Potential
Energy Surfaces
and Dynamics
Calculations

for Chemical Reactions and Molecular
Energy Transfer

Edited by
Donald G. Truhlar

University of Minnesota
Minneapaohis, Minnesota

PLENUM PRESS  NEW YORK AND LONDON

Chapter by B. C. Garrett, D. G. Truhlar, and R. S. Grev, pages 587-637.
1981 )



TR

4
i

DETERMINATION OF THE BOTTLENECK REGIONS OF
POTENTTIAL ENERGY SURFACES FOR ATOM TRANSFER

REACTIONS BY VARTATIONAL TRANSITION STATE THEORY

*
Bruce C. Garrett

Department of Chemistry
University of Minnesota
Minneapolis, MN 55455

and

Battelle Columbus Laboratories
505 King Avenue,
Columbus, OH 43201

Donald G. Truhlar and Roger S. Grev+

Department of Chemistry
University of Minnesota
Minneapolis, MN 55455

I. INTRODUCTION

A major difficulty in the calculation of reliable equilibrium
rate constants for gas-phase bimolecular reactions is the lack of
accurate information about potential energy surfaces. The calcula-
tion of accurate, detailed dynamical quantities such as inelastic
and reactive cross sections requires a knowledge of the potential
energy surface over large regions of the configuration space. Thermal
rate constants represent an average of such detailed dynamical quanti-
ties, and as a result they are less sensitive to fine features of the
surface. Thus accurate thermal rate constants may be calculated using
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588 BRUCE C. GARRETT ET AL.

less information about the potential surfaces than is required to
calculate more detailed quantities; one of the goals of the present
chapter is to discuss which regions of the surfaces are most impor-
tant in controlling the rates of chemical reactions.

Transition-state theory (TST)! provides one of the most practi-
cal approximation schemes for calculating equilibrium rate constants
for thermally activated bimolecular reactions. Conventionally the
transition state is defined as a surface in configuration space
separating the reactant and product regions and located at the saddle
point of the potential energy surface. Applications of TST requires
knowledge of the potential energy surface in the saddle point and
reactant regions, and the saddle point region is identified as most
important in controlling the rate of the reaction.

Generalized transition-state theory (GTST) is an attempt to
improve on conventional TST by using phase-space dividing surfaces
that separate reactants from products but that are not restricted to
be configuration-space surfaces passing through the saddle point.
These dividing surfaces are called generalized transition states; in
variational transition-state theory (VIST) their optimum locations
are determined by a variational criterion.?™? VTST calculations
require knowledge of wider regions of the potential energy surface
than do conventional TST calculations; the variationally determined
transition states found by examining this larger portion of the sur-
face are more closely related to the dynamical bottlenecks to reac-—
tion than are the conventional transition states.

A concern in using TST or VTST for calculating equilibrium rate
constants or locating bottlenecks is the accuracy of the approxima-

tions inherent in the theory. Recently there has been great interest ;

in examining and testing the fundamental assumptions of classical
mechanical transition-state theory.’ 3715 (Additional references
are given in section II.B.) Classically, the fundamental assump-
tionl® of GTST is a dynamical one which can be stated as follows:
Any trajectory which reaches the generalized transition state and
has momentum directed in the product direction is a reactive trajec-
tory. The consequences of this assumption are (i) classical GTST

is exact if, and only if, all trajectories cross the generalized
transition state only once, and (ii) if recrossing does occur clas-
sical GTST overestimates the exact classical equilibrium rate con-

stant.!? This leads naturally to the variational principle mentioned

above in which the generalized transition state is located to give

the least upper bound on, and thereby the best estimate of, the exact ;

classical rate.

Conventionallyl the transition-state assumption has been
extended to a quantum mechanical world by assuming a separable
reaction-coordinate orthogonal to the dividing surface and quantizing
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the bound motions within the dividing surface. The quantized energy
levels of the bound degrees of freedom are used for state counting

in calculations fur microcanonical ensembles or for calculating parti-
tion functions in calculations for canonical ensembles. Quantal
effects for the motion along the reaction coordinate are included in
a multiplicative transmission ccefficient, k(T), by calculating quan-
tum mechanical transmission through and across a one-mathematical-
dimensional potential barrier. Attempts to obtain a nonseparable
quantum mechanical TST (Z.e., one which contains no auxiliary assump-
tion besides the fundamental dynamical assumption} have not been
totally successful; however, they have led to new insight into the
theory. 61719

A consequence of using the conventional quantization in GTST
is that it no longer provides an upper bound on the equilibrium rate
constant. Although it cannot be just1f1ed by a rigorous variational
principle, we. have nevertheless employed the conventional quantiza-
tion procedure and chosen the generalized transition state locaticen
as the one that minimizes the rate calculated with «(T) = 1. Then
we have estimated «(T). This procedure has been tested empirically
on collinear model reactions for several potential energy
surfaces29726 and for reactions in three dimensions with an accurate
potential energy surface.27+28 Comparisons to experiment are compli-
cated by uncertainties in the potential energy surfaces so the most
definitive tests have been comparisons of conventional TST and VTST
for assumed but realistic potential surfaces to accurate quantal rate
constants for the same surfaces.?1726:28 TFor the one case where an
accurate analytic potential surface is available?973! both conven--
tional TST and VTST have been compared to experimental results.Z2/» 28
In general this VIST procedure has proved to be quite reliable; this
work has been reviewed elsewhexe32 and the conclusions are summarized
in section II.B.

In this chapter, the emphasis is on the use of VIST to help
identify the regions of potential energy surfaces that are most
lmportant in determining reliable rate constants. Two approaches
have been used to date. One is to study a wide variety of model
potential ener%y surfaces to predict general trends for various reac-
tion types. A second method 1s to use model potential energy
surfaces that have been adjusted so that dynamical predictions agree
as well as possible with experimental results.3® Such approaches can
be used to locate those regions of the potential emergy surface which

should be studied more carefully by electronic structure calculations.

In this paper we use the former approach and we report many new cal-
culations as well as reviewing some aspects of our previous ones.

Another subject discussed in this chapter is the relatienship
between classical and quantum mechanical rate calculations; see
especially sections II.B and IV. This is of interest since there
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has been more work done cn classical GIST than on the quantized
version; we shall see, however, that the. bottleneck may be quite
different for the classical and quantal versions of the same reac-
tion at the same temperature. This difference occurs because the
typical contribution to a classical reaction rate at temperature T
comes from energies within a few kT above the classical barrier
height, whereas for most of the reactions we have studied the accu- i
rate guantum mechanical reaction rate is very small at such an .;
energy because quantal systems involving hydrogens tend to have

more than kT of energy tied up in bound vibrational motions
throughout the whole reaction.

2

7

II. THEORY

A. Quantized Formulation, Including Tunneling

The quantum mechanical VIST formalism used for the rate-
constant calculations presented here is described in detail else-
where.22:23527533 yere we present a brief review of the theory.

We work in a mass-scaled coordinate system in which the kinetic ;
energy term is diagonal and each term has the samd reduced mass u,
which is the reduced mass for the relative motion of the reactants.
The minimum-energy path (MEP) is defined as the path of steepest

descents from the saddle point to both reactants and products in thishf'

coordinate system. Distance from the saddle point along the minimum—yj
energy path inm this coordinate system is the reaction coordinate s. 3
By definition s equals zero at the saddle point and is less than zero*@
on the reactant side of the saddle point. The generalized transition

states are defined to be orthogonal to the MEP and are specified by 3

the location s at which they cross the MEP.
The generalized-transition-state~theory microcanonical rate

constant is a function of the total energy E and the location of the
transition state; it is given by

G G
T, 5 = 107 (x, ) /et (E) W
where h is Planck's constant and ¢R(E) is the reactant density of

states per unit energy per unit volume. N6T(E,s) is the generalized
TST cumulative reaction probability, or sum of states, defined by

"T(E,s) = J alE - v_(a,5)] (2)
QL

where 0{(x) is a Heaviside function, Va(g,s) is an adiabatic potential
curve :

O T

—




BOTTLENECK REGIONS BY VTST 591

va(g-)s) = (S) + Ein ((},S) ' (3)

VMEP t
and o denotes the set of quantum numbers of all the internal modes
(vibrational and rotational) orthogonal to the MEP. Vygp(s) is the
potential energy along the minimum-energy path, and ein¢{2,s) is the
local vibrational-rotational energy for motion normal to the MEP with
internal quantum numbers a. The GTST cumulative reaction probabil-
ity is the number of energetically available internal states of the
generalized transition state at s. In conventional TST the transition
state is located at the saddle point, Z.e., at s=0, and the micro-
canonical rate constant is denoted k¥(E). 1In VIST applied to a micro-
canonical ensemble, ©.2., microcanonical variational theory (uVT),

the generalized transition state is located to minimize the number

of states NGT(E,S) and thereby minimize the rate constant kGT(E,s),
with the resulting minimum values being called NHVT(E) and kMVI(E).
Therefore the VT transition-state location depends on the energy

and is denoted SEVT(E). The number of internal states depends on

the value of the classical potential energy along the MEP, the widths
of the vibrational wells orthogonal to the MEP, and the moments of
inertia of the generalized transition state species. As the dividing
surface is moved towards the saddle point Vypp(s) increases and, if
the channe] width did not increase, the number of energetically
available states would always decrease. But an increase in the width
of one or more vibrational wells can cause NGT(E,S) to increase, In
conventional TST only the classical energetic criterion based on

. Vyqpp(s) is considered for locating the transition state; thus it is
located at the saddle point where VMEP(S) is maximum. In pVT the
location of the dividing surface 1s determined by a competition
between this energetic c¢riterion and the "entropic' effects of the
bound degrees of freedom.

