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L. INTRODUCTION

The variational methods commonly used in scattering calculations
differ in one very important respect from those commonly used in bound-
state calculations. Calculations of approximate bound-state energies and
the associated square-integrable wave functions are generally performed
using a variational principle for the energy which provides an upper bound
to the exact energy. For collision processes, however, the energy is given
and the scattering parameters are to be obtained from the asymptotic part
of the nonsquare-integrable wave function. The variational methods
commonly used do not give rigorous upper or lower bounds to these
scattering parameters. Instead the scattering variational principles are of
the form that if a trial wave function is determined, then the scattering
parameters can be variationally corrected to eliminate errors of first order
in the inaccuracies of the trial wave function.

Algebraic variational methods are methods in which the wave function
is expressed in terms of a function containing parameters and the problem
is solved by obtaining the best values for the parameters. Often the function
is a linear combination of predetermined basis functions. Functional
variational methods are methods in which the wave function is determined
without such an expansion, usually by numerically integrating the differen-
tial equations. In multidimensional problems a combination of these two
techniques, such as the close-coupling method, is often used. This article is
concerned with algebraic variational methods for scattering problems, but
it also considers some algebraic and basis function methods which are not
variationally derived.

The scattering parameters for the scattering of a particle by a central
potential can all be expressed in terms of the phase shifts. These can be
obtained exactly by numerical integration of a series of ordinary differ-
ential equations. This problem is called single-channel scattering. Algebraic
variational methods allow the determination of scattering parameters by
performing a number of one-dimensional integrals and solving a set of
coupled algebraic equations. In Section II we discuss this scattering
problem in detail because it affords the simplest illustrations of the
techniques used in the variational methods of scattering and because it
illustrates the historical development of the variational methods. It is inter-
esting to note that the same dichotomy of numerical integration methods!
versus algebraic methods? exists for the solution of one-dimensional
bound-state problems.

For multichannel problems (scattering of a particle by a noncentral
potential or scattering of composite particles), the exact solution is much
more difficult. The most commonly used approximate techniques have been
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perturbation theory and the close-coupling method. Generally the latter
is a more accurate procedure. It involves numerical integration of a set of
coupled differential or integrodifferential equations. Algebraic variational
methods for this problem involve solving a set of coupled algebraic
equations. In order to obtain these equations a number of multidimensional
integrals must be performed. It is interesting that the same dichotomy of
types of methods exists for multidimensional bound-state problems. For
example, for the problem of electronic structure of atoms, the numerical
Hartree-Fock method?® is an analogue of the close-coupling method and
the matrix Hartree-Fock method® is an algebraic variational method. As
the complexities of bound-state problems increase (e.g., in going from
atomic to molecular problems), the algebraic methods seem to become
more and more useful as compared to numerical integration methods. It is
anticipated that as algebraic variational techniques for scattering problems
continue to improve, the same trend will be manifest in scattering problems
also.

The oldest algebraic variational method for scattering is that developed
for single-channel scattering by Hulthén® in 1944. A disadvantage of the
Hulthén method is that a quadratic equation must be solved. This means
that, depending on the problem and the energy, either two phase shifts or
nonphysical complex phase shifts may be obtained. In 1948, Kohn*® and
Hulthén? introduced new methods that do not involve nonlinear equations.
In addition, Kohn explicitly showed how to apply his method to multi-
channel scattering. The first application of a variational method to a
problem in chemical physics was made by Huang® in 1949. The method
used was an extension of the work of Tamm.® This method, which has been
of less historical importance than the work of Hulthén and Kohn, involves
the minimization of an Euler-type integral.

The methods of Hulthén and Kohn prompted a number of theoretical
investigations introducing new variational methods along similar lines,
clarifying the relationships between various methods, and festing the
applicability of variational methods for electron-atom scattering. The
most significant study was the work of Schwartz!**! in 1961. Using the
Kohn procedure he found that the calculations of the phase shifts are
plagued by nonphysical si(x:fularities. These singularities, which are just
artifacts of the Kohn method, show the phase shift increases (or decreases)
rapidly by = radians as a function of encrgy. In other words, the Kohn
method predicts a resonance or antiresonance where no physical structure
should exist. Schwartz also found that as the basis set is increased in size
the number of singularities increases, but the widths of the spurious
structures become narrower. This suggests that as the trial wave
function approaches the exact wave function these singularities become
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undetectable. Nevertheless, they provide serious problems in practical
applications of the Kohn method. Thus the work of Schwartz un-
covered a disappointing feature of the use of the Kohn method.

Harris'® stimulated renewed interest in algebraic scattering calculations
by proposing in 1967 an algebraic method that could easily be used for
single-channel scattering calculations. The Harris method can be used only
at certain energies determined by the basis set, but the basis set can be
adjusted to make one of these energies equal to the energy of interest.
Nesbet,’® in a critical evaluation of the Hulthén, Kohn, and Harris
methods, presented the first correct analysis of the source of spurious
singularities in Kohn method calculations, suggested a method (the
anomaly-free method) for avoiding these spurious singularities, and
clarified the relation between the Harris method and the variational
methods. In another important contribution, Nesbet clearly and explic-
itly extended the Kohn method and the anomaly-free method to multi-
channel scattering.

Harris and Michels!5*¢ modified the Harris method for single-channel
scattering so it is variational and can be used at any energy. They also
extended the modified method (called the minimum-norm method) to
inelastic scattering and reviewed!® all previous work. References to the
work done in the period from 1967 to 1971 also have been summarized
elsewhere. 17-1%

Recently there have been many new important ideas and these (along
with a fuller discussion of the material briefly reviewed above) are discussed
in subsequent sections. The present outlook for algebraic variational
methods in scattering is very promising but actual applications of the ideas
that have been developed have still barely scratched the surface. Further,
applications in chemical physics have been restricted almost entirely to
electron-atom collisions.

Since scattering problems not involving explicitly time-dependent fields
can always be solved by time-independent quantum mechanics, and since
doing so is usually more convenient than using time-dependent quantum
mechanics, we restrict our attention to time-independent formulations in
this article.

Section 1I involves the application of algebraic variational methods to
single-channel scattering problems. We use the s-wave scattering of a
particle with the mass of an electron off an attractive exponential as an
illustrative example. Another example of single-channel scattering is the
scattering of electrons by atoms in the static approximation.?*#* In the
static approximation, one approximates the wave function as a ground
state atomic wave function times a nonsquare-integrable function of the
scattering electron’s coordinates. In this way the problem reduces to a
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particle scattering off a central potential. The inclusion of electron ex-
change into the calculation by antisymmetrizing the wave function in the
coordinates of all the electrons results in an additional potential term
which is nonlocal. This is called the static exchange approximation (or
often just the exchange approximation).2-®* We defer discussion of the
exchange approximation and other treatments of electron-atom scattering
which go beyond the static approximation to Section III.

Since the phase shifts in the single-channel case can be obtained to any
desired accuracy by numerical integration of the ordinary differential
equation (not a difficult computational task), the motivation of con-
sidering algebraic variational methods in that case is to learn more about
them so they can be applied most advantageously to multichannel cases.
Multichannel cases are considered explicitly in Section IIL

II. SINGLE-CHANNEL SCATTERING

A. Wave Functions

Consider the scattering of a particle off a potential ¥(r), where r is the
coordinate of the particle with respect to the origin. The wave function
(r) must satisfy the Schrédinger equation

(H— Eyy(®) =0 M

where H is the Hamiltonian operator, and E is the total energy of the
system. For collision problems the total energy is given, and the asymptotic
part of the wave function is to be determined. If the wave function is
expanded in partial waves

we) = >;X—'r‘9 P(cos 6) @

where P,(cos §) is the Legendre polynomial of order /; the function
X,(r) is the solution to
LlX 1 = 0 (3)

where the operatér L, is defined as
Ly (R
2m dr* 2mr®

with the bouddary condition
X(0)=0 ®

The solutionsof (4) with ¥(r) = 0 are r times the spherical Bessel (j) and
Neumann (—¢,) functions. They are characterized by the boundary

L= + V() —E C)
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conditions?
krjkr) ~ sin (kr — }lm) . (6a)
=00
kr&(kr) ~ cos (kr — }lm) (6b)
. (kr)!
kr) ~———
ilkn) a1+ o (6c)
and
@ -nn
kry~———1
Sl( r)'_.o (kr)”l (6d)
The wave number vector k is related to the energy by
Bk’
E=—— 7
am) )

For potentials of shorter range than a coulomb potential the solution of
(3) is asymptotically equal to some linear combination of rj;(kr) and
r&,(kr). If we force the coefficient of sin (kr — }/m) to be unity, we have

Xy(r) ~ ag**krlj(kr) + tE(k)] ®
where a, is a unit of length (taken to be the bohr in numerical examplies)
and t, is the tangent of the partial wave phase shift #;. The problem is the
calculation of 5, and the solution of (3) subject to the boundary conditions
(5) and (8). The partial cross-sections o, are related to the partial wave
phase shifts by

o, = (%’)(21 + 1) sin*7, ©)
The total ¢ross-section is
Q=20 (10)
The total cross-section may also be written
0 =2 [0 SOF Coan

in terms Qf the scattering amplitude. The scattering amplitude is related
to the phase shifts by

10) = 5 321+ D — DPieos 6 (12)

We shall consider the problem of determining X,(r) and #;. Methods
exist for t})e determination of y(r) and f(8) without making the expansion

~—
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(2) but they are generally less useful for accurate work and we do not
consider them here.
B. The Variational Expressions
Consider the functional?s-2¢

1 = [ XL 0 dr a3
where X° is a trial radial wave function satisfying
X%0)=0 (14)
X ;°(r)':a€" SkrLj(kr) + 6,°6(kr)] @15)
where 7,° = tan %,°. The trial radial wave function can be written
X0(r) = Xy(r) + 8X,(r) (16)
where X,(r) is the solution of (3). Then
8X,(0)=0 an
8X(r) ~ az®kr& (kr) 8, @18)
where e
8y=1"—1, (19)

We assume ¥(r) is real so that X,%(r), X;(r), and 8X,(r) are real. We can
express the error in I; a8
oI, = I(X?) — I,(X) (20)

where the last term is zero. Using (16) this becomes
) -5 f drX,(r)L, 8X(r) 21
[}]

where we have neglected terms that are of order (6X,)%. Using (3) and (4),
(21) becomes

BY (®ar(x. L ax, — o3, L
§61,=_.. —(2m)J; dr(X, P X, — X, P X,) (22a)
| K[, d 4,7
= 2m[ Yar 8%, — 0%, dr X’]o (22b)
Using (5), (é‘), (8), (17), and (18), (22b) becomes
: 2
Ol =~ (2:1a.,)k o, (23)

Thus the expression

1E = — (2;1,‘:) LX) 24)
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is a stationary expression for the tangent of the phase shift; that is, the
first-order correction to the variationally corrected quantity t,X vanishes
by (23). An expression equivalent to (24) was first derived by Hulthén®
and (24) may be called Hulthén’s variational expression. Equation (24)
is also used in Kohn’s variational method® and because of this it will be
called Kohn’s variational expression.® To complete the specification of the
variational methods® requires giving procedures to determine t,® and
X°(r), which are needed to evaluate the right-hand side of (24).

Hulthén’s second method’ can be reformulated®” using a variational
expression for the cotangent of the phase shift. This expression may be
derived as above except using the normalizations

X, (1) ~ agHer(ty, (k) + &i(kn)] 25

L amd- ]
X2(r) ~ ag er[(6) ikr) + &i(kn)] (26)
Then we obtain the following stationary expression for the cotangent of
the phase shift

2mao

@B =+ ( = )I,(x,") @

Note that X;.°(r) in (27) is normalized according to (26). If we wish to use
X9(r) normalized according to (15) we must use

= O + [ 2mde ] 1) 28)

RH(t)
(27) or (28) can be called the variational expression of the second Hulthén
method or the inverse Kohn variational expression. Moiseiwitsch and
Stacey™*? and Williams?® have shown that Hulthén’s second method is
equivalent to the method derived later by Rubinow.?:* To avoid
ambiguity we use the symbol R (for Rubinow) for this variational
expression.

A more gencral expression was derived by Kato for s-waves.3! General-
izing to arbitrary / we consider

X(r) ~ ao_llzk" [}.9_,j,(kr + 0) + &i(kr + 0] (29)

r=*w

X (r) ~ ag?kriAg jikr + 0) + Ekr + 0)] 30

r— o0

where 0 is an arbitrary constant. Note

Ag,. = [tan (5, — O (3D
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Then we obtain the following stationary expression for 4y

2ma,
Kk
Note that X;°(r) in (32) is normalized as in (30). Kato®™ also derived an

explicit expression for the error in (32). This result may be stated in the
form of the following equation for the exact Ao

AR = A0+ 0 IXY) (32)

2may
ik
which is called the Kato identity.

