature paths, by the semiclassical SCF
method, by quantal SCF and configuration-mixing
methods, apd by close coupling calculations. We also
present total width calculations based on analytic con-
tinuation by polynomials and Padé approximants of con-
figuration-mixing stabilization graphs, and we present
total width and partial-width calculations based on
close coupling calculations and on the Feshbach formal-
ism in reaction-path coordinates with a small-curvature
tunneling approximation for adiabatic decay and a
reaction-path-curvature coupling operator for nonadia-
batic decay. The model calculations are judged by
their agreement with the accurate close coupling cal-
culations, and we also compare the resonance energies
and total widths to values obtained semiclassically
from resonant periodic orbits. To illustrate the
methods we consider the collinear reactions H + FH ~»
HF + H and D + FD > DF + D on the low-barrier model
potential of Muckerman, Schatz, and Kuppermann and the
collinear and three-dimensional H + Hy reactions on
Porter-Karplus surface number 2. Finally we use an
accurate potential energy surface for the three-dimen-
sional H + Hy reaction to predict the energies of
several series of observable resonances for a real
system.

20

Resonances in reactive collisions were first observed in quantum
mechanical scattering calculations for the collimear H + Hp reac-
tion (ﬁ; for a review of early calculations on this system see
reference 10 and for a recent review of the quantum mechanical
treatment of reactive resonances see reference 11). Resonances

0097-6156/84;0263-0375807.50/0
@ 1984 American Chemical Socicty



376 RESONANCES

have subsequently been found in many converged quantum scattering
calculations for this and other collinear reactions on realistic
potential energy surfaces (8,11-61) and for two coplanar reac-
tions (61,62) and in close coupling and coupled states calcula-
tions for two three-dizensional reactions (61,63-66: further
results from the study of reference 64 are given in 67) as well
as many approximate three-dimensional calculations (see, for ex-
ample, references in 68,69, and other chapters in this volume).
Resonances are observed in quantum scattering calculations as
oscillations in the reaction cross sections (or probabilities)
as functions of energy (10,11,69,70), and they can also be
identified from eigenphase sums (71-74), Argand diagrams (75-78),
lifetime analyses (79-86), wavefunction analyses (87,88), and
direct calculation of poles of the reaction amplitude density
on the real axis (89) or of poles of the resolvent (90,91) or
the scattering matrix (86,92-97) in the complex energy plane.

Resonances are defined formally as poles of the scattering
matrix in the complex energy or momentum plane (98-100). The
pole location in the complex energy plane may be written as

Eres = Eres - il/2. n
At such energies the Schroedinger equation has a solution with
purely outgoing waves at large distances from the origin; this
solution is a pure resonance state (101). Depending oun the con-
text either €,oq Or Eprgg is called the resonance energy and T
is called the width. The width notation is appropriate because
if an incoming wavepacket has an energy spread large compared
to I', a part of this wavepacket of width I' will be delayed in
the interaction region due to the resonance (2§).; The effect
of a resonance on scattering attributes is easy to describe only
for the case of an isolated, narrow resonance (INR); i.e., a res-
onance which is separated from other resonances by much more than
the sum of their widths and which is narrow enough that the back~

.ground ("direct") scattering does not vary appreciably over its
width. (For discussions of overlapping resonances see refer-
ences 102-104.) An INR decays by first-order kinetics with a
rate constant equal to I'/h (99,100,105); its contribution to a
collisional delay time is &4h/T at the energy Epe¢ and is 2R/T
averaged over the resonance width (79,85). If I' is small then
the wave function for real energies close to E,ng, corresponding
to scattering energies or energies of predissociating complexes
formed by absorption of electromagnetic radiation, may be very
similar in the interaction region to the resonant state at the
nearby complex energy e,.g. Since resonance states tend to be
more localized than typical continuum states, they are easier
to interpret and classify, and since the resonant state affects
the scattering processes connecting all initial and final
channels for a finite range of energies, identification and char-
acterization of resonances provides a unifying feature for a va-
riety of observable dynamical phenomena. In particular, res-
onances may be classified in terms of system quantum numbers just
as usefully as bound states are so classified.

20.
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For scattering transition probabilities and photon-absorp-
tion oscillator-strength distributions, an INR contributes an
energy-dependent feature with full width at half maximum (FWHM)
of T, 1In the absence of background contributions, this feature
is Lorentzian and is centered at Epog; Otherwise it may interfere
constructively and/or destructively with the background to yield
a more complicated stave function for the energy dependence.
Although an INR exhibits the same FWHM for all initial and final
states, it does not have the same amplitude for all processes.
The relative amplitude for a given transition a + a” is controll-
ed by the residue of the a”,a element of the scattering matrix
at the resonant pole. 1In the vicinity of its pole this element
may be written

5 . =gd. . aYa (2)
a o a o E-Eres

where E is the total energy, nga is the direct part, which is
regular, and (99,100,105,106)

. 2 _
Pyl = (3

It is convenient to define the quantities

_ 2
Ty = lYal (4)

which are called partial widths and the quantities
Xy = Yo (5)

and

Py = lxa|2 (6)

which, respectively, are components of normalized scattering ma-
trix eigenvectors and branching fractions or probabilities for
the resonance to decay into state a. The latter interpretation
is evident by noting that in the absence of direct scattering
the resonance leads to a factorizable Lorentzian transition prob-
ability of the form

2
sE. 17 = r PP, a'fa, 18]
————— a a
(E-Epeg)? + T2/4
and noting

] Py =1, (8)

Clearly a complete description of an INR requires specification
of Epees ', and all yy Or Xg-




If a resonance is not narrow, then the partial widths may
still be defined in terms of the residue at the pole, but Equa-
tion 4 is no longer valid (92,93,107). Branching probabilities
are now defined by

Py _ Ival? 9
Po” IYa’IZ
plus the normalization condition of Equation 8.