The canonical, Z.e., thermal, rate constant of uVI can be
obtained by Boltzmann averaging the energy-dependent rate constants;
the result is called kMVI(T), One can also define a GTST canonical
rate constant which is a function of the temperature T and the loca-
tion of the dividing surface, and which is given by

k. T GT
kGT(T,s) =0L 9 (1,s)

h ¢R(T)

exp[-8V, o (5)] )
where o is a statistical symmetry factor (see reference 33), kB is
Boltzmann's constant, ®R(T) is the reactant's partition function per
unit volume, and g = (kBT)“l. The GTST partition function is

Fet,8) = | expl-ge,_, (a,9)] (5)
L ,

-
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In VTST applied to a canonical ensemble, Z.e., canonical variational
theory (CVT), the dividing surface is located to minimize the thermal
rate constant RGT(T,S). This location is a function of the tempera-
ture T and is denoted sgVT(T). The conventional TST choice of divid-
ing surface corresponds to minimizing only the exponential factor in
equation (4), whereas the CVT rate comstant, kCVI(T), is determined
such that both the energetic factor, the exponential, and the entro—
pic factor, the partition function, are included in the minimization
procedure.

In pVT the lowest energy that can contribute to the thermal rate
constant KHVI(T) is equal to the maximum VA6 of the ground-state
adiabatic potential curve V;(s) [= V,(0=G,s), where ¢ =C denotes the
ground state and zero angular momentum].23’27 For eﬁergies below
this threshold, the dividing surface can be placed at the locatiom 2
of the maximum and NGT(E,S) will be zero. In CVT, only one diviaing ;{
surface is chosen at each temperature and this surface is not neces- §§
sarily located at the top of the ground-state adiabatic barrier.
Therefore, energies which are lower than the uVT threshold can con-
tribute to the thermal rate constant kCVI(T). This deficiency is
removed in the improved canonical variatiomal theory (ICVT) by chosing
two dividing surfaces: one located at the maximum of Vg(s) for all
energies lower than the adiabatiec barrier height, and the other chosen
for each temperature to be the best compromise to minimize the contri-
butions of all higher energies to the thermal rate constant at that
tempevrature.

The rate constants kuVT(T), kICVT (1), kCVT(T), and k*(T) are all
calculated from the quantized energy levels egin+(a,s) of the bound
degrees of freedom; however, the reaction-coordinate motion is
treated classically in the calculation of these four quantities.
Corrections for quantal motion along the reaction coordinate can be
included by multiplying the canonical rate constants by an approximate
transmission coefficient x(T). Except for one study37’38 in which no
separation of variables was made, all attempts to include the remain-
ing quantal effects have involved the quantal calculation of motion
over and through one-mathematical-dimensional potential barriers.

The simplest tunneling factor for transition-state theory is that
proposed by Wignerag in which the transmission coefficient is the
leading quantal correction to conventional TST to lowest order in h.
The resulting corrected canonical rate constant is

Ve = eyt ' o (6)

where

Ty = 1+ (’ﬁlm*l/kBT)z/zz. n
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and w¥ is the imaginary frequency for the unbound normal mode at the
saddle point. Although the conditions for the validity of the assump-
tions made in obtaining this factor are seldom satisfied,s’21 it is
used often because of its simplicity. Use of this transmission coef-
ficient requires a knowledge of the potential energy surface only in
the vicinity of the saddle point.

The vibrationally adiabatic model provides a framework for
including quantal effects on reaction-coordinate motion that is more
consistent with VIST.%0 1In the adiabatic theory of reactions"! state-
selected rate constants are calculated for each set of internal quan-
tum numbers a. The adiabatic approximation is used to construct the
effective potentlals vV, (a s) for the one-dimensional motion from reac-
tants to products. For classical reaction-coordinate motion of a
system initially in quantum state g, reactiom occurs if the system
has enough total energy to surmount the max1mum vA (¢) of V,(a,s) as
a function of s. The thermal rate constant, KA (1), is the approprlate
thermal average of the state-selected rate constants, kA (2,T). 1If
the same approximations are used in computing NG (E,s) and eg44+(a,8)
in both the adiabatic theory of reactions with classical reaction-
coordinate motion and uVT, then they are equivalent.22 Since quantum
effects are most important at low energies where contributions to the
thermal rate constant from the ground state predominate, the treatment
of the threshold energy region is improved by using a vibrationally
adiabatic ground-state transmission coefficient

VA
kK T (2=G,T)

By = 44— (®
k (g=G,T)

and kVA(a=G T) is the state—-selected rate constant for quantal motion
on the one-dimensional adiabatic ground-state potential curve, and
kA(a =G,T) is the same quantity with reaction-coordinate motion treated
classically. This transmission coefficient is then used multipli-
catively to define a corrected prediction for the thermally averaged

HVT rate constant.

@ =V m ey (9)

kuVT/VAG
Thus we see that at low temperatures k“VT/VAG(T) - kVA(g=G,T), while
at high temperatures kVAG(T) ~ 1 and it no longer matters that the
transmission coefficlent is based on the ground state.

Care was taken to insure that the threshold of the ICVT is the
same as the threshold for the uvi. Therefore kICVT(T) ~» kA(a—G )
at low temperature and we can also use kVAG (T) with the ICVT rate
constant. This yields the corrected prediction
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ICVT/VAG ICVT VAG

(T) « 77(T) (10)

so that kICVT/VAG(T) 5 kVA(q=G,T) at low T.

k (T) = k

The use of quantal adiabatic transmission coefficients with CVT
and conventional TST is not as straightforward because the thresholds
for these theories are not the same as the adiabatic threshold. We
can define the correct transmission coefficient to be used with con-
ventional TST as?23,27,40,42

(1)

where PVAG(E) is the transmission probability for the one-dimensional

vibrationally adiabatic ground-state potential curve Vg(s) for total
energy E. The corrected rate constant may be written

3 /VAG

k#/VAG(T) _ k¢(T) %

(T) (12)

Similar considerations for CVT lead to
/ P € gy e B 4
0
(T) = (13)

-5

CVI/VAG
K

-BE

e dE
G CVT
Va[s=s* (T)]

where sgVT(T) is the location of the CVT transition state and?3,27

CVT/VAG KCVT/VAG

K ) = () (1) (14)

We can rewrite equation (11) as23

K*/VAG VAG

(1) &7 (T) o (15)

(1) = F/CAG

where K*/CAG(T) is a classical transmission coefficient which accounts
for the difference in ;he thresholds of wVT and conventional TST

o1y = exp (-81vA° - v8(s=0)1) - ae
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Similar considerations for CVT lead to

K_CVT/CAG(T) - KCVT/CAG(T)KVAG(T) (17)
where

CYTCAE 0y _ ep (—B[VAG - VS[SSVT(T)]}) - as
By using k¥/CAC(T) with k¥(T) one obtains

k#/CAC(T) = wFery oFCAC gy a9

This corrects for the fact that conventional TST has an effective
threshold of Vg(s=0) whereas k“VT(T) has VAG a5 its threshold. This
correction factor therefore contains a VIST effect since in the low-
temperature limit k*/CAG(T) > kPVT(T). This shows that by using
adiabatic transmission coefficients with conventional TST one includes
some of the effects of variationally optimizing the location of the
dividing surface. Similarly we can define

CVT/CAG KCVT/CAG

) CVT
k (T) =k (T (T) (20)
We have found?3726 that kCVT/CAG(T) is usually very similar to kICVT,
As a consequence kCVT/VAG(T) is usually very similar to the more com—

plicated kICVI/VAG(T),

Use of adiabatic transmission coefficients requires a much wider
knowledge of the potential energy surface than does use of the simpler
Wigner correction factor. However, the required information is pre-
cisely that needed to perform a VIST calculation; namely: (i) the
MEP and the potential energy along the MEP and (ii) the vibrational
wells normal to the MEP. The recent development of techniques to
evaluate the gradient of the potential energy surface in an ab initio
electronic structure calculation can provide the MEP.%3 There are
also efficient algorithms to determine the second derivative matrix
of the potential energy surface with respect to the nuclear coordi-
nates.*® The matrix of second derivatives along the MEP would provide
a harmonic approximation to the bound degree of freedom normal to the
MEP. 1In our calculations we also include anharmonicity.9’33’“5 In
the applications of the theory that we present here we have obtained
such potential energy surface information from a modified and extended
BEBO model3?>3"% and also from analytic potential energy surfaces which
are semiempirical or fit to accurate ab inttio information. To cal-
culate energy levels and partition functions we approximate the vibra-
tional wells for stretching motions by using Morse potential energy
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curves fit to reproduce the second derivative at their minimum and
the dissociation energy,? and we approximate the vibrational wells
for bends by using a harmonic-plus—quartic approximation.33’“5

B. Tests of the Fundamental Assumption and the Tranmission
Coefficients

Variational transition state theory was originally formulated
as a purely classical theory.z‘“5 Furthermore, it is only for a
purely classical world that variational transition-state theory is
rigorously justified, ©Z.e., as discussed in section I, classical
variational transition state theory does yield an upper bound on
the exact classical equilibrium rate constant, but when quantal ‘
effects are included there is no bound principle."® Although quantal j
effects like zero point energy and tumneling are very important for
thermal rate constants, there is much fundamental interest in purely
classical transition state theory.* Thus the formalism of the clas-
sical theory has undergone further development,s‘gs15s17:”7‘59+ and
the accuracy of classical transition state theory has been tested by
comparison to exact classical dynamics. The tests have involved
studies of the trajectory distributions in the interaction
region,!0,11,59-61 finding the energy limit up to which the classical ¢

i s e RS sl

theory is exact,9a12s13a15352’52’63 and comparing reaction probabil-
ities and rate constants calculated by both conventional
TST759-11,13-15,57,6% apnq yTST759515,55,57,64565 g exact classical
ones. Section IV discusses the difficulty of extending the conclu- 3

sions based on these comparisons to the quantum mechanical world.