Percival®® suggested using an alternative form of (24). He used the
normalizations

Agy= g+ (X, — I(8X))] (33)

Xlo(r) ~kr [“ozojz(k" ) + “11061(1“')] (34)
and ’
8X,(r) ~[Q cos ("710 + o) — °‘oz"]krjz(k" )
e . 35
+ 10 sin (1 + om) — o Thré(kr) (33)
where
ap® = @ cos n;° (36a)
and
% = Q sin7,° (36b)
to obtain the stationary expression for the phase shift given by
2m
nF =n'— 108 I (0.69) €7)]

Note that X;°(r) in (37) is normalized according to (34) and (36). If we
wish to use X,°(r) normalized according to (15) we must use

2ma
ot =n — hzk" cos’ . 1(X,) (38)

Seaton®® showed that (37) can also be obtained starting from

8X,(r) ~ [—oulkr) + oo *Elkr)Tkr Sms (39)
r—+o
(35) and (39) are identical through first order in d7,.
Above we have given variationally correct expressions for #, 7%,
[tan (o, — )], and 7;. Variationally correct expressions may be derived
for other functions of 7, but they have been of less interest.
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C. The Hulthén, Kohn, Rubinow, and Percival Methods

For basis set calculations, the trial radial wave function X,°(r) is written
as the following linear combination

X = S(r) + 1°C(n) + .Zl ¢4 (r) (40)
where
5,0)=0 (41)
CO=0 (42)
Sy(r) ~ ag*/krj(kr) 43)
Cz(r),:;a?’ *kré(kr) (44)

the #,/(r) are a set of square-integrable functions, and the ¢t and 1,° are
(n + 1) coefficients to be determined. To satisfy (5) we require

74'(0) =0 45)

Note that‘ (8) is automatically satisfied by X;%(r) of (40).
The Kohn variational method® ¢ for obtaining the (# 4 1) coefficients

in the trial function consists in solving the (n + 1) equations
atx
=0 a=12,...,n . 4
2c. (46)
onx
—— =0 47
210 7

Equation ‘(46) may be written
! o
f dm(PLXXr) =0 a=12,...,n (48)
0

and (47) lhay be written
I "drC{NLXr) = 0 (49)
0

[The lat r is derived by using (70).] The trial 7, obtained by this pro-
cedure will be called the Kohn zero-order result 15° where we have

dropped the subscript /.
The Hulthén variational method® for the (n + 1) coefficients in the trial

function consists in solving (46) [or the equivalent (48)] and
X =0 : (50a)
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Equation (50a) has two solutions (discussed later). One of these is called
the Hulthén zero-order result 7;,°. Equation (502) may be written [using
48]

[Fansr + eeomxre =0 (50b)
0
We have already mentioned that the second Hulthén’ and Rubinow

methods®® are identical. They yield a #, which will be called the Rubinow
zero-order result ¢z%. To obtain the 15°, we use the trial function

X2 = @)78(n) + G + Z‘ca'm'(r) : (5D
and solve the equations
™
——5’;‘—=0 a=12,...,n (52)
sy
—— =0 53
™ 3

for the (n + 1) coefficients in (51). Equation (52) may be written as (43),
and (53) may be written

Lwd’ S(LX,(r) =0 (54

These procedures yield variationally uncorrected tangents of the phase
shift which may be improved (or corrected through first order, i.e.,
corrected to second order®) by using (24), (28), or (38). Usually #x° is
corrected to give ¢z~ by (24) and #5? is corrected to give 1" by (28)
because™-16 the corrected tangents are then stationary with respect to the
zero-order tangents, that is,

atx
—_— =0 55
at,o 1=tk (53)
and
otF
-_— =0 56
at,“ t=tr" ( )

The properties (55) and (56) are discusscd later in this section. Kohn
zero-order tangents may be corrected by the Rubinow variational ex-
pression to give nonstationary ¢ = or by the Percival expression to give
15", or the Rubinow zero-order tangents may be corrected by the Kohn
variational expression to give the nonstationary t5<. The nonstationary
quantity tz" may also be obtained, but it is not considered in this article.
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Hulthén’s variational method obviously yields a trial wave function
for which the variational correction computed by (24), (28), or (38)
vanishes. Thus

tg® =ty = 15" =tg" (57
and this quantity may simply be called the Hulthén tangent 75.
Percival’s variational expression® uses the trial function

XN = a_od/![cos 7,°S(r) + sin 7°C(N] + an’m' (58)
a=1

The (n + 1) unknowns in (58) are obtained by solving the (n + 1)
equations

r
aalc'7=0 a=1,2...,n (59)
ani®
oy _ (60)
on; '

Equation (59) may be written as (48), and (60) is a transcendental equation
for n° which can be rewritten as a quadratic equation for tan 2np°. The
zero-order Percival result 7, obtained this way is variationally corrected
using (38) to yield 75"

The methods explained above can be rederived in a fashion that yields
equations more suitable for subsequent - discussion. For this purpose we
present the following analysis due to Nesbet.}® We expand the radial wave

function in a form slightly different from (40), namely,

Xzo = ‘ﬁo’(r) + 8(r) + tlo[4’l;(r) + C(nN] (61)
where

$s = Sclmim) ©2)
and = .

¢ =S elnr) 63

a=1

Equatioﬁs (48) are replaced by the equations

f L) = — f i OLS)  a=12...,n (6
0 0
and .

f © drm (L = — L “dmi AL a=1,2...,n (65
Jo :

From (13), (61), (64), and (65) we obtain

XD = M® + (M™ + M) + (M) (66)
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where
M = L “ArAPLISIO) + Ayl wB=0,1 (67
and we have the following new labels
Ay(r) = Si(r) (68)
An(r) = G(r) ' (69)

where we have suppressed the pair of subscripts / which could have been
added to the M*?s. Note an important property of these matrix elements:

Bk
2ma,

MOI — M10 = (70)
which can be derived by integration-by-parts and evaluation of the
resulting surface integral.

Now equations (50), (47), (53), and (60) can be written in the present
notation as

M00 + (Mol + Mlo)lH + MutHz = 0 (71)
MY 4 MM =0 (72)
M® 4+ M0 =0 (73)
and
2
Bk _ M — M) sin 2n° — (M™ + M) cos 20° =0 (74)
2ma,
respectively.

The Hulthén tangent of the phase shift is given by the solution of the
quadratic equation (71). At one time the fact that two phase shifts are
obtained this way was considered a problem. It has been shown, however,
that the physical solution, if any, is obtained with the positive sign®-%
of the discriminant, giving

= =3+ gl i) DT+ 1] =) 09
where we have used capital letters for a determinant of a matrix arranged
by its superscripts, that is,
DET M = M®MY — MM (76)
From (75) it is easily seen that ¢ is complex if
(B*k/may)®
16

In this case there is no physical solution of (71).

DET M > an
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The zero-order Kohn and Rubinow phase shifts given by (72) and (73),
that is,

gt
g’ = arctan ( Mﬂio) (78)

g = arctan ( .;W‘" ’ 79

can be corrected through first order using the Kohn variational ex-
pression (24), the Rubinow variational expression (28), or the Percival
variational expression (38). Using (70) these procedures yield

x MY 2ma,DET M

T T T R me (80)
2ma, (M¥%)?
== ) a
tR - M01 - ﬁzk (M01)2 (8])
MY 2ma, MPDET M
R\—-1 0
(tx™) M@ + Bk (M™)? (82)
M®  2ma,DETM
Ry-1 0
(=) M® " Bk M™ ¢3)
and n M® 2ma, , DETM
1ty =tan [—arctan ﬁi - —;{2; cos g —Mr] (84)

We now consider the properties (55) and (56). From (24) and (66)

we have
P o 2mae

=1 —
ik

M + M" + M) + M%) (85)
Differentiating ‘
oK 2m

ae 1 10 11.0.

Yl ™ M* + M 4 2M") (86)
Substituting 1 = #;° [from (78)] and using (70) yields (55). That this must
occur was ensured by using (47) to define 7x°. Thus ¢ & is not only correct
through first order but is also stationary with respect to variations of the
zero-order tangent of the phase shift. A similar argument shows
(arK/at°)|,..+,B.. is not zero. Thus the Kohn variational expression is
stationary with respect to 7° only if the Kohn method is used to obtain
1°. As a consequence, although 7,* is correct through first order, it is not
stationary with respect to variations in the zero-order tangent of the phase
shift.

e’
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Similarly we can show that 15" and ¢ F are stationary but £x" and £ 4
are not. The variationally correct and stationary results ¢ <= and 157 are,
as mentioned previously, the Kohn and Rubinow first-order results,
respectively. The methods yielding f oF and 17 were used by Percival,®
but the other two methods (yielding tzK and ¢ <T) do not appear to have
been used in the literature.

Many examples of potential scattering calculations using the Hulthén,
Kohn, and Rubinow methods may be found in the literature.5-7:13-20-34~
35.37-47 Applications to more complicated problems are discussed in
Section II1.

Notice from (75), (76), and (78) to (84) that when DET M is 0 we have
e’ =t =tg=1tg" = t = t1F = 1g"=tx" )

For single-channel scattering the reactance matrix is a 1 X 1 matrix
whose element is ¢, Thus we have been considering special cases of
variational methods for the reactance matrix. Analogous variational
methods of the types considered here and below may be written down for
the scattering matrix.® For single-channel problems the scattering matrix
is a 1 x 1 matrix whose element is &' Thus these methods may yield
complex 7,. Further, they are often less convenient since they require use

of complex asymptotic functions in place of S; and C;. Thus we do not
consider them explicitly.

D. Integrals and Computational Procedures

Note that the calculations discussed in the last section reduce to the
computation of the various M. Nesbet! has given expressions for the
M in terms of the set of basis functions

N
7} = 2.6 0) (88)-
where the c,” are obtained by solving the standard eigenvalue problem
ZHGblcblv = Evlcalv ’ = 1, 2, R n
’ y=1,2,...,n (89)
where -
Ho' =L drpJ(rXL: + Es' () (90)
These expressions are
M® = MSS + z MSv(E - Ev)—leS (91)
M™ = Mo + X Ma(E — E)"Msc (92)

Mw = MC’S + z MC\'(E - Ev)—_leS (93)
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and
Mu = MC’C + z MC'V(E - Ev)_leC

where

Mgg = f drS{PLS(r)

Mgo = f drS{PLCAr)

Mg = f drCPLS(r)

Moo = f drCPLCAD)
and

Moo= Mo, = [ “arcLAL)

(-]
M= Mg, = f drS(PALAFHT)

o4

95)

(96)

on

(€))

9

(100)

Alternative expressions for the M*# can be obtained which do not require

the solution of (89). For these expressions we assume

| f " drnrmyr) = b,

and ‘
[Farayemior = o
0
Then®
M* = (M4 — M4"™M™ 1M"“),,,,
where

Mo = [ dml L)
0
M4 = f “IrA (OLAL) o f=0,1
(1]
M4 = f “dmd DL =01
0

M, = L drdyOLul)  B=0,1

(101)

(102)

(103)

(104)
(105)
(106)

(107)
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Note that (101) and (102) are not really needed to derive (103), as was
assumed by previous workers. This is discussed in Appendix 1.

The integrals (90) and (104) are called bound-bound integrals, the
integrals (99), (100), (106), and (107) are called bound-free integrals, and
the integrals (95) to (98) and (105) are called free-free integrals.

Equations (91) to (94) have the advantage over equation (103) that if
(89) is once solved, scattering calculations may be performed at many
energies E by simply doing the new free-free integrals (95) to (98) and
bound-free integrals (99) and (100). Using (103), however, we must
invert M™ at each new energy. :

E. The Harris Method (for Energies Equal to Eigenvalues of the
Bound-Bound Matrix)

Harris*? pointed out a simple method for calculating the tangent of the
phase shift in the case where the energy is equal to one of the eigenvalues
E,} of the bound-bound matrix. In this case, if we write the trial function as

X(r) = S(n) + ‘locl(r) + Z d‘,ﬁv‘(r) (108)

involving the expansion coefficients d, and require L,X;’(r) to have no
component in the space spanned by the 7,' we obtain

~ [T aroLs)
tgarris = - (109)
[Carniomeio
Nesbet®® showed that when E equals one of the eigenvalues E,}
Tnaris = tRo = tKo =1y (1 10)

However, the Harris method has the advantage over the previous methods
that no free-free integrals need to be evaluated.

A possible difficulty with the Harris method is that the basis set has to be
adjusted to perform a calculation at a preselected energy. If such basis set
adjustment were required to calculate the phase shift as a function of
energy in some energy region, spurious energy dependences of the phase
shifts could be obtained. This is not expected to be a problem if large
enough basis sets are used. Another disadvantage!® however is that, be-
cause the eigenvalue E,} depends on the trial function, the extrapolation
technique as basis functions approach a complete set cannot be used.

Formally a more serious difficuity with the Harris method is that the
tangent of the phase shift is not variationally corrected. When the
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minimum-norm method of Harris and Michels (discussed in the next
section) is applied at an energy equal to one of the eigenvalues E,}, it
reduces to the Harris method but with the addition of a variational
correction. For this reason 75, ., may be called 7,,,°

Some applications of the original Harris method to potential scattering
may be found in the literature,12:13.44.45

F. The Minimum-Norm Method

Harris and Michels!® derived an extension of the Harris method called
the minimum-norm method which can be applied at any incident energy
with any basis set. The radial wave function is expanded in the form

1 n
X,(r) = ,Zoam"A w(r) + 2; Catla'(r) (111)

where the a,,° and ¢,} are coefficients. We must first determine 7,,,°, the
zero-order minimum-norm tangent of the phase shift, given by

%y
g’
We consider a region defined as 0 € r < a where a is large enough so that
the integrals (101), (102), and (104) to (107) would all be approximately
unchanged if the integration were carried out only over 0 < r < a instead

of over 0 € r < oo. In the region 0 < r < a, we expand

tany, = (112)

1 n
LX;(r) =p§ogmAm(r) + 'Zlhalﬂal(r) (113

involving the coefficients gz, and A,’. Substituting (111) into (113) and
requiring (48) or substituting (111) into (48) yields

M™“a® + MMt = 0 (114)
where the column vectors a and ¢’ are defined by
(@%p = ag; (115)
and
(©)a = ¢ (116)

Assume the A,4(r) are orthogonal to the #,'(r). Then we obtain from
(6a), (6b), (43), (44), (68), (69), (111), and (113) for very large a

M40 4 MAC = (.a_)g a1
2ao
where '

®s = gn (118)
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and gy, is proportional to 2. We show in Appendix 1 that this orthog-
onality assumption is not necessary. Comparison of (114) and (1 17)
shows we can require g to equal the null vector only if

MAA MAn
M MM
where the determinant is of order n 4 2. In general the determinant does
not vanish, and we cannot take g to be the null vector. Instead we minimize

its norm |g| as follows. If M™ is nonsingular, we eliminate ¢* from (114)
and (117) to obtain

(M4 — MATV-1Vra) o0 — (i)g (120)
]

Comparing (120) to (103) we see that the 2 X 2 matrix in (120) is the

matrix whose components are given in (67); thus, calling this matrix M,
we can write (120) as

=0 (119)

Mo’ = (ﬁ-)g (121)

We see that g can be taken as equal to the null vector only if DET M = 0.
Multiplying each side of (121) by its adjoint yields

2
Qe = (2 jgi (122)
2a
where

Q=MM (123)
Now a® is chosen to minimize |g|. This means the a® used in (112) must be
the eigenvector of the Hermitian matrix Q corresponding to its lowest

eigenvalue. Let the other eigenvector of Q be B.
If «® and B are normalized they can be used to construct the 2 x 2

orthogonal transformation matrix
b= @B) (124)

Although p*Qp is diagonal, it is interesting to point outt®:4? that the
matrix M’ defined as

M’ = ptMp (125)
is not diagonal. The explicit result obtained from a® and (112) is's
(M + (M) — (M — (M%) |

o — {IM%) + (M™) + (M) + (M')*I* — 4DET M)}
N 2(M®M* + MPM™)

(126)
Note that we have corrected the typographical error in Ref. 16.
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If M™ is singular, that is, if £ = E «'» then the n linear equations (1 14)
fully determine a and the two linear equations (117) are not needed for
this purpose. If we define the column vector obtained from (89) by

(), = c,™* 127
then multiplying (114) by the transpose conjugate of é,,"‘ yields the single
linear equation + R

[“TM™a® =0 (128)

which [with (112)] is identical to (109) of the original Harris method.
The zero-order result obtained from (126) or (128) may be corrected
variationally by either the Kohn or the Rubinow variational expression
to yield
K _ o 2may
tun =1lyy — ke

M™ + (M™ + M )," + MY, (129)
or
(™' = (ta®?