Reactive resonances are interpreted as long-lived, quasi-
bound complexes in the interaction region of the potential energy
surface. The lowest-energy resonance of the collinear H + Hy
reaction was first interpreted in semiclassical terms as the re-
sult of the interference between direct and long-lived quasi-
classical trajectories (5,108); in the resonance picture, the
interference is between direct, short-lived, background scatter-
ing and long-lived trajectories representing the resonance. Wu
and Levine (2) interpreted this resonance as an adiabatically
trapped quasibound state. In the adiabatic model for a collinear
atom-diatom reaction, vibrationally adiabatic potential curves
Vg(n,s) are constructed by adding local vibrational stretching
energies egry(n,s) to the Born-Oppenheimer potential Vypp(s) as
a function of the distance s along the minimum energy path (MEP),

Val(n,s) = Vypp(s) + egpp(n,s) (10)

where n is the vibrational state for the motion perpendicular
to the reaction coordinate. The lowest-energy resonance of Hp
was interpreted as a quasibound state in the local well of the
first excited adiabatic potential curve. This view was confirmed
by analysis of the scattering wavefunction which showed that it
had over 90% vibrationally excited character when projected onto
wavefunctions of the symmetric stretch vibration (109).

The physical picture of a resonance as a long-lived, quasi-
bound state has lead to the development of several approximate
methods for calculating the locations and widths of resonances.
The adiabatic model (see for example references 110-115) in re-
action-path coordinates, also called natural collision coordinat-
es, has been very successful for predicting both the locationms

and adiabatic partial widths for reactive resonances (46,56,116-

119). Using Feshbach resonance theory (102,103), nonadiabatic
partial widths can also be computed within the same framework
(56,57,119, see also 120). In this method the nonadiabatic
partial width is given by a golden-rule formula in which the op-
erator is a reaction-path-curvature coupling term. The adiabatic
approximation has also been used in other coordinate systems to
locate reactive resonances, for example, the use of hyperspher-
ical coordinates has been very successful for predicting
resonance energies, especially for collinear heavy-light-heavy
systems (11,47,121-126). In quantum mechanical stabilization
calculations (127-130), bound-state linear variational methods
are used instead of scattering calculations to calculate self-
consistent-field (SCF) or configuration-interaction (CI) wave-
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functions for the quasibound state; this method has recently been
applied to bimolecular reactive resonances (131-135). Resonances
are identified as the lowest-energy roots of the secular equation
that are stable with respect to variation of a basis set param-
eter, e.g., the number of primitive basis functions or a scaling
parameter. Total widths are obtained by analytically continuing
approximate fits of the energy root, or two or more of them, as
functions of the scaling parameter (133,135-138). [Although it
is not considered here, the complex coordinate method provides
a means of obtaining the complex resonance energy eyeg directly;
i.e., without analytic continuation, using bound-state linear
variational techniques (see for example, 91)]. The semiclassical
SCF procedure (139) is essentially a generalization to multidi~
mensional systems of the primitive WKB approximation (140) for
bound state eigenvalues of one-dimensional potentials. This
method has also been applied to locating reactive resonances
(141-143) and evaluating the widths (142). Resonant periodic
orbits (RPOs) are the basis of yet another pseudo-bound-state
method for predicting resomances; RPOs are classical trajector-
ies trapped in the interaction region of the potential energy
surface with integer values of the classical action (144-147).
These trajectories have been used to compute resonance energies,
and widths are estimated from the instability of the RPOs (145).

To date, most of the work on reactive resonances has dealt
with methods for calculating the resonance energy Epeg and the
total width I'. However, a great deal can be learned from exam-
ination of the separate contributions of different decay channels
to the total width. For example, as discussed above, branching
ratios for decay into different channels are obtained from ratios
of the partial widths or residue factors for those decay
mechanisms. In the terminology of Taylor et al. (148) Feshbach
internal-excitation resonances in adiabatic state n are denoted
core-excited type I resonances if the resonance energy is below
the threshold energy E for this state and are called
cgﬁg-excited type II resonances if the resonance energy is above
En where the threshold energy is defined by

E = min[V, (n,s=-=),V,(n,s=+=)] (11)

Core-excited type I resonances are sometimes called Feshbach res-
onances; they have only nonadiabatic contributions to the total
width, but core-excited type II resonances have partial widths
both for nonadiabatic decay in which n changes and for adiabatic
decay by tunneling through the adiabatic barriers without
changing n. Quasibound states of ground-state adiabatic poten-
tial curves are single-particle shape resonances, and they decay
only adiabatically if they lie below the first excited-state
threshold energy. Vibrational states of the ground-state adia-
batic potential curve which lie below the ground-state threshold
are truly bound states, and this phenomenon has been termed vi-
brational bonding (149-151). For larger polyatomic complexes
more decay channels exist, e.g., decay can also occur nonadia-
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380 RESONANCES

batically by intramolecular vibration-to-vibration energy
transfer. Limited, but significant, progress has been made in
developing methods to obtain partial widths from complex wave-
function calculations, e.g., by the Siegert method (107,152,153)
or the complex-coordinate method (154,155). 1In the present arti-
cle we summarize our recent work (56,57) using the Feshbach gold-
en rule to calculate partial widths from real-valued
wavefunctions.