In our own applications of VIST to bimolecular reactions we have also
used the "quantum mechanical" formulation of section II.A in which
internal states are quantized (quasiclassically) and tunneling effects
are included (quantum mechanically or semiclassically). We have com- }
pared the rate constants calculated by our quantized formulatiom, '
with and without tunneling corrections, to accurate quantum mechani-
cal equilibrium rate constants for the same assumed potential energy
surfaces for several collinear reactions2072% and one three-dimen-
sional reaction.2® This work, reviewed elsewhere,32 shows that:

(i) VTST, even when quantal effects are included, although not based
on a rigorous bound, still provides considerable improvement in
accuracy over conventional transition-state theory in many cases,
1.e., the variational procedure is still useful. (ii) VTST, includingj
quantal or semiclassical vibrationally adiabatic transmission coeffi- |
cients, usually yields good absolute accuracy for the calculation of |

i S AR

In classical transition-state theory the partition functions become
phase space integrals (as compared to state sums in the quantized
version).

tReferences to related work are given in references 8 and 9.
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thermal rate constants in a quantum mechanical werld. (iii) Consis-—
tent incorporation of quantal effects on reaction-coordinate motion
in conventional TST by using the vibrationally adiabatic ground-state
potential energy curve gives similar results at low temperature to
incorporating quantal reaction-coordinate motion in a full varia-
tional calculation. We have also compared the results of the quan-
tized theory without tunneling to quasiclassical trajectory calcula-
tions, 20,23

C. Unimolecular Reactions

Quantization effects have also been included in VTST, or similar
formalisms, for the study of unimolecular reactions.®7769 Most of
the considerations in the present chapter would also apply to uni-
molecular reactions. TFor example, bimolecular reactions with negli-
gible intrinsie barriers (small V’IE - VP for endoergic reactions in
the notation introduced below) are similar in many respects to simple
bond-fission or bond-fusion reactions. 1In the rest of this chapter
though we will explicitly consider only bimolecular reactions.

IIT. POTENTIAL ENERGY SURFACES AND ENERGETIC QUANTITIES

We shall present results for several kinds of potential energy
surfaces. Many of the surfaces are obtained by the London-Eyring-
Polanyi-Sato (LEPS) method, involving a single adjustable (Sato)
parameter, or by the extended LEPS method, in which different Sato
parameters are used for different atomic pairs. These methods are
reviewed elsewhere,’%>71 For other calculations we used rotated
Morse curves (RMC),%6,72,73 gemiempirical valence bond (VB)7%»75
surfaces, and rotated-Morse-bond-energy-bond-order (RMBEBO)33’3”
surfaces.

The RMBEBO formalism is cur own extended and modified version
of the bond-energy-bond—-order (BEBO) method of Johnston and Parr7§
and the reduced-variable-bond-energy-bond-order (RVBEBO) method of
Mayer et al.”? The RMBERO method predicts different saddle point
properties than the BEBO and RVBEBO methods, except for symmetric
reactions. Unlike those methods, however, it dissociates to correct
diatomic limits so that

Ln ey @e) = <) @
lin e, (2,8) = & (@) (22)

S > 4o nt
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where e5,4(a,s) is defined below equation (3), and eR(g) and EP(g)
are reactant and product energy levels, respectively. For the RMBERQ
surfaces we use the diatomic parameters of Johnston and Parr’® when
available, and otherwise those of reference 45. The RMBEBO method

is a model for transfer of H between saturated doublet fragments as
in CH3-H-OH rather than between atoms as in C-H-0. Thus, e.g.,
Johnston and Parr use an H-O bond strength of 114.7 kcal/mol, as
compared to the diatomic value of 106.6 kcal/mol. Except where indi-
cated otherwise though we use the mass of the most common atomic iso-~
tope, as we do for the calculations with other kinds of surfaces. A
The RMBEBO surfaces are really model systems that i1llustrate the kinds:
of effects that could occur in selected real systems, but a given
RMBEBO surface does not represent a specified real system except
nominally. '

In the rest of this chapter we put the zero of energy at the
classical equilibrium potential of reactants. Hence the VAG barrier
height AvAC 15 the maximum VAG of the VAG potential curve minus the
reactant zero-point energy eg [= ER(a—G) RG] The delta denotes
changing the zero of energy to e5. In other work?3 we have also
introduced a convention whereby a tilde refers to changing the zero
of energy to the local zero-point energy. Using the definition in .
equation (3), we can summarize our conventions for barrier quantities -
as follows:

Vupp (5= = (23)

v = v, (s=0) (24)

P

Vo= Vygp (57) __ (23)

V,(g5==) = €'() | (26)

VA(a) = max V (z,s) 27)

: ax V(2
VAG = VA(g=G) : (235
P B

V (2,5==) = ¢ (o) , (29)

AVa(%,s) = Va(g,s) - eR(g) | . (30}_

sz(s) = 4&V_(a=G,s) - (31) .
- AE, = Avg(s=°°) ' (32)




BOTTLENECK REGIONS BY VTST 599

V, (2,8) = V_(2,8) - V_(a=G,s) (33a)
= AV_(a,s) - AVa;(g=G,s) (33b)
= €5, (®s8) - €, (07G,s) , (33¢)

Notice that VP is the classical endoergicity and AEy is quantal
ground-state endoergicity. It is also convenient to define the
conventicnal-transition-state-theory approximation to the barrier
height of the vibrationally adiabatic ground-state potential enexgy
curve

G _ , .G, B
Ava = Ava(s-O) SN (34)

This is always less than or'équal to

aviC - A6 _ e (0=C) = max sz(s) (39
s

which is the true barrier height of the vibrationally adiabatic
ground-state potential curve. Notice that AVﬁG is the conventional-
transition-state-theory energy of activation at 0 K and AVAG 15 the
variational-transition-state-theory free energy of activation at O K.

The parameters“5s76 and some of the features33735 of the RMBEBO
surfaces are given elsewhere. The classical and quantal-ground-state
endoergicities and the vibrationally adiabatic ground-state (VAG)
barrier heights for the other surfaces considered in this chapter
are summarized in Table 1. This table also gives
references®7,66,70,73-90 for the diatomic input data for these sur-
faces and, where appropriate, for the Sato parameters. Finally,it
assigns a unique number to each surface, and these numbers will be
used to specify the surfaces in later tables in this chapter.

IV. COLLINEAR REACTIONS, CLASSICAL AND QUANTIZED

From theoretical considerations the important regions of the
potential energy surface within the framework of VIST are those in
the vicinity of the MEP. Of these regions, the most crucial parts
are those around the locations of the wvariationally determined
transition states. The variational transition states are the divid-
ing surfaces with the smallest number of classical recrossings and
are therefore called the dynamical bottlenecks of the reaction. In
this section we review the effects of variationally cptimizing the
dividing surface for several collinear reactions on semiempirical
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Table 1 a
Summary of potential energy surfaces
AVAG ° Reference Sato parametars
System vP AE, Type for
Surface * A+ BC 0 {kcal/mol) of diatomic
(kcal/mol)  (keal/mol) —————m— surface Morse Ref AB BC AC
collinear 3 dim. parameters N
1 H+H, . 0.0 0.0 5.74 2.88 vB 74
2 H+H, 0.0 0.0 6.37 8.53 RHMC 66
D+D, 0.0 7.35 8.85
D+H, -0.83 © 6,38 8.38
B+D, 0.99 7.89 9.52
3 15¢ + wiSc 0.0 0.0 2.10 3.80 ext. LEPS 57 57 0.2 0.2 0.1
57¢ + 157 0.0 2.17
Y2¢ + w42c 0.02 2,18
4 L+ H, 3.01 1.05 3.58 5.79 ext. LEPS 90 78 0.187 0.167 0.187
€L+, 1.66 4.69 6.19
c1+71, 1.93 5.25 6.47
CL+HD, | 0.68 4,47 6.08
cL+DH 1.87 4.09 5.9
5 H + BrH 0.0 0 3.14 3.39 ext. LEPS 70,79 70,79 0.076 0.076 0.225
H + BT 1.55 4.66 4.87
6 T+, 35.80 32,84 32.84 32,98 vB 5 -
? 1+H, 35.82 32.85 32.86 33.57 RMC 73 g
& F+H -31.75 -32,09 0.61 1.78 ext. LEPS 26 80 0.167 0.106 0.167 o]
F+D, \' -31.89 0.70 1.54 o
9 R+F, -103.54 -99.0 2.21 2.39 ext. LEPS 81 81 0 -0.35 0 o
D+F, -100.5 2.19 2.33 )5
T+F, -101.2 2,18 2.31 g
10 H+Cl, -48.64 ~45,20 2.37 2.49 LEPS 82 o 0 0 :¢|
D +cl, -46.39 2.36 2.45 m
11 1+HL 0.0 0.0 0.26 1.05 ext. LEPS 76 83 0.2 0.2 0.125 -
2°  T+wr - 0.0 0.0 0.20 0.94 ext. LEPS 76° 83 0.2 0.2 0.125 P