+ —*-2;: M+ G M+ MY MY (130)

Harris has pointed out that these expressions are not stationary (see
discussion in Section II.C above) and has suggested the use of a different
variational expression.® This expression will be called the minimum-norm
variational expression and it is

T 2

P+ ="+ A+ (—%’)(P + A)I(X,%) 131

where ‘
Mw + tOMIlI
= Mlo + toMu
It can be verified that ™" = 1,X and that ¥~ — tz". Applying (131)
and (132) to 1,,,° yields the variationally corrected minimum-norm result

12" Notice that if DET M = 0

1N’ = agy™ = by ® = 13 MV (133)
Nesbet and Oberoi®®-** have also considered the problem of the non-
stationary nature of the Kohn variational expression when the minimum-
norm method is used for 1% They have developed a method they call the

optimized minimum-norm method. As the final result of the optimized
minimum-norm method one calculates the quantity

(132)

: [} 0
oMN _ S nyN + ' cosnyy
Iyn = o >

COSNary” — L sinnyy

- (134)

—
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where

’ 2ma0 [ ’ (le,)z]
= — M, —-— 135
el "t My, (135)

G. Methods Involving No Free-Free Integrals

Of all the zero-order and variationally corrected calculational methods
discussed above, the original Harris method is the only one that can be
carried out without evaluating any free-free integrals. In most cases, the
free-free integrals are the most difficult integrals to evaluate. In this
section we discuss two other methods in which no free-free integrals need
to be evaluated. Unlike the Harris method, these two methods can be
applied at any energy for any basis set.

Euler integral methods have been used by Hulthén,” Huang,® Malik,®
and Moiseiwitsch.4” The method to be considered here is a more systematic
version of the method used by Huang.® It differs from Huang’s and Malik’s
approaches using Euler integrals in that the wave function is expressed as

X2(r) = Si(r) + £°Ci(r) + v,(r) (136)
where v,(r) is a square-integrable function with the boundary condition
0,(0) =0 137

The function v,(r) is eventually determined by expanding it as

o) = Seink) (138)

where the 7,!(r) are square-integrable functions satisfying (45) and the ¢}
are coefficients. Substituting (136) into (3) yields

W d? I+ DA
_ d’, I+ D + V() — E |[0,(r) + LS + t’LC(N =0
2m dr? ?

2mr
(139)

This is a nonhomogeneous differential equation for v,(r) with homo-
geneous boundary conditions. It replaces the homogeneous differential
equation (3) which had to be solved with nonhomogeneous boundary
conditions at large r.

Now we seek a functional F(r,v;, v,) where v, = d,/dr. It will be
required that the Euler equation

d (9F oF
L) L -0 140
dr(au,') o, (140)
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of this functional be equivalent to (139). It can be seen that the functional
we seek is

B, 170 + DA
P o) = = e - A 4 v — B ]

— [L;S(r) + t’L,C(r)] (141)

Therefore, by Euler’s theorem, the solution of (139) may be obtained by
minimizing the Euler integral

= f drF(r, v, v)) (142)
0
Substituting (138) and (141) into (142) yields

Fl(cll! 621’ LR ] cnl’ tlo = é Z CalcblAabl - 2 cal(Mao"A + tloMal"A) (143)
where * *

© h® dn.dn, R+ 1)
Ag'= d{-———-——i—l—[—————— 14 —E] W (T }
@ =) " 2m dr ar 2mr® TV 7 (71 )
(144)
To minimize (143) we require
r
Ty b=12,...,n (145)
dc,}
or,
— =0 146
210 (146)
This yields the (n 4 1) nonhomogeneous linear equations
Sl — (M4 = M (147)
and =
Se M, =0 (148)
am=}

for the n + 1 unknowns. The ¢,° determined this way is called 75;°
Extending a suggestion of Hulthén and Olsson®® we may variationally
correct ¢z,° through first order using the Kohn variational expression,
yielding 5. Such a correction involves the calculation of free-free
integrals. '

Ladényi, Lengyel, and Szondy®® have proposed using the method of
moments for scattering problems. In this case we use the n + 1 equations

f " drw (LX) = 0 (149)
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where the w,(r) are “weight functions™ to determine the # -+ 1 parameters
in X,(r). For certain choices of trial function and weight functions, this
method may be made to yield the zero-order Kohn or zero-order Rubinow
method. Ladényi et al., however, recommend that all the weight functions
be square-integrable. This eliminates all free-free integrals.

As an example of the method of moments we consider the trial function
(40) and the solution of equations (48) and

L ® art (LX) = 0 (150)

for the unknown coefficients ¢,* and 7,°. Equation (150) was obtained by
using the basis functions [sce (40)], including one more basis function
than is used in X;°(r), as weight functions in (149), The #,° obtained by
this method is called £, We suggest that improved results can be
obtained using the Kohn, Rubinow, Percival, or minimum-porm varia-
tional expression to correct 1302 In this case, however, free-free inte-
grals must be calculated.

H. Discussion of Above Methods and the Anomaly-Free
Method

In this section results are presented for a model problem, namely,
the scattering of a particle with the mass of the electron and orbital angular
momentum / equal to zero off the potential

V= —2Re /a0 (151)

where 4 is the Rydberg energy and g, is the bohr. The exact solution®
to this problem exhibits no resonances. The trial function is

X ) = ag"* [sin kr + 101 — e cos kr + X ¢ (L) e"'s"""] (152)
. a=1 do
where n = 6 for all results except some of those in Table IV. The phase
shift is always given mod = in discussing the results. For n = 6, the lowest
two eigenvalues E,° of M™ correspond using
gt o ik

i

om (153)
to k, = 0.264362a, and k, = 1.042019a,7".

We have done calculations for k in the range 0.1 to 1.0a,7* designed to
illustrate the various facets of the methods. Similar calculations were
presented by Nesbet.™s First we discuss the spurious singularities which are
of great historical importance. Our explanations follow closely the work of
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Fig. 1. (a) The quantities M* and M (in Ry) and the zero-order Kohn phase shift
1 x° (in radians) are shown as functions of momentum k (in atomic units) for scattering
of a particle with the mass of an electron from an attractive exponential potential. The
scale on the feft applies to the M*f and the scale on the right to 7 x°. On the scale of (a),
nx®and 1K could not be distinguished except near the regions where M1is not about
equal to zero. (b) and () With a more expanded abscissa these are the only two regions
Wwhere variationally corrected Kohn phase shift 75 X differs appreciably from % &°.
The M are labeled M,y as in Ref. 13.
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Nesbet’s Analysis of the Harris Variational Method in Scattering Theory.™®
In this work, however, Nesbet missed a pseudoresonance in his Rubinow
method calculations because it was too narrow to be seen in his Table V.
This makes Sections VI and V11 of his paper a little confusing. The mistake
was corrected by Harris and Michels.'® The correct conclusions of Nesbet’s
work are as follows: 7z~ and 5" show irregular behavior (i.c., the
computed values show a wild fluctuation) when E is near E,!. In addition,

™ and 15" have poles at the zeroes, respectively, of M! and M. For
numerical accuracy, ? = or ty should be used when

R = '—M-“J 154
- IMIII ( )

is less than unity and 1" or ty should be used when R is greater than
unity. The following is an elaboration and continuation of this analysis.

Fig. la shows the zero-order Kohn phase shift and M** and M*® for
k = 0.1-1.0a,~* and n = 6. The zero-order Kohn phase shift shows in one
energy region a rapid increase by = (a resonance) and in another energy
region a rapid decrease by = (an antiresonance). Since the exact solution™
has no resonances the resonance is spurious and may be called a pseudo-
resonance. Further, an antiresonance as sharp as the one shown is for-
bidden by causality’® and thus the antiresonance is spurious. It may be
called a pseudoantiresonance. These spurious results may both be called
spurious singularities since a change by w of the phase shift in an energy
interval causes both the tangent and the cotangent of the phase shift to
become zero (singular) within that interval. The plot shows that the
spurious singularities both occur near energies at which the matrix
elements M and M?® become zero. Since 7x° converges t0 the exact
result as n is increased, (78) shows that the zeroes of M and M?*® coincide
in this limit except in regions where the phase shift goes smoothly through
7|2 or 0. For finite n these zeroes are shifted slightly relative to one
another. It is this shift that causes the spurious zeroes. Fig. 15 is a blowup
plot of the pseudoantiresonance shown in Fig. 1a, and Fig. 1c is a blowup
of the pseudoresonance shown in Fig. la. From Fig. 15 we see that even
though the zero-order Kohn phase shift exhibits pseudoantiresonance
structure the variationally corrected Kohn phase shift shows pseudo-
resonance structure. Also note from Figs. 15 and 1l¢ that the spurious
zeroes of 7~ and 7,° are not centered about the same k.

The nature of the spurious results (increases and decreases of 7 by =
as opposed to /2, 2, or some other values) and their general location are
explained as follows. Nesbet'? has proved that when E equals E,! (i.e., when
M™ has a zero eigenvalue), DET M and all four M* (a, § = 0, 1) have
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Fig. 2. (a) The integrals M and ML (in Ry) and the zero-order Rubinow phase
shift nz°® (in radians) are shown as functions of momentum k (in atomic units) for
scattering of a particle with the mass of an electron from an attractive exponential
potential. The scale on the left applies to M and the scale on the right to 7 %% On
the scale of part a, nz?and 15T could not be distinguished except near the region where
M™ s equal to zero. (b) With a more expanded abscissa this is the only region where the
variationally corrected Rubinow phase shift ngE differs appreciably from 7z°. The
Mo%# are labeled Mg as in Ref. 13.
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poles of odd order. This behavior is illustrated graphically in Figs. la, 2a,
and 3. Because of these odd-ordered poles, DET M and each M** tend to
pass through every value in the range — oo to + oo in the vicinity of each
zero eigenvalue of M™. Thus, for example, M?® and MY each tend to pass
through zero near each zero eigenvalue of M™. By (78), this means 7x*
tends to pass through both 0 and =2 near each zero eigenvalue of M™.
Depending on the order in which M and M™ reach zero, this will be
manifest as a resonancelike or antiresonancelike behavior. As explained
above, in the limit where the basis set is large enough to represent the
exact solution, if the structure is spurious the zeroes of M*® and MM
coincide and the structure disappears. Thus as the basis set is made
more accurate, the zeroes of M and M* move closer (except near real
resonances) and thus the energies at which 7x° equals 0 and w[2 move
closer; that is, the width of the pseudoresonance or pscudoantiresonance
becomes zero.

09 .,.,.l./,.,.;,—ﬁ,., —r— ©.060
fo):1 oMy 0.052

o7k, ! 4 40044

10036
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Fig. 3. The left- and right-hand sides of inequality (77) in Ry?, the zero-order mini-
mum-norm phase shift n an? (in radians), and the Hulthén phase shift ng (in radians)
as functions of momentum k (in atomic units) for scattering of a particle with the mass of
an electron from an attractive exponential potential. The curve labeled det M (following
Ref. 13) is Ry~ DET M and has been extended beyond k = 1.0 ag™? to indicate more
clearly where its pole is.
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Comparison of (78) and (80a) shows 7 g and n ' are 7[2 at the same
place, namely, where MM vanishes (see Figs. 15 and 1c for examples).
Since both M and (—2ma, DET M/A%k) tend to take on every value
from — oo to + oo near a zero eigenvalue of M™, they tend to cross;
thus 1% given by (80a) tends to have a zero near every zero eigenvalue
of M"™, (Alternatively,® (80b) shows that ¢ %, like 15x° cannot vary
smoothly near a zero of M'! unless M also vanishes.) Thus 5™, like
nx°, tends to pass through both 0 and =/2 near each zero eigenvalue of
M™. This is the reason 7 KK shows resonance, pseudoresonance, or
pseudoantiresonance behavior near each zero eigenvalue of M. Figs. 15
and 1lc illustrate the important fact that the width of the spurious
structure in 75X tends to be narrower than the width of the spurious
structure in 7z°.

Similar spurious singularities should occur in 75’ and 7 & for the same
kinds of reasons. Fig. 2a is a graph similar to Fig. 1a except that quantities
pertinent to the Rubinow method have been plotted. Fig. 2a shows that
the zero-order phase shift varies smoothly through the eigenvalue but
exhibits a pseudoantiresonance around k equal to 0.554,7*. Note again
that the pseudoantiresonance occurs in the region where both M® and
M® vanish. The first zero of M just causes the phase shift to go smoothly
through /2. Thus a zero of M that is not close to a zero of M™ does not
cause spurious structure. Thus the spurious structure tends to occur near
zero eigenvalues of M™. This tendency is destroyed if the “background”
M®! or M is near zero; however, using (70) we see the background M
and M*° will not both be near zero for the same energy. Thus the tendency
of the spurious structure to occur near a zero eigenvalue of M™ will not
be destroyed in both the Kohn and Rubinow methods near one zero
eigenvalue of M"".

Fig. 2b shows that the zeroes of 5° and 7 " occur at the same value of
k, namely, where M® is zero. This is explained by (79) and (83). Further
the rapid changes by = of 7z’ and 7 & are centered about the same k
in this case.

The fact that the zeroes of M® and M® (which when they occur near
each other cause structure in the Rubinow method) and the zeroes of M**
and MM (which when they occur near each other cause structure in the
Kohn method) do not generally occur in the same energy regions (the
exception being when there really is a resonance and the basis set is
accurate enough that both the Kohn and Rubinow methods show the
resonance) forms the basis of Nesbet’s original method, also called the
anomaly-free method.1®¢ Nesbet suggested calculating the ratio R [see
(154)] and using the Kohn method when R is less than unity and the
Rubinow method otherwise. One possible difficulty with using this
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procedure can be seen as follows. Fig. 1 shows M'! may be very large at
energies very near to the spurious singularities identified by its zeroes. If
this occurs where the accurate phase shift is passing smoothly through
0(mod =), then M® will be small but the Rubinow method may have no
spurious structure at this or nearby energies.’” In this case R will be less
than unity but the Rubinow method would be preferred. An alternative
method to avoid spurious singularities is to calculate 7, 7 2> N, and
one of the minimum-norm phase shifts. If three out of four of these
quantities agree fairly well, they are probably free of spurious singularities.
If no three out of four agree, the basis st should be improved.

Fig. 3 shows a plot of (%2 DET M) against (#*%k/4m )*. Since DET M
tends to zero as the basis set becomes more accurate, it is generally small
for a basis set that is fairly accurate. However, due to the odd-ordered pole
of DET M near each zero eigenvalue of M™, there will be a region near each
zero eigenvalue of M"™ in which (77) is true. This region will be bounded
on one side by the zero eigenvalue of M™ and on the other by the energy
where (77) with an equal sign holds. In this region then 7 will be com-
plex. Fig. 3 shows a plot of 5y which has a narrow break in the energy
region just below the first zero eigenvalue of M™. In this region, (77) is
true. We have observed that the result 7 often shows a change in slope
very close to the break.

Fig. 3 also shows that % ar® varies smoothly as one passes through the
zero eigenvalue of M™. The denominator of (126) vanishes once in the
energy region shown in Fig. 3; namely, it vanishes where 7 Mn® passes
smoothly through =/2.