In the present work we are interested in assessing the accu-
racy of several approximate methods for locating resonance energ-
ies and computing total widths and adiabatic and nonadiabatic
partial widths. After a summary of the methods considered here
we review and compare the results of these methods for the col-
linear H + FH > HF + H and D + FD > DF + D reactions on the low-
barrier model potential surface of Muckerman, Schatz and Kupper-
mann (34). This system was chosen for review here because there
are reliable quantum mechanical calculations of the resonance
energies and widths (34,46,57) as well as several studies by ap-
proximate methods (46,57,117,118,131-133,135,141). Also, these
systems display all three types of resonances, shape and type
I and type II core-excited. We also review calculations on the
lowest energy resonance of the collinear H + Hp reaction on the
Porter-Karplus surface number 2 (PK2,156). This resonance has
also been thoroughly studied both by converged close coupling
calculations (for example 4,61) and approximate methods (for
example, for the methods discussed in this paper, see references
(11,56,116-118,121,122,124,131-133,135,144-146). With a few ex-
ceptions, nearly all calculations of resonance energies and
widths have been for collinear systems. We are also interested
in the ease with which the approximate methods are extended to
atom-diatomic reactions in three dimensions and to reactions in-
volving more than three atoms. Therefore, we present new cal-
culations of resonance energies for the three-dimensional H +
Hp reaction on the PK2 surface and on the accurate potential
energy surface of Liu, Siegbahn, Truhlar, and Horowitz (LSTH,

© 157-159). Because of its current experimental interest
(160-163), we also report calculations for the three-dimensional
H + Dy reaction on the LSTH surface.

Methods

Quantum mechanical scattering. In donventional quantum mechan-
ical scattering calculations, resonances show up as oscillations
in the reactive cross sections (or reaction probabilities) or
an increase of m in the eigenphase sum. [Narrow resonances are
difficult to locate because of the need to take very small energy
steps to find them. The difficulty in using the eigenphase sum
is that usually it is only known modulo 7 and unless the eigen=-
phase sum is tracked through a resonance with sufficiently small
energy steps, the resonance is missed. The definition of an ab-
solute eigenphase sum (74) removes this difficulty and simplifies
the task of locating narrow resonances.] Once the resonance is

20.

GARRETT ET AL Bimolecular Reactive Collisions P }Xil

located, the width may be obtained by fitting the eigenphase sum
in the vicinity of the resonance to a generalized Breit-Wigner
form (72,73). The partial widths may be extracted from an
analysis of the individual scattering matrix elemem‘:s
(46,56,164). The method used for the results presented here is
gm—he next paragraph. .

Converged close coupling calculations were carried out using
the R matrix propagation method of Light and Walker (165). These
calculations yield the scattering matrix S as a function of
energy E. There are several possible procedures one coulc! use
to extract resonance energies, total widths, and partial widths
from close coupling calculations. For example, Macek and Burke
(166) made 16-25-parameter nonlinear least-squares fits of
reactance matrices to a resonant form analogous to Equation 6
to extract partial widths from 3- and 4-channel elecftron
scattering calculations, and Fels and Hazi (167) used a nonhne:jlr
fitting procedure based on the variation of the eigenphases.ln
the vicinity of a resonance and a transformation between part?al
widths corresponding to eigenchannels and those corresponding
to physical channels to extract partial widths for a Z-Chanr.\el
model problem. A procedure for directly extracting the p:artlal
widths corresponding to physical channels for problems with an
arbitrary number of channels was proposed by Ashton et al. (_1&?,
and a slightly modified version of this procedure was u.sed in
our previous work (56,57). In our work we first fit the
eigenphase sum A(E) in the vicinity of E = Epog to the INR form
(72,73)

-1 a2)
A(E) = 8,(E) + arctanz(Eres B

where Ay (E) is a low-order real polynomial in E representing the
background; this yields Eyeg and I'. In step 2 eac{h e%emetnt of
the upper triangular part of the scattering matrix is fit in the
vicinity of E = Epqg to

i Cy-
Se’a = Sg’a - o o (13)
E - €res

where Sg’a is a low-order complex polynomial in E represgnt%ng
the background and Cy-y is an additional compl.ex. ‘flttmg
parameter. For step 3, Ashton et al. suggested minimizing the
function

Coval - (Tq-Te2 ]2 )%
by oy oy [eral @ et am
a a’sa |Caral

with respect to the set of Iy subject to the constraint

I rg =T (15)
o a
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in order to obtain a "best" set of estimates of the partial
widths consistent with the INR constraint of Equation 3. [{This
is the procedure we used in references (56,57) except we included
a spurious factor of one half in Equation 2 and hence also in
Equation 1l4; this affects the quantitative values of the partial
widths, but because of the constraint of Equation 15, the errors
are small and they do not affect the qualitative trends. The
partial widths given in this chapter are new values calculated
without the spurious factor of one half and are based on Dy
presented below rather than Dj.]
Equating Equations 2 and 13 and using Equation 4 yields

I
{Cara | = Ty~ Ty (16)

For the three collinear reactive resonances for which a partial
width analysis is discussed in the present article, Equation 16
yields partial widths that sum to only about 50-90% of the total
width obtained from Equation 12. This indicates a breakdown of
the INR condition. Obtaining the best INR representation by
using Equations 14 and 15 systematically changes the branching
probabilities away from the values computed using Equations 4,9,
and 16. We found that the INR constraint could be enforced
without distorting the branching probabilities by replacing
Equation 14 by

1 2 ;5
LA ) [lcu'ul - (ra’ra)/z] , a7

a a’<a
and Equation 17 (with the INR constraint of Equations 3 and 4)
was used for all the results presented here.