13 Cl + CH 25.50 22.56 27.88 28.22 LEPS 76 0 0
14 Cl + CH 25.50 22.56 22.66 22.71 ext. LEPS 76 78 0.187 0.167 0.187
15 Cl + HF 34.10 32.47 40.37 41.53 LEPS 76 [ 4] 0
16 Cl + HF 33.93 32,31 32.86 33.77 ext. LEPS 84 84 [ 0.2 -0.08
174 Na+clm 7.38 3.67 8.39 8.56 ext. LEPS 85 85 0 0.1 0.8
18 Br + HCL 16.16 15.76 15.76 16.14 ext. LEPS 86 86 0 0.185 0.33
19 € + HCL 0.90 0.79 20.97 22.74 LEPS 76 ] 0 o
20 C + HC1 0.90 0.79 4.03 5.63 ext. LEPS 76 78 0.167 0.187 0.187
21 + HCL 0.90 0.79 6.51 8.09 ext. LEPS 7% 88 0.275 0.103 0.103
22¢ Na + FH 17.23 12.14 13.73 14.25 ext. LEPS 85 85 0.10 0.20 0.20
23¢ Na + !Scin 7.38 3.70 8.36 8.54 ext. LEPS 85 85 0 0.1 0.8
24 T 4+ HR 0.0 0.16 6.61 7.67 LEPS 87 87 0.15 0.15 0.15
25f D+, 0.0 0.82 6.52 8.95  fit to ab initio 31
T+ HD -0.30 6.64 8.87 surface
THT, 0.0 7.91 9.45
26 0+ H2 2.80 1.88 8.48 10.71 LEPS 89 89 0.0885 0.0885 0.0885
7 L+, 3.01 1.05 4.60 6.87 ext. LEPS 90 36 0.1445 0.1445 0.0225
e+, 1.93 5.57 6.91
cL+ D 0.68 477 6.86
c1 + bH 1.87 5.04 6.90
a. see section III for explanation of abbreviations .
b.  Muckerman's surface no.
c. except Dyy = 76.8 kcal/mol (reference 83)
d. Polanyi and Sathyamurthy's surface I,IIG
e. Polanyi and Sathyamurthy's surface IIG
f. Liu-Siegbahn-Truhlar-Horowitz surface (references 29-31)
g. surface no. 3 of reference 36
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potential energy surfaces. We consider the classical case as well
as the quantized ones.

The theory presented in section II is easily simplified for
collinear reactions: volume becomes length, o becomes the vibrational
quantum number n, and rotations and bends do not occur. For the clas~-
sical case, n is replaced by a continuous vibrational radial action
variable. To distinguish quantities calculated classically from
their quantized versions, we put a subscript C on the classical ones.
For example NC (E,s) is the classical GTST cumulative reaction proba-
bility. To calculate it, the sum in (2) is replaced by the phase
space integral that is its classical limit. CT(T,S) has the inter-
pretation that it is the energetically accessible area in phase space
of the generalized TST dividing surface divided by Planck's constant.
The classieal generalized TST microcanonical rate constant is then
calculated by

kG (B,8) = Ng' (E,8) /ho () (36)

6T )
N. (E,s)

| -

P I R Y PO B
-0 05 00 05 1O

slo,)

Fig. 1. Generalized-transition-state-theory cumulative reaction
probability or sum of states NGT(E,S) as a function of reaction
coordinate s for collinear H + Hy + H, + H and collinear D + H, +
DH + H. The curves are labelled at the edges by the energy above
the barrier (E - V¥) in kcal/mol. The flat sections at both sides
are the asymptotic values for s = tw,
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where ¢%(E) is the classical limit of ¢R(E).

Most tests of the fundamental assumptions of classical TST have
been for collinear reactioms.% 15 For reactions with high barriers
classical TST is a very good approximation to exact classical dynamics
for energies just above the saddle point energy. In Fig. 1, we have
plotted the classical generalized-transition-state—~theory cumulative
reaction probability CT(E,s) as a function of the reaction coordinate
for four values of the total energy for the reactions H + H, and D+H;
on the Truhlar-Kuppermann®® (TK) potential energy surface. This
potentlal energy surface has a symmetric barrier of 9.79 kcal/mol.

For the symmetric H + H, reaction both the potential along the MEP
and the transverse stretching frequency exhibit extrema at the saddle
point, thereby guaranteeing an extremum in NCT(E,S) as a function of
s at s=0. At low energies this is a minimum. For D + Hp, the mini-
mum of the sum—of-states curve deviates from the saddle point at a
much lower energy, 1.5-2 kcal/mol above the barrier, compared to
2.5-3 kcal/mol above the barrier for H + H,. For both reactions the
effect of variationally optimizing the location of the dividing sur-
face is negligible for energies mear the classical threshold; however,
these variational effects become quite important for D + Ho at lower
energies than for H + Hp., This is illustrated in Fig. 2. The

3 S T T T | B N M T v
H (D) +Hgp
I TK surface
2k #1D) ]
i < (H)
or g
z // pVTH)
le il AvT(D) .y
/
o E
=
Q 1 1 i 1 " 1 1 1 Il L 1L
[ 2 4 10 12

6 8
E-Vgp (kcai/mol)

Fig. 2. Cumulative reaction probability for collinear R + H; - Ho +H
and collinear D + H, - DH + H as a function of enexgy above the bar-
rier (E——V*). For each reaction the results obtained by conventional
transition state theory and microcanonical variational transition
state theory are both shown.

e o e e e
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quantized generalized-TST sum of states can be obtained from the
classical one by the prescription

l(E,s) = TFIX [N‘éT(E;s) + 4] (37)

where IFIX truncates its argument to the next lowest integer. The
lowest energy to give a nonzero quantized sum of states at the saddle
point will be the energy for which NgT(E,s=O) = %. For H + Hy this
threshold energy is approximately 3.1 kcal/mol above the classical
barrier height. At this energy the minimum of the sum~of-states
curve has already moved off of the saddle point, but the difference
of the sum of states for these two locations. is negligible. For

D + Hy the energetic threshold of quantized pVT is about 2.9 kcal/mol
above the classical threshold and at this energy the minimum and
saddle point values of NGT(E,S) differ considerably. Although varia-
tional effects were small for both these reactions in the classical
threshold region, the variational effects can be quite large in the
quantized threshold region. This behavior is shown in Table 2 for
the D + Hy, reaction. For the D + H, reaction at 300 K the conven-
tional-TST and pVT rate constants differ only 27 in the classical
theory, but differ by a factor of two when the bound degree of
freedom is quantized.

A detailed study of the bottleneck regions of the potential
energy surface for 24 collinear reactions for a temperature of 300 K
is presented in Table 3. Three regions of the potential energy
“surface are examined: the saddle point (s=0), the maximum (s==s§G)
of the gquantized adiabatic ground-state potential curve Va(s), and
the quantized CVT transition state at 300 K [s==SEVT(300 K)]. The
maximum of the ground-state adiabatic potential curve is the varia-
tional transition state for energies near threshold. For each
dividing surface location the table presents the potential energy
on the MEP, the harmonic vibrational frequency (in the form hug;)
for the bound motion normal to the reaction coordinate, and the
value of the adiabatic ground-state potential curve, The value of
s at the saddie point is zero, and the table gives the values cof s
at the two other dividing surface locations; in particular SEVT(T)
is the location of the CVT transition state at temperature T and
s*G is the location of the VAG barrier maximum. Also included is
a ratio of the conventional TST canonical rate constant to the CVT
one at 300 K. This ratio is the CVT recrossing correctiom, %.e.,
it is the CVT estimate of the correction factor for recrossing of
the conventional dividing surface; it is the product of two factors:
Fy, which is the ratio of the Boltzmann factor of VMEP(S) at the
saddle point to that at the CVT dividing surface, and F,, which is
the ratio of the generalized transition-state wvibrational partition
function at the saddle point to that at the CVT dividing surface.



Table 2
Classical and quantized canonical rate constants (units of cm molecule™! s=1) for the collinear
reaction D + Hy + DH + H on the TK surface.