Fig. 4 is a plot of the variational corrections

A =n - ' (155)

These corrections are generally small but become large in the regions of
spurious structure in the results. The spurious structure in nx" and g
seen in Figs. 1 and 2 is seen again here in Ag® and A" In the energy
region shown, Ay is always small, indicating there is no spurious
structure in 7oy However, the figure shows there is one pseudo-
resonance in 7,en - Thus the use of the Kohn variational expression to
correct the singularity-free #,y® has resulted in introducing a pseudo-
resonance. In other cases (no examples are shown), the Rubinow varia-
tional expression introduces spurious singularities into the minimum-norm
method. The figure shows, however, that 7 uv'Y is free of spurious
singularities. Nesbet and Oberoit® have pointed out that t9 TV is not free
of the spurious singularities.

Fig. 4 shows that Ag¥ and AxT have two regions each of spurious
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(in atomic units) for scattering of a particle with the mass of an electron from an
attractive exponential potential. The abbreviations for the methods are X = Kohn,
R = Rubinow, and MN = minimum-norm.
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structure. It can be shown that

2m DET M
Ag¥ = _(ﬁ) tr o (156)
and thus Az has a pole if and only if M = 0. This happens twice in the
energy region shown, once because of a pseudoantiresonance in 1z and
once because 7z° passes smoothly through =/2. Further analysis shows
that the Kohn variational correction does not make the region of spurious
structure in 7 g® narrower. In comparison, Fig. 2b shows that although the
Rubinow variational correction does not remove the spurious structure
it does make it narrower. Further the Kohn variational correction intro-
duces a new region of spurious structure pot found in 7" The Rubinow
yariational correction does not introduce new regions of spurious structure
not found in 7z°. We conclude 7 RF is to be preferred to 2=. A similar
analysis would show 7 £ is to be preferred to 7 A

Figs. 5a and 5b show with expanded abscissas two regions where the
nonstationary methods lead to unusual spurious structure. These figures
show spurious structures in ng~ and 7 x* which are wider than those in

g%, Nz 1x’ and ng’ To analyze these structures we write (81) and
(82) as

X _ —M M + (2ma,/h*k) DET M 1
tR - (Mol)t (813)

and
tKR - ( M10)2
MY[—M™ + (2ma,/i*k) DET M]

respectively. Equation (81a) and Figs. 1 through 3 can be used to show
that 7z~ must pass successively through 0(mod =) when M® is zero,
through (={2)(mod ) when M® is zero, and through 0(mod =) when
M + (2ma,/h*k) DET M} is zero and that these three locations are all
very near to k = 0.57a,7". Notice that at the zeroes of M®! and M®, 7 =
equals 7z° but 7" has additional spurious behavior due to an extra zero
of the denominator. This is not accidental; we can expect the zeroes of the
three factors in #z= will often occur near each other near & zero cigenvalue
of M™. A similar analysis holds for Fig. 5a and ™.

Note that Figs. 4c and 4b show that ne= and 7y exhibit spurious
structure near k = 0.30a~*. These are attributed to unphysical zeroes of
the numerators in the formulas for ¢ X and 15,5 The former has a zero
numerator near kK = 0.299245a,~, and the latter has a zero numerator
near k = 0.299270a,%. In this region (0.299245a, < k < 0.299270a,7")
the background phase shift has a value of 0.5018w, and passes smoothly
through /2 near k = 0.30160a,L. The zero numerators mentioned above

(82a)
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Fig. 5. (a) Phaseshifts 95 and n ¥ (in radians) and first-order correction A g F (in
radians) as functions of wave ber & (in atomic units) for the potential scattering
problem of Section II. The range of the abscissa is chosen to more clearly illustrate
spurious structure shown in Fig. 4b. (b) Phase shifts 5z%and n5X (in radians) and first-
order correction A X (in radians) as functions of wave number k (in atomic units) for
the potential scattering problem of Section II. The range of the abscissa is chosen to
more clearly illustrate spurious structure shown in Fig, 4c.
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cause 7z~ and nMNK to increase to a value of m(mod =) near k =

0.2992454,! and k = 0.299270a,™, respectively. Then v and 7%
increase to the background phase shift (mod =) for k a little larger than
0.30160a,72. A plot of Ag® or A,® with a more expanded ordinate
would show a discontinuity where A changes from 0.49827 to —0.50187.
It is interesting to note that these variationally corrected phase
shifts have spurious structures but their zero-order counterparts remain
smooth throughout the region. Also note that nz< and 7,S do not
attain the value of =/2 in this region.

The quantity 0.4 appearing in Tables I-IV is discussed in Section ILL

Table I illustrates the behavior of several of the computed tangents of
the phase shifts near E;°. We see that in all cases the results vary smoothly.
This smooth behavior is a result of the fact, which has been discussed,
that the pseudoresonances and pseudoantiresonances do not occur at zero
eigenvalues of M™ but rather “nearby” where M/ elements havecorrelated

TABLE I

The Values of det M™, DET M, M®, M® M1 and the Tangents of the Phase Shifts as Cal-
culated by Various Methods Discussed in the Text for the Potential Scattering Problem
of Section II. Values of ¥ Were Picked so That the Incident Energies Bracket an Eigenvalue

of the Bound-Bound Matrix H™. Energies are in Hartrees and k is in gy~!

k 0.26436165 0.26436170 0.26436175 0.26436180
det M 8.0189211(—23)* 3.2692534(—23) —1.4803981(—23) —6.2300675(—23)
DETM 2.3254257(+2) 5.7038538(+2) —1.2596558(4+3)  —2.9932065(+42)
M® —5.7978167(+5) —1.4221058(4-6) 3.1405237(4-6) 7.4625612(+4-5)
MO ~5.5541916(-++4) —1.3623467(45) 3.0085495(-+5) 7.1489513(+4)
Mu —5.3208168(4-3) ~1.3051001(+4) 2.8821199(+4) 6.8485076(+3)
15° —10.438632 —10.438648 . ~10.438664 —10.438680
ik —10.107992 —10.108008 —10.108012 —10.108028
tx®  —10.118143 —10.118159 —10.118164 ~10.118180
tg? —10.118053 —10.118069 —10.118074 —10.118089
15° —10.438633 —10.438648 —10.438664 -—10.438680
tz? —10.118143 —10.118159 ~—10.118164 —10.118180
% —10.107992 —10.108008 —10.108012 —10.108028
1y b b —10.437435 —10.436164
tp° —10.438633 —10.438648 —10.438664 —10.438680
red —10.118053 —10.118069 —10.118074 —10.118089
tax® —10.438633 —10.438648 —~10.438664 —10.438680
tux® —10.107992 —10.108008 —10.010801 —10.108028
tux®  —10.118143 —10.118159 —10.118164 —10.118180
tan™¥ —10.118054 —10.118069 —10.118075 —~10.118090
(GHN —10.118054 —10.118069 ~10.118075 —10.118090
ter®  —10.438624 —~10.438645 —10.438666 —10.438686
tel® —10.107985 —10.108001 ~10.108017 —10.108033
tyx® —10.438633 —10.438648 —10.438664 —10.438680
tux®™ —10.107988 —10.108002 —10.108017 —10.108031
raAF  —10.118143 —10.118159 —10.118164 —10.118180
toar —10.118054 —10.118070 -—10.118074 —10.118090
texact —10.116471 —10.116486 —10.116500 —10.116515

2 Numbers in parentheses are muitiplicative powers of 10.
b Complex (nonphysical) tangent.
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TABLE I
The values of det M™, DET M, M%®, M®, MY, and Tangents of the Phase Shift as
Calculated by Various Methods Discussed in the Text for the Potential Scattering Problem
of Section II. Values of k were Picked Such That DET M Passes Through Zero asa
Function of Momentum. Energies are in Hartrees and k is in a1

k 0.5675 0.5700 0.5725 0.5750
det M1 —3.0274153—16)* —3.0459831(—16) —3.0643175(—16) —3.0824155(—16)

DET M —6.4422255(—6) —3.2612590(—6) —6.5297276(—8) 3.1459858(—6)
Mo 2.7988344(—3) —1.0242731(—3) —4.8290998(—3) —8.6162553(—3)
M*  —1.3655824(—3) 4.8366802(—4) 2.3512792(~3) 4.2372438(—3)
M 1.3680930(—1) 1.3753433(—1) 1.3824325(—1) 1.3893592(—1)
tx° 2.0495537 2.1177192 2.0538181 2.0334575
txX 2.0842025 2.0687764 2.0536189 2.0387227
tx® 2.0842025 2.0687764 2.0536189 2.0397227
tg” 2.0842025 2.0687764 2.0536189 2.0387227
tx® 2.0495537 2.1177192 2.0538181 2.0334575
tg® 2.0842053 2.0687745 2.0536189 2.0387225
te® 2.0836292 2.0676165 2.0536189 2.0387089
ty 2.0842024 2.0687764 2.0536189 2.0387227
° 2.0833340 2.0683340 2.0536100 2.0391558
tF 2.0842025 2.0687764 2.0536189 2.0387227
tun® 2.0840331 2.0686938 2.0536173 2.0387965
tax® 2.0842025 2.0687764 2.0536189 2.0387227
tun® 2.0842025 2.0687764 2.0536189 2.0387227
tag™¥ 20842025 2.0687764 2.0536189 2.0387227
1 2.0842025 2.0687764 2.0536189 2.0387227
12/° 2.0621128 2.0444639 2.0271283 2.0100965
te/X 2.0839707 2.0684931 2.0532800 2.0383245
tarn® 2.0777692 2.0626769 2.0478431 2.0332608
taraX 2.0841835 2.0687589 2.0536028 2.0387078
[l 2.0842025 2.0687764 2.0536189 2.0334575
toar 2.0842025 2.0687764 2.0536189 2.0387227
fexsct 2.0842069 2.0687798 2.0536219 2.0387254

& Numbers in parentheses are multiplicative powers of 10.

zeroes. It is especially interesting that #,,y°, which at the eigenvalue is
yarris, Varies smoothly in this energy region. It is also interesting to note
the much greater accuracy of the variationally corrected results when
compared to the zero-order results.

Table I also illustrates (110). In addition it shows that 75° may be added
to the list in that equation.

Table 1I illustrates many of the computed tangents of the phase shifts
near a zero of DET M. This provides an illustration of (87) and (133). In
addition it shows that 1,7, 1o 45, and £3%" may be added to the lists in
those equations.

Table III further illustrates the possible accuracies attainable by the -
various methods. Note that much more accurate values are obtained from
variationally corrected results than from zero-order results. In particular,
if the Kohn, Rubinow, Percival, minimum-norm, or Euler integral
methods or the method of moments are used without a variational
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correction to ¢, one finds a larger basis set is required than for variation-
ally corrected calculations. That is, zero-order calculations converge
slower than first-order ones.

Note that neither the Fuler integral method nor the method of moments
eliminates pseudoresonances and pseudoantiresonances. Table I1I gives
values of 75;® and 1;7,,° obtained as discussed above. The resuits were
corrected using (24) to give an indication of the error. The comparison
of tx® and tar° to f3y° iS particularly interesting since these three
methods are all zero order. Of these three methods #,;° is much worse than
the other two. Table IV compares some of the methods as a function of the
number of square-integrable basis functions. At the energy shown (and
at other energies we have examined) ¢x,° converges poorly whereas #,7°
converges very well. It is interesting that 1g /~ is often accurate when 75,°
is very inaccurate.

Table IV shows that in general the variationally corrected results
converge much faster than the zero-order results. However, all the
methods except the Euler integral method yield tangents that converge
to within 7 X 10-5 of the exact tangent of the phase shift at n = 14 (not
shown in table).

It is of interest to compare the Born approximation results with the
results obtained by the algebraic variational methods with 7 = 0. The
Born approximation uses the trial function S,(r). Thus t5° = 0 and the
Born approximation result tzX is computed from the one integral Mgs.
At k = 0.55a,~1, this method yields t5X = 0.99547511. The table shows
that all the other methods, even with n = 0 are superior to the Born
approximation. In comparison of the computational effort required note
that the Born approximation requires the evaluation of one free-free
integral, the zero-order Kohn method requires two, and the variationally
corrected Kohn method requires four. With n = 0, the algebraic varia-
tional methods are much more sensitive to the choice of C,(r) than with
large n. As n is increased the choice of C,(r) becomes less important.

As the size of the basis set is increased the widths of the regions affected
by spurious singularities become smaller and eventually go to zero in the
limit # — oo. At any given energy the calculations eventually (as 7 is
increased) converge monotonically (a bound principle becomes applicable)
to the exact answer. These and other details about bounds and con-
vergence may be found elsewhere. 1435665

1. The Optimized Anomaly-Free Method

One possible difficulty with the anomaly-free method was pointed out
in Section IT.H. Another difficulty is that the calculated phase shifts are
not continuous functions of energy or of changes in the parameters in
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the basis set. Nesbet and Oberoi*®*® have proposed a method they call
the optimized anomaly-free method which is supposed to cure some of the
difficulties of the anomaly-free method. It is formulated in such a way that
it gives no pseudoresonances and no pseudoantiresonances. Some results
computed by their formulas are included in Tables 1 through IV as fov-

J. The Minimum Variance Method and the Least-Squares Method

Recently Bardsley et al.® have proposed calculations based on mini-
mization of the variance integral

Ux®) = f dr W(PALX SO (157)
0
or the variance sum

Ur(X)) = iZIW(ri)LzX DI (158)

where w(r) is an arbitrary weighting function. Earlier Miller®® had con-
sidered (157) with the special choice w(r) = 1. U(X;?) and Ugr(X\®) are
nonnegative; these schemes have the advantage of containing an internal
criterion by which one can choose between two different basis sets used for
X9, that is, one chooses whichever of the two basis sets leads to a lower
value of U(X®) or Ug(X"). The minimum-norm method also has this
ability to choose between two different basis sets; that is, one chooses the
basis set that yields the lowest eigenvalue of the matrix Q. The methods
of the Kohn and Rubinow type also have a criterion for choosing between
basis sets; that is, one chooses the basis set for which |DET M | is smaller,
or for which the variational correction to the phase shift is smaller. This
criterion, however, is not quite as satisfying as the criterion of minimum
variance or of minimum eigenvalues of the matrix Q since the latter
converge monotonically as additional basis functions are added but
{DET M| and the corrections to the phase shift do not.

Ladanyi et al.®® have considered a generalization of the method of
moments based on use of the trial function

X00) = aa’S4) + 0 Cl) + Zeln) (159)
with
(o)’ + (") = 1 (160)

and minimization of
2

WY =3 ‘ f ® drw LX) (161)
=0 0




ALGEBRAIC VARIATIONAL METHODS FOR SCATTERING 249

They call this the least-squares method. This method has a number of
features in common with the method of minimization of the variance
integral.