When the INR approximation breaks down it may be better to
use Equation 16 than to force satisfaction of the sum rule of
Equation 3, but space does not permit further discussion of this
point in this chapter. We do note though that the Feshbach
formalism discussed below and used to compute approximate partial
widths is consistent with the sum rule (102,103).

Vibrationally adiabatic models. In the adiabatic approximation
the dynamics of a multidimensional system is reduced to motion
in one mathematical degree of freedom governed by an effective
Hamiltonian. Calculations of the resonance energies and widths
for this one-dimensional model can be performed either
semiclassically or quantum mechanically.

The reaction probabilities that determine some of the Eres
and the adiabatic partial widths are nonzero only because of
tunneling. We have considered two semiclassical methods to
calculate the resonance energy and tunneling probabilities,
namely the primitive WKB method (140), which simply quantizes
the phase integral for motion in the well of the adiabatic
potential, and a uniform semiclassical method (168,169), which
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also uses phase integrals in the classically allowed regions,
but combines them with phase integrals for classically forbidden
motion in the barrier region of the adiabatic potential curve.
In the present work we use the primitive WKB method for energies
of core-excited type I resonances, and we use the uniform
expression for energies of shape and core-excited type II
resonances. To obtain the adiabatic partial widths, it is
necessary to use a uniform semiclassical expression (168,169).
The calculation of the nonadiabatic partial widths is discussed
below.

Different adiabatic models are possible depending upon the
method used to incorporate reaction-path curvature effects in
the kinetic energy term of the effective Hamiltonian (120).
Several approximations have been used: in the minimum-energy-
path (MEP) approximation the system is assumed to follow the
minimum energy path [this has also beemn called the zero-curvature
approximation (5)]; in the Marcus-Coltrin-path approximation the
system is assumed to follow the path of outer turning points for
the vibrational motion normal to the MEP (116,120,170); in the
dynamical path (DP) approximation the system is assumed to follow
a path on which the internal centrifugal forces are balanced by
the potential energy surface (117); and in the small-curvature
(SC) approximation the system is assumed to follow the MEP in
classically allowed regions and to follow a path defined by the
small-curvature tunneling approximation (120,171) in tunneling
regions. In previous work (46,56,116,117) it was found that the
methods which include the effects of reaction-path curvature
generally give a better description of the adiabatic partial
width. The difference between resonance energies calculated
using these methods were small; typically the agreement was
better than a few tenths of a kcal/mol. The relative agreement
was not as good for the adiabatic partial widths obtained from
these methods; differences were as large as a factor of two. In
the following comparison, we limit our discussion to the SC
approximation.

Three different approximations to the local vibrational
energy eg¢r(n,s) have been considered: in Morse approximations
I and II (172) the potential along the cut perpendicular to the
reaction coordinate is fit to a Morse potential and the
eigenvalues are given by an analytic formula (173); and in the
WKB approximation the primitive semiclassical quantization
condition is used to find egyy(n,s) for the actual potential
along the cut perpendicular to the MEP. The WKB method was found
to give a better description of the adiabatic potential curve
near the adiabatic barrier maxima; however, the adiabatic
potential curves are not described well by this method in regions
of large reaction-path curvature because of a breakdown of the
natural collision coordinates (118). For the quantum mechanical
calculations only the Morse I approximation was used. When
calculating Ep g and T using the semiclassical methods, the Morse
I approximation was found to give more reliable estimates of the
resonance energies for the H + FH and D + FD reactions, whereas

[
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the Morse II approximation was better for H + Hy. For the
collinear systems considered here, we will tabulate and discuss
only those semiclassical resonance energies obtained using the
adiabatic barriers computed using Morse approximation I, and for
the three-dimensional cases considered here we only tabulate and
discuss semiclassical results obtained by the Morse approximation
I1I. The adiabatic partial widths have an exponential dependence
upon the phase integrals in the tunneling regions of the
adiabatic potential curves. Therefore, the calculated adiabatic
partial widths have been found to be very sensitive to the energy
at which they are computed and to the shape of the adiabatic
barrier in the tunneling region (56,57,118). The most reliable
estimates are obtained when the phase integrals are computed at
the accurate resonance energy using the adiabatic potential
curves obtained from the WKB approximation (118).

In the quantum mechanical calculations the resonance energy
and widths are obtained by calculating adiabatic reaction
probabilities and fitting these to a Lorentzian form. We have
made calculations (46,116) in which reaction-path curvature is
neglected (denoted the MEPVA method) and in which it is included
using the Marcus-Coltrin path (denoted the MCPVA method). The
differences between resonance energies calculated using these
two methods were small (less than 0.1 kcal/mol for the cases
studied) but the relative differences between adiabatic partial
widths were larger (almost a factor of 2 in one case). Although
the MCPVA results are presumably more accurate, we report here
only the results of MEPVA calculations since they are available
for more of the systems studied here.