LSLA A8 SNOIO3H X23INT1LL08

Classical Quantized
T, K ,
4L @ koo oy F o

200 2.66 x 1076 2.64 % 1076 1.01 1.54 x 10-2 5.50 x 1073 2.80
300 1.19 x 10~2 1.17 x 1071 1.02 2.81 x 100 1.41x 100 1.99
600 6.20 x 101 5.61 x 101 1.11 6.05 x 102 4,21 x 102 1.44
1000 2.13x103 1.75 x 103 1.22 6.21 x 103 4.65x103 1.34
1500 1.35 x 104 1.00 x 10" 1.35 2.32 x 10% 1.68 x 104 1.38
2400 5.85 x 10% 3.85 x 104 1.52 7.37 x 10" 4.83 x 10" 1.52
4000 1.72 x 105 9.99 % 10% 1.72 1.87 % 105 1.09 x 105 1.72
7000 3.85 x 105 1.99 x 108 1.93 3.96 x 105 2,06 x 105 1.94

<09




Table 3
Generalized-transition-state quantities for collinear reactions at 300 K.

at saddle point

at maximum of

adiabatic ground- at CVT transition

comparisons of conventional and
canonical variacional

System » Skew state barrier transition state theory
A+ BC® Surface  angle
@egrees)  Gpp  fuy, oV Dy avte W g b, 0 od e % 0vr
(kcal/mol) (em~!) (kcal/mol) (ao) (kcal/mol) (ao) (kcal/mol) (em™!) (kcal/mol) v Fu hie
H+ B 1 60.0 9.13 2183 5.94 0 5.9 0 9.13 2183 5.94 1.00 1.00 1.00
H+H, 2 60.0 9.79 2025 6.37 0 6.37 0 9.79 2025 6.37 1.00 1.00 1.00
D +D, 2 60.0 9.79 1432 7.35 0 7.35 0 9.79 1432 7.35 1.00 1.00 1.00
D+H, 2 54.7 9.79 1743 5.97 -0.30 6.38 -0.30 8.38 3038 6.38 0.094  21.17 2.00
H+D, 2 65.9 9.79 1742 7.79 0.21 7.89 0.21 9.35 2122 7.89 0.48 2.46 1.48
15¢ + n!S¢ 3 20.4 4.49 510 1.13 0.13 2.10 0.13 3.64 1797 2.10 0.24 23.42 5.56
S7¢ + 57¢ 3 10.7 4.49 262 0.87 0.07 2.17 0.06 3.80 1617 2.16 0.31 39.5 12.3
“2¢ + H42c 3 11.1 4.49 71 0.89 0.08 2.18 0.08 3.76 1694 2.18 0.29 40.7 11.8
ClL+H, 4 45.8 7.67 1358 3.42 0.20 3.48 0.19 6.67 2184 3.58 0.19 7.09 1.32
1+, % 46.8 7.67 985 4.68 0.015 4.69 0.016 7.66 $97 4.68 0.98 1.03 1.01
cL+T, 4 47.3 7.67 824 5.25 0.013 5.25 0.013 7.67 £33 5.25 0.99 1.02 1.01
€l + DH 4 55.8 7.67 1252 4.08 -0.018 4.09 -0.18 7.66 1268 4.09 0.98 1.04 1.01
Cl + KD 4 36,4 7.67 1061 3.81 0.18 4.47 0.18 6.81 2138 447 0.23  .13.0 3.04
H + BrH 5 89.3 3.95 1821 2.78 0.54 3.14 0.54 3.73 2230 3.14 0.70 2.62 1.83
H + BrT 5 88.8 3.95 1487 3.86 0.92 4.66 0.92 3.69 2237 4.66 0.65 5.88 3.84
I+H, 6 45.2 35.87 1320 31.45 ® 32.84 - 35.80 2358 32.84 0.90 11.6 10.42
L+H, 7 45.2 35.88 1291 31,42 - 32.86 - 35.82 2358 32.86 0.90 12.4 11.17
F+H, 8 46.4 1.06 3853 0.31 ~0.35 0.61 -0.35 0.88 4204 0.61 0.73 2.27 1.66
LR 8 47.8 1.06 2726 0.53 -0.26 0.70 -0.26 0.95 2934 0.70 0.82 1.63 1.33

IV 13 L1354V9 "0 30Nn44g




H
]
T
H

Fz 9 80.9 2,35 787 2.20 -0,03 7 2.21 -0.03 2.35 793 2.21 0.99 1.01 1.
F, 9 77.4 2.35 m 2.18 -0.05 2.19 ~0.05 2.34 785 2.19 0.98 1.04 1.
Fy 9 74.8 2.35 763 2.17 -0.06 2.18 -0.06 2.34 783 - 2.18 0.98 1.05 1.
Cl2 10 83.2 2.40 524 2.37 -0.01 2.37 -0.01 2.42 524 .37 1.00 1.00 1.
cl 10 80.5 2.42 516 2.36 -0.02 2.36 -0.02 2.42 S18 2.36 1.00 1.00 1.

01
02
03
0o

00

a.

Ce.

d.

reaction occurs with the B end of the diatom
see Table 1

the angle between the rpp and rps axes in the (x,y) coordinate system which diagonalizes
the kinetic energy

exp{-[Vygp(5=0) - Vygp(s=sC'1)]/kpT}
¥

ratio of conventional TST and CVT vibrational partition functions: Q /QCVT

LSLA A8 SNOID3H 203NI11L08
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As discussed elsewhere,3® these factors are interpreted classically
as showing the competition between the energetic and entropic factors
in determining the location of the CVT transition state.

The first three systems are symmetric reactions of H + H, and
D + Ds. For these systems there is no effect of variationmally opti~
mizing the dividing surface for CVT at 300 K. For the nonsymmetric
reactions D + Hy and H + Dy the CVT transition state for 300 K is
essentially located at the top of the ground-state adiabatic barrier.
This is at a location of s=-0.30 aj for D + Hy and-s=0.21 ag for
H + Do. In moving the dividing surfaces to these locations the
potential energy along the MEP drops by 1.41 and 0.44 kcal/mol for
D + Hp and H + Dy, respectively, but the harmonic frequency for the
bound motion increases from 1743 cm™! to 3038 cm™! for D + Hy and
from 1742 cm™! to 2122 em™! for H + Dp. The larger increase in the
D + H, vibrational frequency allows the CVT transition state to be
moved further from the saddle point and gives a larger decrease of
the generalized transition-state theory canonical rate constant.
The larger variational effects for D + H, as compared to H + D, are
an example of a general effect which depends on the mass combination
and can be correlated to the skew angle” defined by

mBmABC]%
AT

B = arctan [ (38)

The smallest skew angles occur in heavy-atom collisions with a light
atom-heavy atom molecule (H + LH). Asymptotically the [H pair has

a small reduced mass and high vibrational frequency. Consider a
symmetric system (A + BA) in the rap,>Tgg coordinate system. At the
symmetric saddle point the transverse stretching motion is just the
vibration of the two heavy atoms with the light atom fixed. This
motion has a high effective reduced mass and, therefore, a low vibra-
tional frequency. When the potential surface is plotted in scaled
and skewed coordinates this drop in frequency at the symmetric saddle
point is a widening of the vibrational potential in this region.

For systems which are not exactly symmetric the atom In the middle
will move at least slightly in the symmetric stretch motion and will
affect the reduced mass. However, the qualitative effect is the
same. For the D + H, and H + Dy reactions the skew angles are 54.7°
and 65.9°, respectively. Thus, the decrease of the tramnsverse vibra-
tional frequency in going from treactants to the saddle point will be
greater for D + Hp than H + D;. The variational optimization of the
dividing surface locates the dividing surface away from the saddle

*
The skew angle is the angle between the rpg and rpe axes in the
scaled and skewed coordinate system that diagonalizes the kinetic
energy.?
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point where this frequency is higher. Although the H + D; and D + Hjp
reactions are not symmetric they do have a symmetrically located
saddle point. For reactions in which the saddle point is not at a
symmetric location and which have small skew angles, this dip in the

vibrational frequency will be seen in the corner-turning region of
the MEP.

The next three systems considered in Table 3 are symmetric or
nearly symmetric with extremely small skew angles. These systems are
three-body models for H-atom transfer between two rigid alkyl groups.
For the three isotopic variants on this potential energy surface we
see that as the skew angle decreases the vibrational frequencies at
the saddle points drop dramatically; however, the vibrational frequen-
cies for these three systems at the CVT transition states are much

T T 1 7 7 T - 1 T 7T

(E,s)

[+

[ — cisoH
0.2} ==~ C1+HD

| AT (U T A FUN SRR SR |
-5 -1.0 -05 00 05 1O L5
s (a,)

Fig. 3. Same as Fig. 1 except for collinear Cl + HD -+ Cl1H + D and
collinear Cl1 + DH - C1D + H. '
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T T T T T Y T T
Cl + HD (DH) e
[ SPK surface //
3 //// .
# (HD)
= / :
N o | 1
9 of- - -
2 P // LV T(HD)
VT(OH)
- s
1 rd -
A=
- // ‘ .
Oo 1 é A 1 L 1 L 1 { tlo J %

4 [
E-Vgp (keal/mol}

Fig. 4. Same as Fig. 2 except for collinear Cl + HD -+ C1H + D and
collinear C1 + DH - C1D + H.

more similar. For these systems the ratios of the conventional-TST
partition functions to the CVT ones are quite large leading to large
values of the ratios of conventional TST and CVT rate constants.