K. Methods Involving Artificial Channel Radii

Another way to do scattering calculations by expanding the wave
function in basis functions is to divide all space into an internal region and
an external region. The wave function is expanded in a set of square-
integrable basis functions in the internal region (r < a, where a is the
so-called *““channel radius’”) and in terms of functions like S, and C, in the
external region (r > a). The boundary is chosen so that the potential is
zero or simple for r > a. Thus the difficult part is to solve for the wave
function in the internal region, and for this part we can use techniques
similar to those used in bound-state problems. Eventually the solutions in
the internal and the external region are matched. Techniques that incor-
porate such an artificial “channel radius’ are very popular in nuclear
physics and are here called artificial channel radius theories.

The oldest of the artificial channel radius theories is the theory of Kapur
and Peierls.®” The most popular of the artificial channel radius theories is
the derivative matrix technique of Wigner and Eisenbud.®® The derivative
matrix is often called the R matrix (it should not be confused with the
reactance or reaction matrices; to avoid this confusion we call it the NR
matrix). For single-channel scattering itisa 1 X 1 matrix (i.e., a number).

In the derivative matrix method one uses in the internal region the set of
n basis functions u,,(r) which have been orthonormalized as follows

a .
Ldr”li(r)”li(r) = 61':' i:] = 1: 2’ N, (162)
and which satisfy the boundary conditions
:uli(o) =0 i=412,...,n (163)
a__dmy .
. — L =p j=1,2,...,n (164)
@) dr lr=a

where b is a constant.
Then one diagonalizes the matrix H**' where

. 2 12
s = [ annto [— E 4 v+ wjmﬁ) (165)

2m dr® 2mrt

to obtain the eigenfunctions

wu(r) = Z St 1) (166)
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and eigenvalues Ey. Note the diagonalization must be done only once,
not at every energy. The solution at given energy is expanded in the
internal region as

X = g Axwylr) (167)

where we have suppressed a subscript / on 4,. To determine the coeffi-
cients we require

[
f dru (NLX (D) =0 j=12,...,n (168)
[
which, using integration-by-parts twice and (165) through (167), yields
ax;’
X,%a) = NR [a p Lo~ bX,"(a)] (169)
r ir=a

where NR is the element of the derivative matrix and is given by

_h_e_ ) & W@

NR = 170
(2ma k=1 E"‘ - E ( )

The most common practice in derivative matrix theory is to use in the
external region a linear combination of an incoming wave I,(r) and an
outgoing wave O,(r) satisfying complex boundary conditions. However,
the theory has also been stated in terms of the more convenient functions
satisfying boundary conditions like (43) and (44). Thus we assume that
in the external region

X = L) + 1€ (171)
where &, (r) and €,(r) have the asymptotic forms
Fr) ~ ag"%krj(kr) (172)
€r) ~ ag*kré (kr) (173)
and in addition satisfy e
L& =0 179
L% =0 (175)
in the external region. Comparing (171) to (169) yields
d
&(a) — NR [a —jﬁ - b7 ,(a)]
Y lr=a

+ t,°{g,(a) — NR [a df—‘

— bfg,(a)]} =0 (176)

r=Q

s
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which can be solved for #,°. The derivative matrix method has the ad-
vantage of requiring no free-free integrals but the disadvantage that the
square-integrable basis will probably have to be very large. This dis-
advantage results from the fact that the square-integrable basis must be
used to expand the scattering wave function in the whole internal region
but the channel radius may have to be large.

An alternative method of derivation of the derivative matrix method
can be given®®® which shows that the variational correction to t® com-
puted from (176) vanishes and that #,° is stationary with respect to varia-
tion of the coefficients in the trial wave function. These properties are not
obvious in the usual type of derivation (such as given above).

However, the derivative matrix method still has an important dis-
advantage,'®%7 pamely, that the wave function has a discontinuous
derivative at the channel radius. The method converges to the correct
answer and the discontinuity vanishes as the number of basis functions is
increased but in practical calculations the finite discontinuity in the
derivative is undesirable.

A method that has a number of the derivative matrix method’s ad-
vantages, including division into internal and external regions and
variationally correct results, has been proposed by Crawford.™ Crawford
uses an analogue of the Kohn variational theory in which the surface terms
in the derivation of the variational expression are calculated at a finite
channel radius rather than in the asymptotic limit.%® In this method in the
external region we write
ma,

1/2
X00) = ( - ) [T () + 2’ i(7)] a77)

where &,(r) and €,(r) are defined by (172) to (175). Note that the X,°(r)
of (177) has different units from all our previous X,°(r) and that

0
£ =5 (178)
o
Then the expression °
/] h
(E) oty = —J(X;") + (E) ot (179)
where
a0 = [ arxSLX) (180)
0
is stationary under a variation that preserves o, that is,
ot,

ﬁ = (181)
n
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Note that (178) and (179) are equivalent to (24) except that we have
changed the normalization. In the interior region we expand

X' = ; cmir) (182)

Now we require continuity of the trial function and its first derivative at
r = a, that is, '

fma, 1/2 ° °
C) mes@ + @) = Temla) (189
mag\/? d¥ d¥¢ dn;
(‘iaf) [“'““ U bt M] N ,Z‘fd—? I
These two equations can be solved for
%y = E Broic: (185)
and '
oy’ = 2 Buc; (186)
where !
h \/*rd¢@, dn;
;=== |—n{r) — €(r)— 187
b= (o) |0 —S03t]| L a®)
and
h \3rd%, dn;
=) | - &L 188
u (kma(,) [dr () () dr] r=a (188)

In deriving this result we use the constancy of the Wronskian of the
external solutions &,(r) and %,(r), that is,

d

d¥, .
yl(r) - g;(r) = _k (189)
dr dr

We can rewrite (185) and (186) using the row vectors ;5 and B,; and the
column vector c as

a? = Broc (190)
ap® = Bue . asy
Then we can write the stationary expression as

2
Z,: BuocitiBric; = — (;) gc,-c L™+ Ej BuoiciBnic; (192)

where

L= f “drm ML) (193)
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The matrix equivalent of the stationary expression is thus

c'Byo'1,B1c = c'Be (194)
where the dagger indicates the transpose matrix and
B=—(3)um+ Bo'ea (195)

The stationary value of 7 is given by (194) when the coefficients c; are such
that the right-hand side is stationary with respect to all variations of ¢,
subject to the constraint oy’ = S Bioic:- Thus we introduce a Lagrange
multiplier 4 and consider i

J(X®) = c¢'Be + APye (196)
Requiring
’ 0
or(Xy) =0 197
dc;
yields
c'B = —1B), (198)
that is,
Ble = —1B,' (199)
that is,
c= —ABY"B, (200)

Assuming B is symmetric we then find that the stationary value of ¢
satisfies

1,8, B0=B (201)
That is,
t, = (BB Bn"* (202)
Using (190) and (200), that is,
o’ = ("A)pw(B_l)Bmt (203a)
= (=1 ' (203b)
we find 4 = —#,0,,". (Thus we can find 4 for any choice of the arbitrary

a,,.) This method will be called the Kohn-Crawford procedure.

Oberoi and Nesbet™ have suggested a modification of the Kohn and
Rubinow methods in which the functions S,(r) and C,(r) are replaced by
&(r) and G ,(r), respectively, for r 3 a. Oberoi and Nesbet call these
functions numerical asymptotic functions. The functions are still to be
arbitrary at small r except for the zero value at the origin. This procedure
simplifies the free-free and bound-free integrals and has similar ad-
vantages to the Kohn-Crawford procedure.
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L. Methods Involving Only Square-Integrable Basis Functions
but No Artificial Channel Radii

There are many approaches to the treatment of resonances in which one
approximates the scattering wave function in the resonance energy region
by a square-integrable function. Recently some methods have been pro-
posed for treating scattering problems in resonant or nonresonant energy
regions by doing calculations involving only square-integrable basis
functions. Schlessinger and Schwartz™ proposed solving the scattering
problem by solving a nonhomogeneous modification of (3) for negative
energies and using rational fractions to extrapolate the partial wave
contribution to the scattering amplitude to positive energies.

Reinhardt and co-workers™ have proposed that a square-integrable
basis set be used to calculate the Fredholm determinant for complex E
and that rational fractions be used to extrapolate it to the real axis. The
phase shift can be calculated from the extrapolated determinant. This
method is closely related to the methods of Schlessinger and Schwartz,
but appears to have some advantages. Doolen et al.™ have proposed yet
another way to use complex variable analyticity to calculate scattering
amplitudes, namely the rotation method involving complex coordinates
and complex energies.

M. The Schwinger Variational Method

Another of the standard variational methods of scattering theory which
can be applied using basis functions is the Schwinger variational
method.”®7” This method can be used in an algebraic variational calcula-
tion with a trial function of the form (40) or with a trial function that does
not even satisfy correct scattering boundary conditions, for example,
a power series.” It has the disadvantage that it requires more complicated
integrals than any of the methods discussed so far; that is, it requires
integrals involving the Green’s function. This is the reason it has received
Jess attention. Kato*” and Schwartz™ have given different methods for
climinating the integrals involving the Green’s function. Kato’s method
introduces different complicated integrals and Schwartz’s method involves
a special choice of trial function. Overall, the Schwinger method still
appears to be less well suited to algebraic variational calculations than the
methods considered above.

N. Other Methods

Maliks! has introduced a variational method that is identical to the
Kohn method except that (49) is replaced by

° 2m

1/2 pon .
10 = — | g X Ar)Ly(kry ikr) (204)
Bk Jo

~_
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John*? has considered methods in which various new combinations of
n + 1 of the sets of n + 3 equations (48), (50b), (49) or (54), and (204) are
_. used. Calculations®? indicate these methods are generally in good agree-
ment with the Kohn, Rubinow, and Hulthén methods.
Knudson and Kirtman® have presented a variation-perturbation
treatment of scattering in which the Hulthén method is used to obtain
X 0. This causes the first-order correction to the phase shift to vanish (as
discussed above). Knudson and Kirtman consider the second- and third-
- order corrections to the phase shift.
Kohn®® has considered the scattering variational principle in momentum
space.

jLIN MULTICHANNEL SCATTERING
A. Introduction

For scattering of composite particles we use multichannel scattering
theory. For such problems we must determine the dependence of the wave
function both on the internal coordinates of the composite particles and
also on the coordinates that describe their relative motion. These two
dependencies are coupled. Most of the variational methods for central
potential scattering discussed in Sections I1.C, 11D, and ILF through
ILN can be extended to treat the relative motion part of the multichannel
scattering problem, and many have been sO extended. Coupling each
of these treatments to the former part of the problem (i.e., with the
treatment of the internal motion) can be done in a large variety of
ways, leading to an even larger number of ways in which the
combined problem can be solved. Many of the carliest treatments con-
sidered only special choices of trial function or considered only special

, cases, for example, problems involving only two channels. In this section

“—~  we consider some of the more general and systematic formalisms that can
be applied in 2 straightforward way to a large number of multichannel
scattering processes. (The very earliest work on multichannel algebraic
variational scattering calculations in chemical physics was carried out by
Huang® and Massey and Moisciwitsch.?? In these calculations only one
channel is open. Massey and Moiseiwitsch®>® were the first to treat a case
in which more than one channel is open. Reviews of the early work were
provided by Huck® and Mott and Massey.*)

B. Wave Functions and Kohn, Rubinow, Minimum-Norm,
and Anomaly-Free Methods

The wave function is expanded in eigenfunctions of total angular
momentum, and (as in single-channel scattering) each total angular
momentum may be considered separately. In a multichannel scattering
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calculation with N open two-body channels of a given total angular
momentum, the component of the wave function with that total angular
momentum has the asymptotic property (we restrict ourselves to the case
where there are no open three-body channels)

'/’"r_'j %1 Y (rofi=) (205)

where e
Yip(r) = toipAio(rs) + t1ipAn(r) (206)
H(z)f(x,) = E.f(=) (207)

and the channel Hamiltonians H, are defined in terms of the total
Hamiltonian H by

H(z)) = lim [H(r;, z;) — T(r)]} (208)

{0

where T(r,) is the kinetic energy of relative motion in channel i. In channel
i, r, is the radial coordinate of relative motion of the two subsystems, Z;
denotes the collection of the remaining coordinates in the barycentric
Hamiltonian in that channel, and f;(z,) are the eigenfunctions of H,(x,),
that is, the “internal eigenfunctions.” The “free functions” A, and A,
have the asymptotic properties

Au(r) ~ rilag % sin 0, (209)

ri—t oo
An(r) ~ r'ag"? cos 0, (210)

where e
0, = k;r, — 3w — v, In 2k;r; + o, @11

1, is the orbital angular momentum of relative motion in channel i, k;
is the wave number wave in channel i, that is,

k‘i = ﬁ—lyl-v,- (212)
p, is the reduced mass, and v, is the velocity for relative motion in channel
i, that is,
E — E)Ve
o, = [ZS__L)] @13)
My
v = _Z_-:’."__ZB" 214)
k;
Z,4 and Zy are the charges on the subsystems »in channel i, and
o, =argl'(/; + 1+ ;) (215)

[Sometimes it is convenient to add a factor of 72 to the right-hand sides
of (209) and (210). We do not do that in this article.] The problem is to

;
S’
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approximate solutions to the Schrédinger equation with boundary con-
ditions (205) and to examine the Y, to find {op;n}. From the latter quanti-
ties we can find the approximate reactance matrix and hence the approxi-
mate cross-sections. By using numerical techniques we attempt to make the
differences from the exact reactance matrix elements and cross-sections
as small as desired.

One approach to solving this problem is the eigenfunction-expansion
method (also called the coupled-channels method or the close-coupling
method). In this approach the wave function is expanded as

o P
y=2X i (r) f() (216)
where
Xip(r) ~ Y, (1) ' 17
ri—>w

or X,°(r;) may- be square-integrable. The superscript 0 indicates a trial
value or a quantity appearing in a trial function. Coupled differential
equations®®1%

P
E[Hijo’ —E 51,]X,po(rj) = 0 i= 1, 2, e ey P (218)

=1
Hyn = [ o, S Eord [l (218a)

for the X,? are derived by requiring that (H — E)y*’ have no component
in the space spanned by the {f;(z,)},*. The same differential equations may
be derived by considering the Kohn variational functional®14:26

(] 0
L,=(y"|H — E|y*) (219)

and using the Kokn variational principle for the reactance matrix elements
to require that there be no first-order corrections to the approximate
reactance matrix elements under point-by-point variation of the X;,0(r;).
In the case where rearrangement channels are included in the expansion
(216), that is, when all r; are not the same, the differential equations
become integrodifferential equations. If the set of eigenstates of H,
included in the trial wave function expansion includes at least all the open
channels, then the minimum principles®®1%8:1% first developed by Spruch
and co-workers may be applied. In the most useful version of these
principles, one proves that the sum of the eigenphase shifts increases
monotonically as the basis set is increased. Notice the difference of this
minimum principle from the bound principles of single-channel scattering.
In single-channel scattering we are concerned with bounding errors caused
by approximations to the continuum wave function X,(r). To use the
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Spruch-type minimum principle, however, we must solve for the continuum
functions X;,(r;) by essentially exact numerical techniques and one is
concerned with errors caused by approximating the target part of the wave
function. In algebraic variational methods we desire to avoid the numerical
integration of (coupled integro) differential equations and thus the Spruch-
type minimum principle is not directly applicable. We return to this point
in Section IILE below.