Nonadiabatic Feshbach calculations. Using the reaction-path
Hamiltonian and invoking an adiabatic separation of the reaction
coordinate from all other coordinates, resonance energies and
adiabatic partial widths are obtained by neglecting all
off-diagonal terms of the Hamiltonian. The most important
off-diagonal, nonadiabatic terms of the Hamiltonian are matrix
elements of the kinetic energy term which includes reaction-path
curvature. The diagonal elements of the reaction-path curvature
operator are included, at least approximately, in the adiabatic
calculations and the off-diagonal elements give rise to the
nonadiabatic partial widths. The nonadiabatic partial width for
decomposition of the resonance state into channel o is given by
(56,57)

¥ =21r[(‘i’

nvia

res
nv

2
[gpl ¥ (E ) >] (18)

where the resonance state is characterized by quantum numbers
n and v for the vibrational and reaction coordinate motions,
respectively. The wavefunction for the resonance state is
approximated by

res

v o= frv(8) ¢,(u,s) (19)
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where ¢, is the adiabatic basis function for motion perpendicular
to the reaction coordinate and f,,(s) is the bound-state
wavefunction for the trapped motion in the adiabatic well. The
wavefunction of the continuum state for channel o at the
resonance energy E og is approximated by

“'a(Eres) = fa(s) ¢na(u,s) (20)

where ¢, (u,s) is the adiabatic basis function for state n, and
fu(s) is the continuum wavefunction for motion along the reaction
coordinate in the adiabatic potential for state n,, subject to
the wusual scattering boundary conditions. The coupling operator
is approximated by

gp = s 1T ¢ ne (21)

where

2D = B2 (142 (s)u) (22)

32
2u 3s?
h.c. is the hermitean conjugate of (1), and «k(s) is the
curvature of the reaction coordinate. In previous work (il),
the effect of anharmonicity and the neglect of parts of the
coupling matrix elements on the nonadiabatic partial widths have
been studied. In the present paper we report only those partial
widths based on harmonic oscillator wavefunctions for the bound
vibrational motion perpendicular to the reaction coordinate and
including the effect of the reaction-path coupling operator on
both vibrational and reaction coordinate wavefunctions.

Quantum mechanical stabilization calculations. Quantum mechanical
stabilization calculations provide a very convenient and
efficient way to estimate the resonance characteristics by
bound-state techniques. The first step of the method as we apply
it involves calculating the eigenvalues of the Hamiltonion in
a square-integrable basis as a function of a suitable basis-set
scaling parameter. This basis may be restricted to a product
of 1linear combinations of single-mode functions, which yields
SCF stabilization, or it may be general, which is called
configuration-mixing or configuration-interaction (c1)
stabilization. The resonant eigenvalue ¢(a) is then fit to a
suitable polynomial (133) or appropriate Padé approximant (135)
or e(a) is represented as a polynomial root (174) and polynomial
coefficients are fit (138). The stability condition is then
employed to find the complex solution o, of

de/daf, = 0. (23)

Sop

Finally the resonance position Ep.g and its width T may be
approximated by

elay) = Epgg - 1'/2 (24)



with €(oy) computed from the fit. An important advantage of the
stabilization method 1s that one can profitably use well
developed bound-state methods to calculate e(a) efficiently. In
addition, one can treat systems involving many degrees of freedom
more easily than by quantum mechanical scattering calculationms,
which may become prohibitively expensive. If scattering
calculations aie indeed too expensive to carry out for a given
system, then stabilization results may be invaluable for
qualitative interpretative purposes even if they are only
semiquantitative in accuracy. It is useful to point out that
the stabilization method does not rely on any fit to the shape
of the cross section or scattering matrix as a function of

energy.

Semiclassical SCF calculations. The use of the semiclassical
SCF procedure to treat reactive resonances (141) is a
straightforward extension of the work of Gerber and Ratner (139).
Numerical complications do arise, however, and convergence of
the SCF procedure can be much more difficult in the semiclassical
method than in the quantum mechanical one or even impossible.
A similarity to the quantum mechanical SCF procedure is that both
give a clear picture of where the probability density for the
resonance is localized (132,134,141).

Numerical comparison of methods for collinear reactions.

Resonance energies. In Table I, the resonance energies for three
collinear atom-diatom reactions are compiled. These include
three resonances each for the H + FH and D + FD reactions and
the lowest-energy resonance for H + Hp on the PK2 surface. All
energies are relative to the minimum of the asymptotic reactant
well.,

In Table I, n and v are quantum numbers in natural collision
coordinates: n is the quantum number of the vibrational motion
perpendicular to the reaction coordinate and v is the quantum
number for the bound reaction-path motion in the well of the
adiabatic potential. These identifications were originally based
on the vibrationally adiabatic approximation (46,117) and were
confirmed by quantal stabilization calculations (131). For the
systems included in Table I, reaction-path curvature is only
small to moderate and we expect the adiabatic model in natural
collision coordinates to give a good description of the resonance
energies. Using a quantum mechanical treatment in the adiabatic
model (MEPVA) gives slightly better results than using the
semiclassical model (SCSA). The results of the adiabatic
approximation in hyperspherical coordinates are only available
for one of the three systems reported here. Although the earlier
hyperspherical results (11) are not nearly as good as the SCSA
or MEPVA ones for the H + Hp system, including diagonal
corrections in the effective Hamiltonian greatly improved the
results (124). Also, we expect the hyperspherical coordinates
to give a better description for systems with large reaction-path
curvature. In the stabilization calculations no
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Resonance Energies (kcal/mol) for Three Collinear Atom-Diatom Reactions

Table I.
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coordinate-dependent approximations are made, so this type of
calculation should be valid for systems with small to large
reaction~path curvature. The SCF description does not do as well
for these systems as the adiabatic models; however, using
configuration interaction the predictions of the resonance
energies are greatly improved. The CI results are better than
the MEPVA and SCSA results for the lowest-energy resonance of

each system. The resonance energies predicted by the
semiclassical SCF method are comparable in accuracy to the
quantal SCF results. The resonant-periodic-orbit calculations

appear very accurate for the H + Hp resonance.