The potential energy surface’® for the Cl + H; reaction has a
small classical endoergicity of 3.01 kcal/mol and a nearly symmetri-
cally located saddle point. Table 3 contains five isotopic variants
of this reaction, The three systems with the highest skew angles
ClL +D;, C1 + Ty, and C1 + DH have negligible variational effects at
300 K, whereas for Cl + H; and C1 + HD the variational effects are
large. 1In Fig. 3 classical generalized sum—-of-states plots are com-—
pared for the smallest- and largest-skew-angle systems, Cl + HD and
Cl + DH respectively. At low energies near the classical threshold
the minima of these curves are near the saddle point for both systems.
The fact that the transverse vibrational frequency for C1 + DH changes
more slowly in moving away from the saddle point leads to flatter sum-—
of-state curves with minima near the saddle point. As a result, as
1llustrated by Fig. 4, there is a greater difference between TST and
VT for C1 + HD than for Cl + DH.

As a contrast to small-skew-angle reactions involving the trans-
fer of a light atom between heavy atoms, we have also studied the
H + BrH and H + BrT systems which have high skew angles of 89.3° and
88.8°, respectively. Although the effects of variational optimiza-
tion of the dividing surfaces are not as large as in some of the
small-skew-angle systems, the increase of the transverse vibration-
ally frequency upon moving off of the symmetrically located saddle
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point leads to 45% and factor-of-3.8 decreases of the generalized
transitlon-state theory rate constant by variational optimization

of the dividing surface for H + BrH and H + BrT, respectively, at
300 K. Thus, the small skew angle is not necessary to observe such
effects; they may result from the shape of the potential energy sur-
face even for large-skew-angle systems.

Reactions which are highly endoergic (exocergic) tend to have
late (early) barriers.?! The last nine systems listed in Table 3
are highly endoergic or exoergic reactions. The two potential energy
surfaces used for the I + H; reaction are very similar; both surfaces
have saddle points which are located in the interaction region and
are extremely low, 0.06 kcal/mol above the bottom of the asymptotic
product vibrational well. In the interaction region the transverse
vibrational frequency is conslderably lower tham the product vibra-
tional frequency. Because of the small change in the potential along
the MEP in going from the saddle point to products the change in the
vibrational frequency locates the CVT dividing surface in the asymp-
totic product region. The saddle point for the F + H, reaction is
not quite as far into the interaction region as it is in the H,I
system, and also the intrinsic barrier is higher, 1.06 kecal/mol.
Therefore, the entropic factor does not dominate as much in this
reaction as for I + Hp and the variational effects for ¥ + H; and
F + Dy are smaller than for I + Hy. The H + F, and H + Cl; reactions
are strongly exoergic with saddle points well into the asymptotic
reactant region. For these systems the transverse vibrational fre-
quency is slowly varying along the reaction coordinate near the
saddle point and no variational effects are seen.

Finally we note a general feature of Table 3. The location of
the CVT transition state at 300 K is very close to the maximum of the
adiabatic ground-state potential curve for all 24 systems. This is
because at low temperatures the dominant contribution to the canonical
rate in the adiabatic theory comes from the ground-state state-—
selected rate constant. At higher temperatures deviation of the CVT
dividing surface location from the location of the maximum of the
adiabatic ground-state potential curve will become greater; however,
in most cases involving H the ground state dominates up to high tem-
peratures (about 1000-1500 K). Therefore, the most important region
of the potential energy surface for performing variational TST cal- :
culations is the region around the maximum of the adiabatic ground- 1t
state curve. : : ]
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V. QUANTIZED THREE-DIMENSIONAL REACTIONS AT ROCM TEMPERATURE

Although VT is the most accurate of the wvariational theories,
its application is computationally the most difficult because of the
state counting needed to compute the generalized number of states,
NGT(E,S). Comparisons of uVT, CVT, and ICVT for collinear reactions
indicate that ICVT can eoffer much improvement over CVT and can also
provide a much more practical method for calculations in three-
dimensions than pvT.23,24 Thus, our apglicaticns of VIST to three-
dimensional reactions have used CVT27533735 .54 1cvT.23.24,36
These applications fall under three general categories: (i) tests
of the theory against accurate quantum scattering calculations using
a semiempirical potential energy surface?’ or against experiment
using an accurate one,28 (ii) studies of the effects of variational
optimization of the dividing surfaces for a wide variety of systems
using RMBEBO potential energy surfaces,33»3% and (iii) adjustment of
semiempirical potential energy surfaces such that the VIST calcula~
tions reproduce experimental data as well as possible.3%® For three-
dimensional reactions we have generally found that the ICVT and CVT
predictions are very close. Since CVI is easier to interpret, our
discussion here will be limited to CVT calculations in categories
(ii) and (iii). We begin with a brief review of the formalism;
details of the theory and computational aspects of the calculations
can be found in references 23 and 33.

A. Implementation of the Theory for Three-Dimensicnal Atom-Diatom
Reactions

We consider the class of three-dimensional reactions of an atom
A with a diatomic BC in which the MEP is collinear. For these cases
the MEP is the same as for collinear reactions. The GTST expression
for the three-dimensional canonical rate constant is given by
equation (4). For these cases the reactants partition function per
unit volume is approximated by

A,BC

R
¢ (1) = el

@ & @ &Fom (39)

where ¢ééEC is the reactant relatiye-translational partition function
per unit volume, and Qgr.(T) and Qs (T) are the stretching vibra-
tional and rotation partition functions for the BC molecule. Simi-
larly the partition function for the genmeralized transition state 1
located at s is approximated by the product of terms for the stretch- 3}
ing, bending, and rotational degrees of freedom ‘%

e (r,8) = Q1 (,9) (Q0 T (x,8)17 QT (x,8) (40)

DETET, (T Iy LY ST ST R B
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where
nmax(s)
ngr(T,S) = ¥ exp[ﬂsegir(n,S)] (41)
n=0
imax
G (1,8) = | expl-Bey (i,8)] (42)
=0
GT - 2
Q. (T,s) = Y (23+1) exp[-8hI(I+1)/21(s)] (43)
J=0

I(s) = {[rAB(S)]ZmAmBC + [rBC(S)]ZmCmAB

+ 2ryp(s) rpo(s) mymp Hmy g (44)

and egEr(n,s) and egT(i,s) are the quantized energy levels for the
stretching and bending vibrational degrees of freedom, respectively,
with the zero of energy chosen at the bottom of the vibrational well
at s. The potential energy for the stretching degree of freedom is
fit to a Morse potential as in the collinear case. The bending
potential is approximated by a mixed harmonic-quartic
potentialaa’qsﬂg for which iy, is the highest bound state. The
harmonic vibrational constants for the stretch and the bend are
called ﬁmstr and ﬁwb, respectively. Quantization of the bound
degrees of freedom is implemented by using anharmonic quantized
energy levels in the partition functions.

The conventional TST rate expression is obtained by evaluating
kGT(T,s) at s =0 and the CVT rate expression is obtained by evalu-
ating kCT(T,s) at the location sgVT(T) which minimizes it. In the
collinear case the stretching degree of freedom was the only one
responsible for moving the CVT transition state off of the saddle
point location. For reactions in three dimensions the competition
between the energetic and entropic factors now contains contributions
from bending and rotational degrees of freedom., As discussed above
(section IV) for collinear reactions, the ratio of rate constants
k*(T)/kCVT(T) is the CVT recrossing correction FCVT(T), Z.e., it is
the CVT estimate of the correction factor that accounts for recros-—
sing of the conventional dividing surface. For a three-dimensional
atom—diatom reaction, this recrossing correction is the product of
the ratios F (T) and F,.(T) of vibrational partition functions and
rotational partition functions, each with their zero of energy at
the respective location on the MEP, and of the classical Boltzmann
factor ratio Fy(T), Z.e.,
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FV N = F oo = m oy m rm 5)
where
_ ook CVT _ , ‘
F(T) = [Q(T)/Q) " (T)] (46)
and
F _(T) = v =0 VT 1 47
V( ) = exp {-8{ MEP(S ) - MEP( (M ] (

and the vibrational factor FV(T) can further be factored into

F (T} = Fstr(T) Fb(T) _ (48)
where
o CVT :
P (T) = Q0 (D/Q (1) (49)
and
F (D) = (D/aC () (50)

In these equations the superscripts % and CVT denote the value of
the GT partition function evaluated at s=0 or s= SSVT(T), respec—
tively. In the following subsections we shall use the factorization
of the CVT recrossing correction as given by equations (45)-(50) to
analyze the effects of variational optimization of the GTST dividing
surface and how these effects depend on potential energy surface.
Notice that the zeroes of energy for the generalized transition state
partition functions in equatioms (4), (5), and (40) are at the local
potential minimum Vypp(s) rather than at the local zerc point energy..
Thus equations (4) and (45)-(50) provide a factorization of the gquan—
tized rate constant into classical energetic and classical entropic
factors, as opposed to the quantized energetic and quantized entropic
factors. In other words, for purposes of interpreting the results,
we treat zero point effects as entropic effects rather than energetic
effects, although in a strictly quantum mechanical formalism zero-
point effects would be-energetic effects. As discussed else-
where,23+33=35 the method we use including zero point effects with
the entropic effects makes it particularly easy to contrast varia-
tional and conventional transition state theories. In this language,
conventional transition state theory locates the transition state at-
the highest energy point on the reaction path but variational tran-
sition state theory considers the competition of entropic and ener-
getic factors in defining the transition state.
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In this chapter we shall not emphasize the results of quantal
corrections to the reaction—coordinate motion for three-dimensional
collisions. However such corrections may be carried out using
essentially the same techniques as discussed above for collinear
reactions. In particular, we use adiabatic transmission coefficients
obtained by calculating quantal transmission through and across the
cne-dimensional adiabatic ground-state potential barrier

G, . _ GT , GT,.
Va(s) = VMEP(S) + astr(n—ﬂ,s) -+ 2€b (i=0,s) (51)

This differs from the collinear expression only in the addition of
the contributions from the doubly degenerate bending motion. The
Vg(s) barrier defined by equation (51) is also useful in interpreting
the origin of variational effects when quantal effects are not
included on the reaction coordinate, and we shall use it below for
this purpose.