Note that for scattering processes involving identical particles all the
ap;, are not independent. If channel j is related to channel i by a permuta-
tion of identical particles then a,;, = *ap,;,. Thus for example, in
electron-hydrogen atom scattering where we may assume ;’he nucleus is

infinitely heavy so r, = %; and r, = %,, we use (I & Pio) > X, 0(r) fi(r2)
=l
where zfrhe permutation operator Py, interchanges r, and r, rather than
using 3 [X,0(r)firs) + X¥1i5(r)f(rp)]. In this way we include all the
=1

arrangement channels but do not increase the number of independent
coefficients «;,. In a similar way (for any scattering problem) we can
multiply any trial wave function considered in this section by a projection
operator or permutation operator to enforce correct permutational
symmetry.!'! We do not include these operators explicitly in the equations
but it can be done when necessary.

In general, the number P of open channels included in the trial wave
function expansion must be equal to or larger than the number N of open
channelsfor the expansion (216) to yield an accurate approximation. In some
cases, especially where rearrangements are possible, letting the expansion
(216) include all square-integrable internal eigenfunctions of all two-body
channel Hamiltonians does not yield an accurate approximation. Rather
than include continuum internal eigenfunctions in (216) which leads to
difficulties in satisfying the scattering boundary conditions,"'? two
alternative approaches have been used. One approach*~*%5 js to add terms
of the form Z,,(r,)g,(z,) to the expansion where g, are square-integrable
but are not eigenfunctions of H; and are not necessarily linear combina-
tions of square-integrable eigenfunctions of H, These states are called
pseudostates. The other approach, the correlation method!¢?* of
Gailitis, Burke and Taylor, and Miller, is to use an expansion of the form

o P M
Y = E;X,-,,o(r Df=:) + Zlcm,Wm(r A (220)

A= m=
where the W, (r;, ;) are square-integrable functions added to make the

basis set complete. The W,(r;,x) are called correlation functions.
Miller220 and Hahn'22 showed how to use a trial function like (220) to treat
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rigorously rearrangements of particles with arbitrary masses without
using projection operators. (Their procedures are incorporated into Sec-
tions III.C and 1IL.D below.) Note that the two sums in (220) are not
orthogonal. Requiring that (H — E)y*" have no component in the spaces
spanned by the {f;} and the {W,,}, we can derive a set of coupled algebraic
and (integro) differential equations for the c,, and X,.°%(r;). Using pro-
jection operator techniques'* we can derive an exactly equivalent set of
equations in which the effect of the correlation functions is merely to add
extra nonlocal potential matrix elements to the H,; in (218) for the
X,,%(r). The same (integro) differential equations, containing the extra
potential terms, for the X, °(r,) may be derived by considering the Kokn
variational functional (219) and using the Kohn variational principle for the
reactance matrix elements to require that there be no first-order correc-
tions?* to the approximate reactance matrix elements under point-by-point
variation of the X,,°(r) and variation of the coefficients c,,. When at
least all the open channels are included in the sum over iin (220), it can be
called the generalized variational bound method because of the minimum
principle which is then satisfied.11¢-120.122

The Hulthén, Kohn, and Harris algebraic variational methods of
potential scattering theory were extended to elastic scattering of composite
particles using a trial function like10-11.37.38.39.184-127

0 M
¥ = Y, (A=) + Zﬂlcme(r.', z;) (221)

We next consider algebraic variational methods that may be systematically
applied to elastic and inelastic scattering.

Harris and Michels'®.1® have considered a trial function of a form closely
related to (220). They considered the trial function

o P M
'P’ =§1 Y;po(r i)ft(xt) + mzlcmpwm(r £2] xi) (222)

and they specifically chosc the first sum in (222) to be orthogonalized to
the second sum. Whereas in (220) the X,,(r,) are subjected to point-by-
point variation, in (222) the Y,,(r) may be varied only in the sense of
using various coefficients ao,,, %1, [sc€ (206)]. Harris and Michels solve
for trial-function values of gy, 14y, aNd €., b requiring that (H — Eyp*
have no component in the space spanned by the {Wa(rss z)h™ and by
minimizing the components of (# — E)p* in the spaces spanned by the
{A(r)fi@)}T and the {A,(r)fi(@dh" . Thus this part of their procedure
is a least-squares method in the general sense of the term. Then they
substitute this trial function into the Kohn or Rubinow variational
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principle for the reactance matrix elements to obtain improved estimates'*
of the «g;, and a,,,. In Section IIL.C we illustrate multichannel algebraic
variational techniques by using the Kohn and Rubinow variational
methods® to solve for the coefficients in the trial function (222). Then we
substitute the trial function into the Kohn and Rubinow variational
principle®1* for the reactance matrix elements and the reciprocals of the
reactance matrix elements, respectively, to obtain improved estimates of
the wo;, and oy, A further difference in Section 11I.C as compared to
Harris and Michels’ work is that we do not require orthogonality in the
two sums (see also Appendix 1). The procedure of Section II1.C is appli-
cable to both nonrearrangements and rearrangements.

Recently Nesbet!* considered conversion of the close-coupling method
including only open channels [see (216)-(218)] from a problem in coupled
differential or integrodifferential equations to an algebraic problem by
rewriting the trial function (216) as

P P ni
v =3[ + 3 cunited | e 223)
i= -

Then the point-by-point variation of the functions X,%(r,) is replaced by
the variation of the coefficients c,,’, %;,’, and a;;,’. Nesbet used the Kohn,
Rubinow, and anomaly-free variational methods to solve for the coeffi-
cients in the trial function (223). He then used the Kohn, Rubinow, and
anomaly-free variational principles to determine improved values of
toip and ay,,. Note that the anomaly-free method is just a choice between
the Kohn and Rubinow methods based upon a criterion given by Nesbet.
This type of treatment was extended easily!” to include closed channels,
that is, to use the trial function

° P Q =i L.
PR AV ORSPXRACH (224)

where @ > P. In Section II.D we consider the conversion of the correla-
tion method for nonrearrangement or rearrangement scattering [see
(220)} from a problem of coupled differential or integrodifferential
equations to analgebraic problem using the Kohn, Rubinow, and anomaly-
frec variational methods. The extension of these variational methods to a
correlation-type trial function has also been considered by Nesbet and
Lyons'?® and Chung and Chen. 180131

The above discussion and references should make it clear that the
methods presented in Sections 111.C and III.D depend especially on the
earlier developments of Gailitis, Burke and Taylor, Miller, Harris and
Michels, and Nesbet.
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C. Application of the Kohn Variational Method to the Harris
and Michels-type Trial Function
We first consider the case where
Uosp = Oggp = by Lp=12,...,P (225)

where the first quantity is the exact value of «,,, and the second is the trial
value of o,,,. Then by the definition of the reactance matrix, it is given
by132

or

R = Vg v-1/2 (226a)

o2
Ry = (v-) oy Lj=1,2,...,P (226b)
1

where V,, = v, é,;. Note that i is the final channel and j is the initial channel.
Since the reactance matrix is real, we restrict a,,; to real values. We now
consider the variational determination of the coefficients o};, and c,,,, in
the trial function given by (222), (206), and (225). Under variation of all
the o4, Xyies Cmpr N € (= 1,2, ..., Psm =1, 2,...,M),the Kohn
variational principle for the reactance matrix elements in the form in which
it is commonly used (see, for example, Refs. 91, 97, 117, 119, and 15) is

h
6[1?0 - (E_Zz)a‘l)ml] = 0 p: q = 1’ 21 L] P (227)

0
That is, the stationary value of «,,, is
2a,

E,T) (I, (228)

where the superscripts 1 and 0 denote variationally corrected and trial
values, respectively. In the methods using point-by-point variation
(functional variation) of the X,,°(r,) one sets I, equal to 0 by requiring
the X,,°(r) to satisfy (integro) differential equations,®-97:117:11%.120 For
example, if the trial function is (216), the (integro) differential equations
are (218).2-%7 In that case a},, equals og,,; that is, the variationally correct
reactance matrix elements are given directly by the asymptotic form of the
trial function. In the algebraic variational methods, such as the one
considered here, we do not make the correction to the trial reactance
matrix elements vanish completely. Following the Kohn variation method
we note that the stationary condition (227) is satisfied with respect to the
restricted functional form of the trial function when

1 __ 0
‘lma—“lpa_(

aIM_:O r=p4q
0C,r pgq=12,...,P
m=12...,M

(229)
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and when
oy _ i,

i:p’q=1’2,-'-aP

(6{1:65«)

, 230
aﬁg“- 200 J=Dq ( )

Using these equations to determine values for the parameters a‘l’,,,, we can
then use (228) to obtain an improved approximation. The use of (229)
and (230) to obtain values of a particular coefficient «f,, proceeds as
follows:

Le= L % + 5% 4+ ICF" 4 ,0°C (231)
where
L"F = _Zi<Y.~p°f.~| H — E Y1) (232)
IquF = z{cmp*<wm| H—E IYiq(y» (233)
I’QC’C' = Z Cmv‘cna<wm| H—-E IWu> (234)
Then requiring 91,,,/0c,,,* = 0 yields
2 Wl E — H| Wpyeng = 3 (W, | H— E |Y,f)) (235)
m=12,..., M
g=12,...,P
Or in a more compact notation,
IMCF = 2 Cmp*qu (236)
Imcc = —Z cmm*cmern (237)
where
Jna = 3 (Wal H — E Y (238)
and
Non = (Wol E — H [W,) (239)

Then requiring d7,,/0¢c,,,* = 0 yields

z NonCne = I ma m
* q

[

L,2,....,.M (240)
1,2,...,P

or
¢c=N7J (241)

Notice that, although we obtained (240) by the Kohn variational principle,
the result is the same as if we had arbitrarily required (H — E)y* to have
no component in the space spanned by the {W,}. Substituting (241) into



ALGEBRAIC VARIATIONAL METHODS FOR SCATTERING 263
(231) yields
Lo = 1" + 2 (N D)y g + 2 (N D) gl s?
— 2 (N3 (N7 9)poNmp (242)
= L7+ 23 (N Dm0y e "

- z (N_l)mo*‘] ov*(N_l)-nrJraN mn (243)

mnor

Now the last term of (243) is equal to

- Z (N—l)mn*" o»*‘smr', rq (2443)
mor
= —g (N-l)om‘lop*‘]ma (244b)
Therefore,
Lo=L"F + 2 1" (Nt ma (245)
= g. (Yo fil MY (246)
where

M =H—E — 3 (H — E) W)Wl (H — EY™ |W,)(W,| (H — E) (247)

Alternatively from (206), (225), and (246) we obtain

Lo =M," + 3 M, o + Y o, M0 + T i M, ody, (248)
i 7 i

where .
Muw = <A1¢%| M |Ajﬂof 1) (249)
with «, § = 0, 1. Note that
ol .
3ocm = 0y (Mmm + gM{kua‘l,ka) + qu(M o+ g Mkiuagh:) (250)
147

Now (230) requires 8/,,/8a,,, = 0 for p 5 q which yields
2 Mylag, = =M’ q#p (251)
k
Further we include the case p = g by using, again from (230):
g _ Fivg . (252)
0ad;,  2a,
This yields
h

v
6M(Mi¢10 +3 Mikna?ka) + M, + X My Magy, = (Ej o, (253)
% P
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Butt

hv.
M5 — M, = (—”) 8y (254)
2a,
and
Mkiu = iku (255)
Thus (231) becomes
1+ 8,0 (M + 3 My8,) =0 (256)
k
Equation (256) is not different from (251) so we can write for all / and j:
g Mikua‘l)k.i =—M ”10 (257)
or )
o’ = —(M")"'M*° (258)

This equation can be solved for the trial coefficients «3;,. (These can be used
with (206) and (241) to calculate the trial {c,,,} if it is desired to use the
trial wave functions. If one wants only to calculate the reactance and
scattering matrices, then one need not explicitly obtain the {c,,}.) Equa-
tion (258) may now be substituted into (248) to obtain

I =M% 4+ M%,° (259)

Now (258) and (259) can be used on the right-hand side of (228) to obtain
an improved estimate of a;. Then (226) can be used to obtain the reactance
matrix. Partial cross-sections may be obtained from the reactance matrix
using well known formulas.

In the event det M is very small, (257) is numerically ill-conditioned.
Nesbet suggested when a similar problem occurs in the algebraic solution
of the close-coupling equations! that if det M'! is smaller than det M
we should solve for the reciprocals of the reactance matrix elements instead
of for the reactance matrix elements. Thus

iy = 8,y (260)

Then the reactance matrix elements are given by'4

(v 1/2 o
Rip - %oip (261)
vl’
and the variational principle is!
hY o
0y L, + E; D,%ne| =0 (262)
0
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which has been called the inverse Kohn or the Rubinow variational
principle. Then

2
ot = a + (—:!)v-ll (263)
The Rubinow variational method leads to
a’ = —(M"")"M‘ll (264)

where the details of the derivation are similar to those before. The choice
as to whether to use the Kohn or Rubinow variational principle is some-
times arbitrary. In the anomaly-free method the former is used if det M®
is smaller than det M*! and vice versa.

Note that if the minimum-norm method is used to determine &, and a,,
neither (225) nor (260) holds. In that case we use

R = V1/2a1ao—1v—1/2 (265)

instead of (226) or (261).

The method presented in this section is not an alternate derivation of the
Harris-Michels results. The reactance matrices and wave functions ob-
tained from these equations are different from those obtained from the
Harris-Michels equations. The main advantage of the present method is
that the equations are derived using the usual scattering variational
principle (the Kohn variational principle). Thus the procedure represents
the most general application of the Kohn variational method. It should be
useful because the results can be compared more directly to other results
obtained by the Kohn variational method but using a more restricted trial
function. A further value of the equations here is in tying together three
different approaches: the applications of the Kohn variational method to
the algebraic close-coupling equations by Nesbet and to correlation
functions by Miller and others, and the use of the Harris and Michels trial
function (which, as discussed in Section IILD, is the methodologically
simplest version of the algebraic correlation method trial function).