Partial widths. In Table II a compilation of adiabatic and
nonadiabatic partial widths is given for the same resonances.

Table II. Partial Widths (kcal/mol) for Three Collinear
Atom-Diatom Reaction

adiabatic? nonadiabaticP

accurate accurate
System n v quantal MEPVA  SCSA® quantal  Feshbach

H+FH 0 0 0.0049¢ 0.0053¢ 0.0045 0.0d 0.0d
1 0 o0.0d 0.0¢ 0.0 0.4794 0.389d
1 1 0.12 L E 0.107 0.15 0.1844
D+FD 0 0 0.001494 0.0014¢ 0.0014 0.0d 0.0d
t o o0.0d 0.0 0.0 0.309d 0.2384d
11 0.03 0.0435 0.10 0.1274
H+Hy 1 0 0.16 0.048 0.16 0.37 0.48h
(PK2)

4 sum of all partial widths for decay channels with same

n as resonant state, sum of all partial widths for decay

channels with n different from resonant state, ¢ reference 118,

reference 57, € reference 46, f... indicates calculations not
performed, & reference 1le, hreference 56.

For the lowest-energy resonances of H + FH and D + FD, the MEPVA
and SCSA results give very similar-quality results for the
adiabatic partial widths; however, for H + Hy the MEPVA results
underestimate the adiabatic partial width by a factor of 4 and
the S5CSA results are accurate to the number of significant
figures quoted. This difference in the model calculations can
be accounted for by the difference in the adiabatic potential
used. In the MEPVA calculations the Morse I approximation is
used in constructing the adiabatic potential curve, whereas for
the SCSA calculations the WKB approximation is used to calculate
estr(n,s) in Equation 10. As discussed elsewhere (118), we
expect the ground-state adiabatic barriers to be aauately
described by the Morse I approximation, but for excited-state
barriers a more accurate method for treating anharmonicities in
the stretching vibration is needed. The Feshbach golden-rule
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formula is presently the only approximate method for calculating
nonadiabatic partial widths. The typical errors are on the order
of 0.03-0.09 kcal/mol, which is larger than the errors in the
adiabatic partial widths as predicted by the SCSA method.

For the H + Hy case, we can compare the partial width
calculations to predictions made by Pollak (146) using an RPO
analysis. His calculations indicated that the adiabatic partial
width is "negligible" compared to the nonadiabatic one. Actually
though, the accurate quantal results show an
adiabatic/nonadiabatic ratio of 0.4, and the SCSA/Feshbach ratio
is 0.3.

The useful accuracy obtained with the Feshbach golden rule
formalism is encouraging because this approach is more general
than the bimolecular reactive resonance calculations considered
here. The same model used here for resonance energies and
partial widths was applied to reactive tunneling in reference
120. More recently Carrington et al. (119) have treated the
isomerization of vinylidene using a method that is similar in
spirit to the one we applied to bimolecular resonances. One
improvement made by these authors is to diagonalize the complex
resonance energy operator. In their calculation the Hamiltonian
matrix elements are quantized semiclassically wusing the
Heisenberg correspondence principle and the derivative operator
is not allowed to act on the vibrational wavefunction. (We found
that the action of the derivative coupling operator on the
vibrational wave function is very significant for collinear H
+ Hy on the PK2 surface, for which it changes the predicted
nonadiabatic partial width by a factor of 1.75.) 1In another
application of the golden rule, Geiger et al. (175) have
considered vibrationally nonadiabatic decay of the unimolecular
decomposition resonances of C-0-H, as accessed in H + CO
collisions. Since we have demonstrated that the intermode
coupling responsible for vibrationally nonadiabatic decay in
bimolecular reactive collision resonances of systems with
single-saddlepoint potential energy surfaces and a system with
a metastable well between two saddlepoints may be modelled
quantitatively by the lowest-order reaction-path curvature
operator, it would be interesting to see if this kind of
treatment can also be applied successfully to similar intermode
coupling effects that occur (176-178) in unimolecular decay
resonances of systems with potential energy surfaces that exhibit
stable wells. Although we (see also 179,180) have used the
Feshbach approach to develop a formalism for the calculation of
partial widths in the framework of natural collision coordinates,
the Feshbach approach can also be applied in other coordinate
systems. For example, Liedtke et al. applied the Feshbach method
using Jacobi coordinates (26), although they did not calculate
widths. Hyperspherical coordinates were mentioned in the
introduction, and they often provide a useful separability in
cases where reaction-path coordinates fail; furthermore, the
coupling operator in hyperspherical coordinates is simpler than
the reaction-path curvature operator of natural collision
coordinates. Thus, golden-rule calculations in hyperspherical
coordinates would be very interesting.
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Total resonance widths. The total resonance widths are compiled
in Table III. The reaction-path-Hamiltonian (RPH) method denotes
using the SCSA method for adiabatic partial widths and the
Feshbach golden-rule method for nonadiabatic partial widths and
summing these to obtain the total width.