B. Suxvey of Reactions on RMBEBO Potential Energy Surfaces

The RMBEBO model was used to generate a wide variety of potential
energy surfaces to study the effects of variational optimization of
the dividing surface for various reaction types. This wmodel does not
predict quantitatively reliable potential energy surfaces, and we made
no attempt tec empirically fit any of the potential parameters to
experimental data. Instead, we used previously published values for
the parameters to generate physically reasonable potential energy
surfaces that could then be used in VTST calculations.

In Table 4 we present a review of our studies of the effects of
variationally optimizing the dividing surface by CVT for the 300 K
rate constant for 14 representative three-dimensional reactions using
RMBEBO surfaces. All the reactions are listed in the endoergic or
thermoneutral direction, and the systems are listed in order of
increasing bond order niB of the new AB bond at the saddle point.

(It is not necessary to study exoergic reactions separately since
both conventional TST and VIST satisfy detailed balance.) For a bond
order nyp near zero the saddle point is in the asymptotic reactant
region whereas for I p hear one the saddle point is in the asymptotic
product valley; this agrees with Hammond's postulate.®? The bond
order nap, the potential along the MEP, and the vibrational frequen-
cies for the stretching and bending degrees of freedom are given at
the saddle point and at the CVT dividing surface for 300 K. The
location and height of the maximum of the adiabatic ground-state
potential curve are also indicated. The ratio of the conventional
and CVT rate constants is presented and is decomposed into its con-
tributions from the classical energetic factor [the Boltzmann factor
of Vypp(s)] and the remaining, or classical entropic, factors. Im
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Table 4
Generalized-transition-state quantities for three-dimensional reactions with RMBEBO potential
energy surfaces at 300 K,

at maximum of comparison of convent {onal and
at gaddle poinc adiabatic ground- at CVT transition state canonical varfational
System ::lkgelwc s, state barrler_. transition srare theary
A¥ B egrees) (keal/mol) o, Vugp Py ey e . vt L LR T F, Foe % F, VT
(keal/mol) (cw™') (em™!) (kcal/mol) (kcal/mol) (kcal/mol} (cm™!)  (em™!) (keal/mol)

C + HC 23 0.0 0.50 12.7 621 508 10.94 0.37 12.83 0.37 12.1 2364 497 12.83 0.40 65.8 0.94 .0.99 24.7
cL+ccl 42 © 0.0 0.50 3.6 305 80 3.06 0.3 3.30 0.35 3.4 599 78 336 0.7 2,48 0.95 0.99 1.74
c+cic 18 0.0 0.50 6.2 520 75 5.93 0.5 5.93 0.50 6.2 520 75 5.93 1.00 .00 1.00 1.00 1.00
c+uy a7 184 0.55 10.7 1759 662 12.88 0.39 .14 0.40 13.9 3118 673 14.12 0.32 24.5 1.06 0.96 7.9
o+ HO 7 6.19  0.62 10.8 3260 603 11.92 0.72 12.34 0.71 10.6 3733 584 12.33 0.73 3.0 0.91 0.95 1.90
cL+cH 13 22.6 0.85 4.8 761 198 27.81 0.82 27.85 0.81 4.6 857 214 27.83  0.77 127 118 1.00 1.15
W+ HF 6 K13 0.91 33.0 4279 488 .62 0.91 34.63 0.90 32.9 4248 515 3.62 0.95 0.93  1.16 1.05 1.08
Lt + HO 25 55.4 0.95 62.7 1546 320 60.49 0.93 60.54 0.93 62.6 1603 341 60.54 ' 0.85 1.14 1.16 1.05 1.19
€1 + HO 17 7.2 0.96 8.3 3020 mn 8.16 0.92 8.24 0.89 8.4 3053 235 8.20 o0.72 1.08 1.8 1.15 1.63
€l + WP w o 0.987  34.4 3008 143 33.22 0.98 33.28 0.96 34.2 3035 203 n.22 0.70 1.07  1.89 1.18 1.67
Li + KD 31 16.6 0.991 18.9 1390 172 18.07 0.98 18.10 0.96 18.6 1418 226 18.03 0.67 1.07 1.72 1.20 1.48
CL + C1H 83 ' 45.0 . 0.992 . 0.7 563 69 45.91 0.991 45,91 0.985 0.7 561 83 45.89 0.86 0.99 1.42 1.01 1.22
1410 15 " s 0.99% 0.2 2321 112 39.37 0.988  39.42  0.979 0.03 2345 162 39.35 0.71 1.06 1.9 1.18 1.68
1+ HBr [ 16.1 0.998 0.1 21 83 16.52 0.996  16.55 0.989  16.5 2314 139 16.44 0.67 .01 2,35 1.25 1.98

IV L3 LI3HHYD "0 30N48

e e e ey
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the collinear reactions the only contribution to the generalized
transition—state partition function is from the stretching degree

of freedom, whereas for reactions in three dimensions there are con-
tributions to the classical entropic factor from the bending and
rotational degrees of freedom as well.

As in the collinear reactions, the symmetric systems with small
skew angles have the largest effects of variationally optimizing the
location of the dividing surface at room temperature. For symmetric
reactions the stretching degree of freedom provides the dominant
entropic factor in moving the generalized transition-state dividing
surface off the saddle point, and the CVT dividing surfaces for such
systems are located to increase the stretching vibrational frequency.
This can be understood by examining the energy levels for the wvarious
degrees of freedom. The vibrational frequencies, and thus the vibra-
tional energies, of the stretching degree of freedom are much larger
than those for the bending degree of freedom. The rotational energy
levels are the most closely spaced. The energy levels of the stretch-
ing degree of freedom are sufficiently high that at low temperatures
the stretching partition functions are dominated by the ground state
and the ratio of stretching partition functions for two locations of
the GTST dividing surface is approximately given by )

Fstr(T) z exp (—B{estr(n=0,s=0) - € tr[n=0,s=s:VT(T)]}) (52}

s

Small differences in the stretching vibrational frequency at the
saddle point and CVT dividing surface location can give a large ratio
of stretching partition functions. The bending and rotational energy
levels are much more closely spaced and to a good approximation these
degrees of freedom can often be interpreted classically. In such
cases the ratio of bending partition functions is approximated by

" wb(s=s§VT)

Fb(T) = mb(s=so)

- (53)

and the ratio of rotational partition functions is approximated by

N I(s=0) E
P 2 S o (54)
I(s=s, )

Thus, in contrast to the stretching degree of freedom, small changes
in the bending frequenecy or moment of inertia do not result in large
changes in the ratio of partition functions at low temperatures.

The rotational degree of freedom does not contribute signifi-
cantly to the ratio of rate constants FCVT(T) at 300 K for any of
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the systems in Table 4. The bending degree of freedom plays a more
important role, however, for the endoergic systems with saddle points
in the asymptotic product region. TIn these systems the BC bond length
at the saddle point is large and the bending motion is very "loose".
The bending motion can be tightened by moving the generalized tran-
sition state towards the reactant valley. If the saddle point is
sufficiently far into the asymptotic product region the stretching
frequency will be nearly equal to its asymptotic value and will be
slowly varying with respect to the location of the dividing surface.
For example, for the I + HO and I + HBr reactions the bending degree
of freedom gives the major contribution to the ratio of rate constant
FCVT(T) at 300 K.

At low temperatures such as T =300 K the variational effects are
larger for the symmetric systems in which the stretching degree of
freedom dominates than for the systems with saddle points in the
asymptotic product region where the bending degree of freedom domi-
nates. However, at higher temperatures this trend can reverse as
discussed in section V.

€. Survey of Reactions on Other Potential Energy Surfaces

The effect of variationally optimizing the dividing surface has
also been investigated for three-dimensional reactions using other
analytic functional forms for the potential energy surface. The most
popular analytic expressions for global potential energy surfaces are
the LEPS and extended LEPS functional forms.’0:71-82 1n Table 5 we
present our results for a variety of reactions on such surfaces.
Information about the surface parameters, quantal endoergicities,
and adiabatic ground-state barrier heights are listed in Table 1.