D. Algebraic Correlation Method

We now consider application of the Kohn variational principle to the
trial function

0 P ni L. "¢
v = 3 [0 + Sewtnied | fad + 2 contbulr 2D (269

where the a3y, 0, Cap’» DA Cppy ATE coefficients to be determined. This
may be considered to be an algebraic version of the correlation method
discussed previously by Gailitis, Burke and Taylor, and Miller (see
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Section 111.B). The Harris and Michels-type trial function may be con-
sidered to be a special case of (266) in which only the free terms and the
correlation terms are retained. Conversely, (266) may be considered to be
a special case of the Harris and Michels-type trial function in which some
of the correlation functions W, are of the separable form 7. The
treatments here of the trial functions (222) and (266) are numerically
equivalent when the W,’s in (222) are chosen in such a way as to make
(222) and (266) identical. The new terms (of the form Cap'M’) in (266), as
opposed to (222), will be called “bound terms.” The new problem posed
by explicit use of (266) is the determination of their coefficients. This may
be done using the procedure (the Kohn variational principle) used by
Nesbett for the algebraic close-coupling problem. This leads to the same
type of equations as in the previous section but with the following im-
portant changes:

Tne—3 <wm] H—E }(Y + Sednd) > 267)

where M, — AL U VA’ (268)

‘ U=M-32M 1Y nefal M7 I f i fel M

Finally the coefficients of the bound terms in the trial function are given by
urt = 3 (Ohrad” + oracul) (269)

where the c,.'" satisfy
2 %(ﬂa’ I M ngfoc’® = —alsl M Ao «=0,1 (270)

where the trial values o2, should be used in (270).

The generalization of this treatment to include closed channels in the
close-coupling part of the trial wave function [i.c., to replace the first part
of (266) by (224)] can be accomplished in a straightforward way.

The reasons why one might wish to single out certain of the square-
integrable basis functions for inclusion in the bound-term sum instead of
the correlation-term sum are various. One of them is for explicit close-
coupling type of interpretations of the scattering process in terms of con-
tributions from various target eigenstates. Of course such interpretations
can also be made using the Harris and Michels-type trial function, but in
that case the interpretation is less direct because the W, must first be
projected on the f;. A second reason is for ease in checking the computa-
tions (both for coding errors and for completeness of a basis set) using the
algebraic variational method against numerical integration of the correla-
tion method integrodifferential equations. It appears that such com-
parison (see, €.g., Ref. 17) of the algebraic methods with numerical
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integration methods is very useful, at least until more experience is gained

with the algebraic methods. In the form of (266), the wave functions can
—_  be compared most directly. Further, in this form one can compare other
elements of related treatments (e.g., the potential matrix elements of the
algebraic correlation method with their analogues in the algebraic close-
coupling method) to discover how additional flexibility in the wave
function affects the results in detail. A third use for the equations in this
section is that they provide a link to make explicit the connection between
the correlation method of Miller and others and the method of Harris and
Michels. The relation between this section and the Harris and Michels
method is that the trial functions (but not the methods of determining the
coefficients) are formally equivalent. The relation between this section and
the correlation method is discussed in Section IILB.

E. Discussion of Above Methods

The schemes of Sections [11.C and 111.D combine the use of correlation
terms in the trial wave function expansion with an algebraic variational
approach to the calculation. The advantages of correlation terms have
been discussed in the references 10 Section 111.B and the advantages of
algebraic variational methods have been discussed in Section I, but it is
perhaps worthwhile to discuss these points further.

Correlation terms may be used to put special physical features of the
compound system into the trial function. This often requires expressing
these terms in a coordinate system different from the one in which the
scattering boundary conditions achieve their most natural form. For
example, for electron-atom scattering it may be desired to express the Wy,
in terms of interelectronic coordinates (r;), or for chemical reactions it
may be desired to express the W, in terms of transition-state normal
coordinates. Another example, which has applications for all kinds of
collisions, is to use the correlation terms to include so-called perturbed
stationary states (also called polarized orbitals in electron scattering or
molecular states in high-energy atom-atom scattering). Another example
of their use is to include specific compound resonance states. Or we may
think of the purpose of correlation terms as a way to effectively include
virtual target continuum contributions even when the target does not really
break up. In the Harris and Michels-type function the correlation terms
not only carry out these special purposes but also perform the role of the
target-eigenstate terms of the close-coupling approximation. In general we
can think of these terms as providing a convenient method of making the
expansion of the trial wave function effectively complete. The advantage of
the algebraic approach is that it obviates the need to solve very large sets
of coupled (integro) differential equations for the wave function. Even

S
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with the latest techniques this can be very time-consuming. Alternatively
we can think of the algebraic method as being a new and the very latest
method of solving the coupled (integro) differential equations.

It should be clear that if the form (222) of the wave function spans the
same space as the form (223) then the former will lead to the same algebraic
problem. The advantages of (222) over (223) are (a) the important possi-
bility of using a more general trial function as discussed in the preceding
paragraph and (b) the minor advantage of reducing the number of sub-
scripts on the coefficients.

We did not require the correlation terms to be orthogonal to the free
functions. Although Harris and Michels explicitly made their correlation
terms orthogonal to their free functions,!® this is not really necessary even
for their method. This is proved in Appendix 1.

The variational principles used here allow us to variationally improve
the reactance matrix elements (or their reciprocals) but they do not allow
us to improve the rest of the trial wave function. Unlike the case where
point-by-point variations are allowed, the algebraic method does not allow
us to obtain any trial wave function whose asymptotic form corresponds
to the variationally correct R,,. The advantage of variationally improved
results is that errors in the R, are second order in the errors in the wave
function. Thus the calculated scattering cross-sections are not as sensitive
to the deficiencies of the basis set as when nonvariational techniques are
used and are not as sensitive to these deficiencies as the trial wave function.

We should point out that for the combination of reasons discussed in
the last three paragraphs the extension of the Harris, Michels, and Nesbet
methods presented here is probably at this time one of the most economical
and straightforward general ways to obtain the wave function for most
scattering problems, including inelastic electron scattering and chemical
reactions. If one desires to obtain directly the scattering probabilities (not
the wave function), one of the methods dealing directly with the transition
matrix1®-13* may be preferable. For example, Baer and Kouri'® have
developed an algebraic technique for solving for “channel operators” and
amplitude densities (from which the cross-sections and wave functions may
then be calculated). It is being extended to include the use of correlation
functions by using a variational principle.* Reinbardt has also presented
a new method that requires neither expansion of the wave function in a
basis nor numerical integration of coupled (integro) differential equa-
tions.1®s In Section IILF we consider other algebraic variation methods
which involve expansion of the wave function in a basis set.

Next we consider a few illustrative calculations on elastic electron-
hydrogen atom scattering using algebraic close-coupling methods. We
consider the singlet electron-spin state. Then we need not explicitly include
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TABLE V

Basis Set for Electron-Hydrogen Atom Scattering
Calculations of Figs. 5 to 11*

a® - L
1 0.005
2 0.01
3 0.02
4 0.05
5 0.15 -
6 0.4
7 0.7
8 1.1
9 1.5
10 3.0

8 The calculations were performed by the algebraic 1s-2s-
2p close-coupling method (including exchange) as described
by Seiler et al}? as modified in Ref. 146. Two free functions
11 — e (kr) and (1 — e P&, (kr)) were used, and the
short-range parts of the four channel functions were each
expanded in terms of 10 Slater-type functions of the form
rle~$a’, with a=1,2,...,10. Note that distances are in
bohrs.

b See (224) where P = 4, n; = 10, and Q = 4.

spin in the wave function, but the wave function must be symmetric under
interchange of the two electrons’ spatial coordinates. These calculations
use as trial function the symmetrizer times the function of (222) with
P = 1and M = 40. We consider the case where the total angular momen-
tum is L = 1. The basis set is explained in Table V. The bound-bound
Hamiltonian matrix

H,"M = (W,| H|W,) 271)

has 40 eigenvalues E,. The lowest twelve are listed in Table VI. The
analysis of Section IL.H, which is based on Nesbet’s work,'® may be
extended to the multichannel scattering problem, and we would expect the
Kohn and Rubinow methods to show spurious structure near but not
exactly at the energies where E equals one of the E, 132

Fig. 6 illustrates the poles in the M,,** which occur near the fifth, sixth,
and seventh eigenvalues of H™. Fig. 7a shows t5° and ¢z~ for the energy
region near the fifth and sixth eigenvalues of H™. t5° shows two pseudo-
antiresonances and ;7 shows two pseudoresonances. Except in these two
regions ¢z’ is too close to tz" to be distinguished on the plot. Further, at
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TABLE VI

Lowest Twelve Eigenvalues £, of H" for
L= 1, $= 0 for the Basis Set of Table V

.u E {14 (Ry) k “2 (00_2)
1 —0.9999842 0.0000158
2 —0.9999081 0.0000919
3 —0.9995379 0.0004621
4 —0.9973415 0.0026585
5 —0.9838141 0.0161859
6 —0.9321195 0.0678805
7 —0.7936308 0.2063692
8 —0.4424070 0.5575930
9 —0.2517707 0.7482293

10 —0.2500602 0.7499398

11 —0.2499964 0.7500036

12 —0.2499806 0.7500194

the fifth elgenvalue of H™ the pseudoantiresonance of 150 is so narrow it is
hidden behind ¢z on the plot.

Although there has been much discussion of how to tell spurious
singularities from real resonances, one very important practical method
has not been mentioned in the literature. At a real resonance, both the
uncorrected and the corrected phase shift increase by =. If, as in the
present example, either the corrected or the uncorrected phase shift
decreases by w, then the resonance is not real.

Fig. 7b shows 1,° and 1™ in the same energy region. Figs. 7a and 7b
have been drawn so they partially overlap; thus it is clearly seen that at the
positions of the two pseudoresonances of Flg Ta (where Fig. 5 shows
Mn°° and Mu"1 have correlated zeroes), 1° and ¢z~ are smooth. Instead

°and 1 X show spurious structure where My,'°and My," show correlated
zeroes Actually M,,*° shows four zeroes in this energy reglon The third
of these (at k* = 0.088a,~%) does not cause any extra spurious structure
but is associated with the phase shift passing smoothly through zero.
Similarly the third zero of M, (at k? = 0 112a,~2) does not cause a third
region of spurious structure in 15° or fx F but is associated with the phase
shift passing smoothly through zero. This again emphasizes the need to
consider correlated zeroes of the My,*?. It is also mterestmg to notice that
the reason the spurious structure associated with 7,° and 1% occurs at
an energy so much different from the energy of the seventh eigenvalue of
H™ is that the “background’” M,,'° and M,,!! are near zero. Nevertheless,
Fig. 5 shows the spurious structure is unequivocably attributable to the
influence of the seventh poles of M,;!® and My,
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¥ig. 6. The quantities My %, My, My19, and My,1° (i Rydbergs) as functions of
k2 (in atomic units) for elastic scattering of an electron off the ground state hydrogen
atomwith L = 1and § = 0. The calculations were made with the basis set of Table V
and are shown in the vicinity of the fifth, sixth, and seventh energies where MM hasa
zero eigenvalue. In the figures the M, arc labeled Myp as in Ref. 13.

Fig. Tc shows the Hulthén method results in this energy region. As
expected the Hulthén method predicts complex phase shifts in two energy
intervals. Near the sixth cigenvalue of H™, the figure also shows 2 sudden
change in slope of the phase shift predicted by this method just to either
side of the interval where complex values are obtained (nothing is plotted
for this interval). This region is shown with an expanded abscissa in Fig. 8.
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Fig. 7. The tangent of the phase shift for elastic scattering of an electron off the
hydrogen-atom with L =1and § =0as a function of k2 (in atomic units). The cal-
culations were made with the basis set of Table V and are shown in the vicinity of the
fifth, sixth, and seventh energies for which M" has a zero eigenvalue. (a) The solid line
is the result 7 g% of the corrected Rubinow method and the dashed line is the result
£ g of the uncorrected Rubinow method. The results using the uncorrected and corrected
Rubinow method are practically the same on this scale, except in the regions of the two
pseudoresonances where the two results tend to infinity in opposite directions; that is,
the corrected Rubinow result shows pseudoresonances and the uncorrected Rubinow
result shows pseudoantiresonances. (b) The solid line is the corrected Kohn resuit # K
and the dashed line is the uncorrected Kohn result  °. The corrected Kohn result shows
three pseudoresonances and the uncorrected Kohn result shows two pseudoresonances
followed by a pseudoantiresonance. (c) The solid line is the result 7z of the Hulthén
method. The only spurious structure that appears here is in the region of the sixth zero
eigenvalue. The spurious structure in the region of the fifth zero eigenvalue is too small
to be seen on this scale, and the structure due to the seventh zero eigenvalue occurs at
higher k2. () The solid line represents the results £ 3% and 237 ¥ of the minimum-
norm method corrected with either the Kohn or the minimum-norm variational ex-
pression (the two results are indistinguishable). The dashed line represents the result
t yr® of the uncorrected minimum-norm method.
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Fig. 8. The three solid curves represent the left- and right-hand sides of inequality
(77) in Ry?, and the tangent of phase shift obtained by the Hulthén method as functions
of k2 (in atomic units) for the electron-hydrogen scattering problem of Fig. 7 in the
vicinity of the sixth energy where M7 has a zero eigenvalue. The Hulthén resuit for the
tangent of the phase shift becomes complex at the energy where the curves whose
numerical values in Rydberg atomic units are DET M and k%4 cross and remain
complex until sixth energy where M”77 has a zero eigenvalue.

We see the pole in DET My, and the interval where complex values are
obtained. This figure illustrates the discussion of (77). Hopefully, the
figure will make the previous discussions'!¢ more clear.

Fig. 7d shows the minimum norm results in the vicinity of the fifth and
sixth eigenvalues of H™. The zero-order minimum norm result shows no
spurious structure but is very inaccurate. In a certain sense, this can be
blamed on (110). For example, at the sixth eigenvalue of H", 13°, 15, and
ty;\° are all equal. But the slopes of phase shifts are very different. The
requirement of equality of the phase shifts at the eigenvalue of H™ does
not give much clue to the value of 7;° elsewhere because it has a pseudo-
antiresonance near there and so it assumes all values from — o0 to 40
in this region. But 7,,,° is smooth and so the fact that it is bad at the eigen-
value of H™ means it is also bad far from the eigenvalue. Thus 7,7, is less
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accurate than 1% in general. In general 7,,,° is not very accurate but 7,,, >/~

is very aocurate Further we have not ever found any spurious structure in
tary® O £yt Evndently the minimum-norm method with the variational
correction® we have called the minimum-norm variational expression has
overcome the problem of correlated zeroes in the numerator and denom-
mator of the formula for the tangent of the phase shift. Unfortunately
t .uv N is the only method (of those being considered in this section) for
which an extension applicable to inelastic scattering has never been given.
The minimum-norm zero-order. method corrected with the Kohn or
Rubinow variational expression as recommended in Refs. 15 and 16
sometimes shows spurious structure (see Section [L.H).