Table I11. Resonance Widths (kcal/mol) for Three Collinear
Atom-Diatom Reactions

Stabilization
accurate

System  n v _ quantal RPHS cubich Padéc RPO
H+FH 0 0 0.00494 0.00454 0.0059 0.0040 ...®

1 0 0.4794 0.3894  0.37 0.36

1 1 0.274 0.2914  0.67 0.25
D+FD O 0 0.0014d 0.00149 ...

1 0 0.309¢ 0.3094 ...

11 0.13d 0.1714 ...
H+H 1 0 0.53f 0.62f  0.48 0.48 1.068
(PK2)

2 Reaction-path Hamiltonian model, see text for description.
b reference 133, © reference 135, reference 57, © ... indicates
calculations not performed, f reference 56, & references 145,146

The good agreement seen in the separate contributions to
the RPH methods is reflected in the good agreement for the total
widths. Total widths can also be extracted from the
stabilization calculations. The simple polynomial fit of the
resonance energy as a function of scaling parameter is not as
accurate as the Padé approximant method. The Padé approximant
method gives total widths which are of about the same accuracy
as the RPH model for the H + FH resonances, but the Padé method
is more accurate for the H + Hp resonance. Resonant periodic
orbits have also been ugsed to calculate a width for the
lowest-energy resonance for H + Hy (145,146); the result is too
large by a factor of 2.

Resonances in three-dimensional atom-diatom reactions

H + Hyp. For H + Hy, a reactive resonance has been observed in
quantum mechanical scattering calculations for total angular
momentum J=0 (61,64). TFor F + Hy, more details of reactive
resonances in three dimensions have been uncovered. In plots
of the quantum mechanical opacity function versus energy and
total angular momentum J, peak values of the reaction probability
are observed to shift to higher energies as J is increased (63).
This "resonance ridge" indicates the dependence of the resonance
energy upon J. Resonances in three-dimensional reactions have
a much richer spectroscopy than those in collinear reactions;
in addition to having a dependence upon the state of the bound
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stretching degrees of freedom in the interaction region, the
resonance energies also have a dependence upon the quantum
numbers for bending degree of freedom and the total angular
momentum. In the present section, we present calculations for
the H + Hy; reaction of resonance energies for various quantum
numbers for both the PK2 and LSTH surfaces using the adiabatic
model in natural cnllision coordinates.

For three-dimensional atom-diatom reactions with collinear
minimum-energy-paths, the adiabatic potential curve is given by

Va(n,J,8) = VMpp(s) + egeyplngerss) + eplng,s) + eplng,s)
+ h23(3+1)/[21(s) ] (25)

where ep(np,s) is the energy level for the bending degree of
freedom, I(s) is the moment of inertia as a function of the
distance s along the MEP, and n is the collection of vibrational
quantum numbers (nstr,nb,ng)‘ In the adiabatic model, the
resonances are interpreted as quasibound states in wells of these
one-dimensional potential curves. The resonance energies will
be labeled by the quantum number n, by J, and by the quantum
number v for motion along the reaction path in the adiabatic
well. As described previously for collinear reactions, the
resonance energies are computed semiclassically, using a
primitive WKB method for core-excited type I resonances and a
uniform expression otherwise. Also, the small-curvature (SC)
method 1is used to incorporate the effects of reaction-path
curvature. Unlike the collinear case, we wused the Morse
approximation II for fitting the local stretching vibrational
potential instead of Morse I approximation since the Morse II
approximation gave more accurate estimates of the resonance
energies for the collinear H + Hjp resonances. The bending
vibrational energies are evaluated by fitting the bending
potential to a harmonic-quartic potential and computing the
energy eigenvalues by a perturbation-variation method (181,182).

The results for the H + Hy reaction on the PK2 and LSTH
surfaces are shown in Tables IV and V, respectively. In both
cases, we report all the sets of ngyy, np, and np” with nge,.=
1 and 2 for which we found resonance energies less than the
maximum in the adiabatic barrier. Rather than give the resonance
energies as a function of J, the resonance energies for the three
lowest J values were fit to the form

Eres(n,J) = Epeg(n,J=0) + BJ(J+1) + Dy [J(J+1)]2 (26)

We note that, although the spacing between the resonances
differing only in J is very small, the INR approximation need
not be invalid for this reason because its validity only requires
narrow resonances well separated from others with the same total
angular momentum.

We compare the results in Table 1V with the approximate
resonant periodic orbit (RPO) calculations of Pollak and Wyatt
(147) and with accurate quantal calculations (61). In the RPO
calculations, the bending degrees of freedom are included using



Table IV. Spectroscopic Properties of Three-Dimensional H + Hy Reactive
Resonances on the PK2 Surface@.

. SCcSAP RPOC Accurated

Ogtr MOp 0p V. Epeg(n,J=0) By Dy Eres(n,J=0) By Eres(n,J=0}
1 0 0 0 22.68 .77 0.0281 4.9(-6) 22.01 0.0236 22.5 ©.97

1 0 0 25.53¢ t) 0.0288 -4.3(-6) ...8
2 0 0 0 29.16/.26¢  0.0285 -2.4(-7) 30.90 0.0201

1 33.014¥3  0.0251 7.0(-6)

1 0 0 31.97 /.39 0.0282 -7.6(-7) 32.43 0.0208

1 1 0 34.77 0.0280 -8.9(-7) 33.96 0.0215

2 0 0 34.97 0.0279 -8.3(-7) 34.25 0.0215

2 1 0 37.74 0.0278 1.7(-7) 35.78 0.0221

2 2 0 40.70 0.0279 1.0(-6) 37.60 0.0228

3 0 0 38.10 0.0278 -2.1(-8)

3 1 0 40.87 0.0279 1.1(-6) .