Figs. 9 and 10 show M,,** in the energy region near the ninth eigenvalue
of H™. Figs. 11 and 12 show the calculated phase shifts in this energy
region. This eigenvalue corresponds to a real resonance, the lowest P
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Fig. 9. The quantities M,%, M,,%, M,;1% and M;;!! (in Ry) as functions of &% (in
atomic units) for elastic scattering of an electron off the ground state hydrogen atom
with L = 1and § = 0. The calculations were made with the basis set of Table V and are

shown in the vicinity of the ninth energy at which M"" has a zero, that is, in the vicinity
of the first *P resonance.
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Fig. 10. The quantities M;;%®, M,,%, M1, and M,,! (in Ry) as functions of
k® (in atomic units) for the energy region bounded by the dashed lines in Fig. 9.

resonance.1”7%18 (Note: this should not be confused with the second-
lowest 1S resonance,!”:#%:118:13%.137 which is at just about the same energy.)
In this case My, and M,," each shows its zero very close to the eigenvalue
of H™. The zeroes of M}, and M,,° are farther from the eigenvalue of
H™. These features are consequences of the background phase shift being
near zero and the resonance being very narrow. Notice that all seven
calculations shown in Fig. 12 show the resonance correctly; none of the
methods shows antiresonance behavior when the resonance is real. In
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Fig. 11. The tangent of the phase shift for the electron-hydrogen atom problem
and energy region of Figs. 9 and 10 as a function of k2 (in atomic units). The curve

marked a is the corrected Rubinow result, and the curve marked b is the corrected:

Kohn result.

addition, notice that the Kohn method is accurate in this region even
though My, has a zero in this region.13®

The same type of analysis of spurious singularities and real resonances
may be given for cases where more than one channel is open. Although the
general principles are the same the details are more complicated.

Other valuable analyses of the spurious singularities in the Kohn and
Rubinow methods for the case where only one channel is open have been
given by Brownstein and McKinley,*® Kolker,® Shimamura,®® and
Payne.’ In particular Shimamura’s analysis leads to (M + ) x (M+1)
matrices NS and NC defined similarly to N [see (239)] but with Wyzy3(r1, %1)
equal to A(ry) or Ay(ry), respectively. The spurious singularities of the
Kohn method are then identified with energies where det N¥ is zero, and
. the spurious singularities of the Rubinow method are identified with
energies where det N is zero. These criteria are essentially the same as

—
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Fig. 12. The tangent of the phase shift as a function of k2 (in atomic units) for the
energy region bounded by the dashed lines in Fig. 11. (a) The results of the uncorrected
Rubinow, the corrected Rubinow, and the Hulthén methods are all represented by the
one curve. (b) The solid curve is the result of the corrected Kohn method and the dashed
curve represents the result of the uncorrected Kohn method. (¢) The solid curve repre-
sents the results for both the minimum-norm method corrected with either the Kohn
correction or the minimum-norm correction. The dashed curve represents the result of
the uncorrected minimum-norm method.

Nesbet’s but may sometimes be more convenient. These (M + 1) X
(M + 1) matrices also occur in Kolker’s analysis®® of how many basis
functions must be added before convergence becomes monotonic in the
Kohn and Harris methods for potential scattering.

It is sometimes useful'130:13L.140 to separate the problems associated
with nonmonotonic convergence as more basis functions are added in the
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open channels [i.e., as the n, in (266) are increased] from the problems of
convergence as the closed-channel portion of the wave function is made
complete [ie., as ng in (269) is increased]. The former problems are .
analogous to the convergence problems of potential scattering, and the
latter errors are those for which the minimum principles of Spruch and
others are applicable when the open-channel part of the wave function

is treated exactly.

There have been a number of applications of the algebraic variational
methods of the type discussed so far in this section to modei prob-
]emsll.l§.48.84.lll and to electron_atoma.lo.ll.17—19.37.38.10.42.62.71.83.124——12‘.129—
131.142-146 and Positron_atomll.l'l.18.37.125.127.144.1&7.148 scattering but only two
applications to other processes; that is, Massey and Ridley*™ applied the
Kohn and Hulthén variational methods to electron-hydrogen molecule
scattering and Mortensen and Gucwa applied the Kohn variational
method to collinear chemical reactions.® In most of these calculations
only the corrected results are presented butin a few Casesle-16:126.127.244.133, 148
zero-order results are presented also. We next summarize the applications
to electron-atom and positron-atom scattering.

For electron-atom scattering the close-coupling method with P = 1
is the continoum Hartree method, and the algebraic close-coupling
method with P =1 is the continuum matrix Hartree method. Anti-
symmetrizing the trial wave function leads to the continuum matrix
Hartree-Fock method. If we consider simultaneous variation of the bound
orbitals and the continuum orbital in 2 one-configuration wave function
we find the variationally correct bound orbitals are the ones that would be
obtained in the absence of the continuum orbital; that is, the problem
separates into two independent problems which must be solved in order—
one for the bound orbitals in the many-electron wave function fi(z)) in
the absence of the continuum orbital and one for the continuum orbital —
X,2(r) in the presence of the bound orbitals. One way to obtain this
result is to put the system in a Jarge box and normalize all the orbitals by
integrating over all space. Then the continuum orbital has vanishingly
small amplitude in the region where the bound orbitals are nonzero. One
way to introduce correlation of the bound and free orbitals is to introduce
extra open-channel configurations or extra square-integrable configura-
tions. But the most general function possible is always a special case of
(222). Equation (222) includes as special cases the continuum analogues
of both the configuration interaction method and the multiconfiguration
self-consistent field methods. In summary, in the first part of the calcula-
tion the forms of the terms fi(z;) in the wave function at large r; are
determined independently in a bound-state calculation. In the second part
of the calculation, the coefficients of terms which do not vanish at large
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r; and the form of the wave function at small r; are determined. In algebraic
variational calculations both these parts of the whole scattering problem
. consist of determining coefficients of preselected functions.
In classifying the calculations we consider all trial functions as special
cases of (222) and we distinguish the methods by the procedure used to
. find the matrices ag® and a,’. Calculations in the static approximation are
reviewed in Section 11. Elastic scattering calculations for energies below
the inelastic threshold using other approximations are summarized in
- Table VII. For elastic scattering a few calculations have been carried out
by methods discussed in Section IILF; these are not included in the table.
All the inelastic electron-atom and positron-atom scattering calculations
using algebraic methods that have ever been reported are summarized in
Table VIII. In addition Matese and Oberoi used their calculated wave
functions to study photodt’.tachmen'(.“a
There have also been a number of articles’®® concerned solely with
integrals that occur in electron-atom scattering using algebraic variational
methods. The methods used for these integrals may also be used for

partial-wave Born and Born-Oppenheimer approximation‘°-15l-1"'“3
calculations.

F. Other Methods

One disadvantage of the close-coupling method, the algebraic close-
coupling method, the other methods discussed above, and many other
methods for solving scattering problems is that the same variational
function is used at small r; (the interaction region, where a large basis set
is usually necessary) as is used at large r; (in the near-asymptotic regions
of the various channels, where a small close-coupling basis with no or few
closed channels should be sufficient). A few procedures have been devised

. for decreasing the size of the close-coupling basis set during a calculation
as one integrates out toward large r 1% In addition, other methods
similar in spirit to Wigner’s derivative matrix (R-matrix) method have been
used to divide the problem into an interaction region and an external
region. Such techniques will probably become very important as more

. practical calculations are attempted. These techniques can be refined
further if necessary. For example, we can apply the Kohn-Crawford
variational method™ to the close-coupling equations but usc 2 successively
smaller expansion basis in each of several different regions. If each
successively smaller basis set were & subset of the previous one, that is, if
the basis sets were nested, such a calculation would not present great
difficulties in starting a calculation in region 2 (from r; =& to r; = a)
using the result of the region 1’s calculation at r; = @ as boundary con-
ditions to be satisfied by the trial function in region 2. As the number of
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TABLE VII

Algebraic Variational Electron-Atom and Positron-Atom Scattering Calculations for
Cases With More Than One Open Channel Using Methods Discussed in Sections

1ILB to IILE
Ref- Pro-
erence(s) jectile(s) Target(s) Ngo? M Method(s)? Where done
83 e H 2 1 c London and
Belfast
17 e, et H 2-3 3045 AF Baton Rouge
146 e~ H 4 28-60 K,R, AF, MN-K Minneapolis
129 e H 3 16 K, R, or AF San Jose
147 et H 2 30-100 AF Baton Rouge
148 et H 2 35-84 H,K, R, AF Jerusalem

& N is number of open ‘channels included in trial function.
b AF, anomaly-free; K, Kohn; R, Rubinow; MN-K, minimum-norm corrected with
the Kohn variational expression; H, Hulthén.

¢ Method of Ref. 82.

regions becomes larger it is hard to distinguish such an algebraic varia-
tional calculation from a numerical integration. For example, the technique
just described resembiles in some respects some of the numerical integration
techniques now popular for scattering problems which involve obtaining
the solution approximately in terms of analytic functions in successive
intervals and matching the solutions in different intervals at the bound-

aries.154,155

An even more striking illustration of the difficulty of distinguishing
basis set expansion techniques from other methods is the fact that the
finite difference methods using central differences can be reformulated as

“~ variational calculations using spline-like basis functions.'*® Thus the finite
difference methods using central differences'®~1%® may be classified as
algebraic variational methods.

Having pointed out the difficulty of clearly sorting types, we now discuss
a few examples of approaches using basis sets for wave functions which
have recently been of interest in chemical physics scattering problems.

The derivative matrix technique and other techniques involving artificial
channel boundaries have been extended to the treatment of multichannel
scattering problems in many ways and have been much analyzed in nuclear
physics.®-70-260 Ajthough much of the analysis has been formal'® there
have been some computational applications. Recently some specific
procedures for incorporating derivative matrix techniques into chemical
physics scattering calculations have been suggested. There have been
applications to electron-atom scattering, to a model problem, and to



282 D. G. TRUHLAR, J. ABDALLAH, JR., AND R. L. SMITH

collinear chemical reactions.!62-168 Except for considerations of resonance
energies and widths,'®” the other artificial channel radii techniques have
received less attention in chemical physics so far. However, Crawford
has extended the Kohn-Crawford method to the treatment of collinear
chemical reactions,” and Oberoi and Nesbet have extended the Kohn
method with numerical asymptotic functions to electron-atom scattering
in the exchange approximation.” These methods have the advantages
that calculations in the difficult to handle internal region are performed
using techniques similar to those used in bound-state calculations, that the
trial wave function is continuous and has a continuous first derivative,
and that the scattering results are variationally corrected through first
order and stationary.

Schlessinger'®® and McDonald and Nuttall and their co-workers!89-17
have extended the method of Schlessinger to multichannel problems. The
Jatter workers use a generalization of the original method in that the wave
functions are calculated for complex energies instead of negative energies.
These calculations can be carried out algebraically. The calculation of
free-free integrals is avoided but a troublesome extrapolation procedure
must be introduced. McDonald and Nuttall® have extended the rotation
method (i.e., the method of complex coordinates) to treat neutron-
deuteron scattering. They feel that this method compares favorably to the
complex-energy method®-17* and the Kohn variational method.

Weare and Thiele!” have performed algebraic variational calculations
on collinear atom-diatomic molecule scattering using a method which
resembles the Schwinger variational method.

Payne!3*1% developed an algebraic variational method based on compact
operators which reduces the scattering problem to a discrete eigenvalue
problem. The method is applicable to single-channel and multichannel
problems and Payne applied it to elastic electron-hydrogen atom scattering.

Garrett!™ presented two methods for multichannel elastic scattering
problems based on the trial function (220) with P = 1. In both methods,
a trial potential V(r,) is chosen and the equation

( ££+l(l+l)h2
2m dr}? 2mr}?

is solved numerically to obtain Xy,°(r,) and a trial phase shift 7,’. In
method 1, (229) is used to determine the coefficients c,,,. Then one checks
whether (230) is satisfied. If not, one varies ¥, obtains a new X,:%(r;), and
checks (230) again. One continues this trial-and-error procedure until
(230) is satisfied. Garrett suggested that one also optimize nonlinear
parameters in W.,,(r;, ;) by choosing the values that minimize |7,.]. If one
chooses the nonlinear parameters so that I, = 0, and if one channel is

+ Vi) — E) Xy2%(r) = 0
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open, the bounding principle’® may be applied. In method 2, one does
not use (230) but varies V, until I,, = 0. Garrett applied his method to
_ electron and positron scattering by hydrogen atoms. _

' Knudson and Kirtman extended their variation-perturbation theory
formalism, which uses the Hulthén method for the first-order wave
function, to multichannel scattering.'?®

Schwartz™® and Rabitz and Conn'”® have considered variational ex-
pressions which use trial T matrices

T = —2i(1 — iR)'R

instead of trial wave functions. Schwartz's method uses the Schwinger
variational expression (see Section 11.M) and the method of Rabitz and
Conn uses a variational expression due to Newton.'”

IV. ADDENDUM

Shortly after this article was submitted for publication, some additional
related work became available; it is summarized briefly here, classified by
the section to which it is relevant.

Section IL.F: Wladawsky'” proposed a new method—the variational
least-squares method—which is very similar to the minimum-norm
method.

Section IL.H: Kolker*™ provided another discussion of the theorem®®-¢*
(for central potential scattering) that after enough terms are added to the
Kohn trial function the Kohn method provides a lower bound on the
tangent of the phase shift.

Section ILJ: Read and Soto-Montiel'® applied the minimum variance
method?® to single-channel scattering problems.

Section I1.L: Hazi'®! presented a nonvariational generalization of the

" original Harris method to the problem of calculating the reactance matrix
from square-integrable approximations to the scattering wave function for
inelastic scattering. His method involves using an assumed functional form
for the R-matrix elements and an iterative procedure. Heller and Yamani®*?
presented a variational method involving square-integrable trial functions
which appears to be an improvement over the derivative matrix method.

Section IIL.E: Further variational calculations for positron-atom'** and
electron-atom?® scattering and partial-wave-Born approximation calcula-
tions for positron-atom scattering!®® have been reported.

Section 111.F: A discussion of some advantages of the derivative matrix
method has been given.® Koppel and Lin'®? applied the Schwinger
variational method to nonalgebraic trial functions obtained by non-
variational methods for collinear atom-diatom collisions. Hazi'®! applied
his new method to a model multichannel scattering problem.
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APPENDIX 1. ORTHOGONALITY IN THE
HARRIS-MICHELS METHOD

Using the notation of Harris and Michels, ¢ we label the free functions
$; and the correlation terms 7),,.

We define orthogonalized free functions $; as

$¢‘ =¢; — Z Smiw"lm (A1)
where "
St’m¢" = {}; | Nm? A2
Then ¢ ‘ ' (A2)
M = ($|H —EI$) (A3)
M, %" = (§|H — E|n,) (A4)
etc. Then
M* =M* —C (A5)
where
C = S""M""’ + M""S"" — S""M"”S"" ( A6)
and
M“"’(M"")‘IM"“’ = M""(M"")'IM"" —-C (A7)
Thus
M¢? — M¢W(M'l'l)—1M'l¢ = M%* — M#n(Mnn)—le (A8)

But the Harris-Michels results are calculated from the right-hand side of
(A8). Thus the results would be unchanged if we used the nonorthog-
onalized functions ¢, instead of the orthogonalized function &
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