3 2 0 43,86 0.0282 1.4(-6)

4 Rotational constants B, and D, are explained in Equation 26.

Energies in kcal/mol

relative to the bottom of the asymptotic reactant vibrational well. P The SCSA method

uses Morse approximation II to evaluate egpp(ngry,s), © reference 147,

e .

Table V. Spectroscopic Properties of the Three-Dimensional H + Hp Reactive
Resonances on the LSTH surface 2

scsAP Accurate®
Nger ny np v Eres(n,J=0) By Dp Eres{(n,J=0)

1 0 0 0 .94 22.58 0.0262 2.5(-6) 22.7 ¢.9°%
1 0 0 ,v1 25.18 0.0241 6.1(-5)
2 0 0 0 ,.2% 28.65 0.0264 -4.0(-6)
1 /.34 31.88 0.0229 4.7(-6)
1 0 0 /3% 31.20 0.0261 -7.1(-7)
1 1 0 33.76 0.0259 -6.8(-7)
2 0 0 33.94 0.0259 -7.0(-7)
2 1 0 36.47 0.0258 2.9(-7)
2 2 0 39.18 0.0260 1.2(-6)
3 0 0 36.79 0.0258 5.1(-7)
3 1 0 39.33 0.0260 1.2(-6)
3 2 0 42,07 0.0262 -3.1(-7)

8 Rotational constants B, and

C reference 64

D, are explained in Equation 26.
in kcal/mol relative to the bottom oF the asymptotic reactant vibrational well.
b The SCSA method uses Morse approximation II to evaluate egyp(ngry»s),

Energies

reference 61,
. indicates that this method predicts no resonance would occur for these quantum numbers.
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a sudden-like approximation and the rotational constant B is
evaluated using an adiabatic reduction scheme. Therefore, it
is interesting to compare these results with the vibrationally
adiabatic ones which are based upon different approximations.
The only accurate quantal results available for three-dimensional
H + Hy are for ng¢pe=1, np=n§=0, and J=0. The adiabatic model
(SCSA) is in better sgreement with the accurate results than the
RPO calculations, but both are very close and the two approximate
calculations differ by only 0.7 kcal/mol. The two approximate
calculations show similar trends in the dependence of the
resonance energies on the bending state but also show some marked
differences. For ngp =1, the SCSA calculations show that the
n,=1l, n{=0, J=0 adiabatic curve should hold one resonance level,
which is calculated to be about 0.05 kcal/mol below the maximum
of the adiabatic curve. The RPO results do not predict a
resonance for this state. For ngy,y=2, the SCSA and RPO
predictions of the lowest resonance energy (for ny=n{=0) differ
by about 1.7 kcal/mol. This disagreement reflects the increased
difficulty of predicting accurate resonance energies as the
quantum numbers increase. Also of interest is the dependence
of the resonance energy on the bending quantum numbers for this
state. The SCSA method predicts that the adiabatic curves up
to nyp=3 and n{=2 will hold resonance energy levels, whereas the
RPO method predicts resonance levels only through np=ng=2. Also,
the resonance energies go up faster with increasing numbers of
bending quanta for the SCSA method. The trends in the dependence
of the resonance energies upon J is fairly clear. The rotational
constants By for the SCSA model are consistently higher than
those for The RPO method. The values obtained from the SCSA
model are all just slightly lower than the value of the
rotational constant evaluated at the saddle point, a2/[21(s=0)]
= 0.0295 kcal/mol.

The agreement between the SCSA and accurate quantal results
is as good for the LSTH surface (Table V) as for the PK2 surface.
It is also interesting to compare the results on the two
surfaces. Although the surfaces have substantially different
bending potentials, the resonance energies are surprisingly
similar for the two systems. However, the rotational constants
B, are consistently lower on the LSTH surface.

H + Dy. The adiabatic model (SCSA) was also applied to the H
+ Dy reaction using the accurate potential energy surface (LSTH).
For this reaction we found the adiabatic potential curves for
ngry=1 and 2 would not support any resonance energy levels.
Therefore, we predict that no low-energy reactive resonances will
be observed for this system.

Concluding remarks.
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in natural collision coordinates provides a good zero-order
description of resomance states and reasonably accurate resonance
energies and adiabatic partial widths, and it is most easily
extended to reaction in three dimensions. When the reaction-path
curvature is too large for natural collision coordinates to be
useful, one can retain some of these advantages by making the
adiatatic approximation in hyperspherical coordinates. We also
consider three ways to go beyond the adiabatic approximation:
(i) SCF stabilization calculations, in which the motion along
two or more coordinates is assumed separable in an average sense,
but neither coordinate is assumed to be adiabatic with respect
to the other; (ii) configuration-mixing stabilization
calculations, in which no separability is assumed at all; and
(iii) Feshbach-theory calculations in which nonadiabatic coupling
is added perturbatively to an adiabatic zero-order description.
The stabilization calculations are reasonably accurate and are
not limited to systems with small-to-moderate reaction-path
curvature, but they provide only total widths and are slightly
more complicated than adiabatic-based methods to extend to
three-dimensional reactions. The Feshbach golden-rule
calculations in an adiabatic basis have the advantage of
providing partial widths, and the initial successes of this
approach are very encouraging.
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