In Table 5 the systems are ordered similarly to the order used in
Table 4, ©.e., the reactions with symmetriec saddle points are listed
first, followed by those with saddle points progressively further
into the product region. As in Tables 3 and 4, the classical poten-
tial energy (referenced to the classical equilibrium position of the
reactants), the harmonic frequencies for the bound degrees of free-
dom, and the wvalue of the adiabatic ground-state potential energy
curve (referenced to reactant zero point energy) are given for two
locations of the dividing surface: the saddle point and the CVT
transition state at 300 K. The location and height of the maximum
of the ﬁround—state adiabatic potential curve, the ratio

k¥ (T)/kVT(T), equal to the CVT recrossing factor FCVI(T), and its
factorization into Fg, (T), Fy(T), F(T), and Fy(T) are also given.

The first system in Table 5 is a three-body model5? of a

- hydrogen~atom transfer between two methyl groups. The results for
the collinear reaction of the same system were included in Table 3.
For collinear reaction the stretching degree of freedom competed

e &

5
=
.

5
1
i




Table 5
Generalized-transition-state quantities

energy. surfaces at 300 K.2

for three-dimensional reactions with various potential

at saddle point

at maximum of
adiabaric ground=
state barrier

at CVT transition state

comparison of conventional and

canonical varlational
transition state theory

System Skew

A+ BC e ¢ d:::;) Vg g Bw, 0 e vt N N o™ . . . . VT
(keal/mol) (cu™!) (em™}) (kcal/mol) (ap) (keal/mol) (ag) (keal/mol) (em!) (em!) (kcal/mol) v ser b *

15¢ + ulsc 3 20.4 4.49 510 62 3.01 -0.13 3.80 -0.13 3.68 1765 57 3.80 0.25  21.68 0.74 0.98 3.98
1 +HL 1 7.2 1.53 146 392 -0.3% -0.32 1.05 -0.23 112 1563 314 1.03 0.50  58.1 0.60 0.96  16.5
14 H1 12 7.2 1.35 149 3% -0.57 -0.39 0.94 -0.28 0.96 1662 302 0.92 0.52  72.0 0.55 0.93 | 18.9
C1L + DH 4 5.8 1.67 1252 563 5.77 -0.20 5.94 ~0.19 6.48 2084 623 5.94 0.13 .21 1.40 0.95 1.29
CL + WD 4 36.4 7.67 1061 664 5.82 0.15 6.08 0.14 7.04 1937 544 6.08 0.35 8.04 0.53 0.97 1.42
H + Bell 5 89.3 3.95 1821 98 2.78 -0.54 3.39 -0.37 3.88 2079 85 3.35 0.89 1.84 0.81 0,95 1.26
B+ BrT 5 8.8 1.95 1487 80 411 0.92 4.87 0.68 3.84 2095 70 4.83 0.83 4.21 0.83 0.86 2.48
c1 + cK 13 6.1 31.01 695 109 28.22 -0.005  28.22 -0.02  30.99 693 115 28.20 0.96 0.99 1.10 1.00 1.05
ClL+cH I 76.1 25.61 827 12 2.1 -0.036 22,71 -0.31  25.34 799 % 22,47 0,64 0.93 3,79 1.09 2.47
€1 + WP 15 16.1 43.72 755 435 38.93 0.090  41.53 0.085  43.30 2057 383 41.53 0.49 22,6 0.73 0.97 7.91
[ ‘16 16.1 35.01 2288 383 33.58 0.19  33.77 0.12  34.98 2525 138 33.75 0.9 1.75 0.75 0.96 1.18
Na + ClH 17 84.0 10.61 832 47 7.72 -0.50 8.56 -0.42  10.15 1722 56 8.55 0.46 8.48 1.3 0.86 4.47
Br + HCL 18 11.58 16.69 1437 307 15.42 0.42  16.14 0.24  16.55 2148 226 16.08 0.83 5.38 0.54 0.93 2.25

a. column meanings are as explained in text for Tables 3 and 4; the endoergicities are

in Table 1

1SLA A8 SNOID3H MO3IN31LL08
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Table 6

Comparison of stretching frequencies (cm™!) from a
molecular orbital calculation and from two model
potential energy surfaces,

PRDDOZ ext. LEPS  ext. LEPS RMBERO

Hy'?c-H-12cH; 15¢-p-15¢ 12¢c-y-12¢ 12¢-p-12¢

C-H stretch ' 3700P 2889 2912 2912
C-H-C symmetric 740° 510 548 621
stretch

a. reference 93
b. Cg, H3C-H with tetrahedral angles
c. Di3q H3C-H-CH3 with tetrahedral angles

well with the classical Boltzmann factor in determining the position
of the CVT dividing surface; however, in three dimensions it must
compete with the bending degree of freedom, and this lessens dis-
placement of the CVT transition state from the saddle p01nt from
0.134 ag to 0.127 ag. It also lessens the ratio k*(T)/kC (T),
although this ratio is still very large for the three-dimensional
reaction—a factor of 4 at 300 K. A similar system was studied using
the RMBERO model and is included in Table 4.33:35 For the RMBEBO case,
the ratio FCVT(T) of three-dimensional rate constants is much larger
than for the extended LEPS surface because the potential energy along
the MEP varies more slowly in the vicinity of the saddle point. Thus,
at the CVT surface transition state for the RMBEBO surface, although
it is only 0.062 a,; from the saddle point, the stretching vibrational
frequency is 2364 cm'l, which is much larger than the value of

621 cm~! at the saddle point. The corresponding values for extended
LEPS system are 1765 cm~! and 510 cm™!. 1In Table 6 we compare the
stretching vibrational frequency for CH in the reactants and for the
C-H-C symmetric stretch as calculated®3 for H3C-H-CH3 using the PRDDO
molecular orbital method?* to the values for extended LEPS and RMBEBO
model surfaces. This comparison indicates that the model potentials
provide a reasonable representation of this system, at least in the
saddle point region. Thus the large decrease of the stretching fre-
quency at the saddle point as compared to either reactants or pro-
ducts, which is the crucial feature of the model surfaces that causes
them to have large k¥ (1) /xCVT values, does not appear to be an arti-
fact of our models.
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The I + HI surfaces®3 have symmetrically located saddle points
and very small skew angles. These cases, like the case discussed in
the previous paragraph, show that the very large effects of varia-
tional optimization of the dividing surface seen for the RMBEBO
systems with symmetric saddle point locations are not restricted to
those types of surfaces.

The collinear reactions for the H + BrH and H + BrT systems70’79
have k*(T)/kCVT(T) ratios of 1.83 and 3.84, respectively, at 300 K.
Table 5 shows that the effect of the bending degree of freedom on
these systems is to decrease these ratios. It also decreases

(T), e.g., from 0.54 ag for collinear H + BrH to 0.37 ag for
three dimensional H + BrH. The situation is similar for the C1 + HD
reactions, for which k¥(T)/kCVI(T) decreases from 3.04 to 1.42 and

(T) decreases from 0.18 ajy to 0.14 ap in passing from a one-
dimensional to a three-dimensional werld. In contrast, for the
Cl + DH system in which the collinear k*(T)/kCVT(T) ratio is only
1.01, the three-dimensional ratio is 1.29. Notice that both the
stretching and bending degrees of freedom contribute factors of 1.4
or more to this ratio. For Cl + DH, SCV (T) changes from -0.02 ag
for the collinear reaction to -0.19 ag for the three-dimensional
reaction.

Results for the Cl + CH system with an RMBEBC surface were
included in Table 4, and Table 5 gives results for this system for
both LEPS and extended LEPS surfaces. For these two surfaces we use
the same set of equilibrium geometries, range parameters, and dis-
sociation energies for the input Morse curves as we did for the
RMBEBO surface, and we present results for two sets of Sato para-
meters. The first choice, a LEPS surface with all Sato parameters
zero, yields a saddle point whose location and height are close to
thosg obtained from Ehe RMBEBO surface. The saddle point location
is = 3.42 ag, Tey = 3.22 ap, and the intrinsic barrier height
is 5. %g kcal/mol For the RMBEBO surface the saddle point is located
at rﬁlc = 3.40 ag, réy = 3.00 ap, and the intrinsic barrier height
is 4.78 kcal/mol. TFor both these surfaces, the Cl-C bond distance
at the saddle point is very near its equilibrium value of 3.33 ag,
and the saddle point is well into the product channel. The second
choice of Sato parameters, SCl ¢ = Sc1 B = 0.167, is based on the
values that Stern, Persky, and Klein78 *used for Cl + Hy. This leads
to an extended LEPS surface which is very different from the two
previous sgrfaces; the saddle point is extremely far into the product
channel, rgye = 3.33 ag and rEH = 5.14 ay, and the intrinsic barrier
height is only 0.11 kcal/mol. Although the LEPS surface resembles
the RMBEBO surface more than the extended LEPS surface does, the
variational effects on the LEPS and RMBEBO surfaces are quite dif-
ferent. TFor the RMBEBO surface the effects of the stretching and
bending degrees of freedom reinforce each other, but only a small
decrease in the rate constant is realized from placing the dividing
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surface at the CVT location. On the LEPS surface the stretching and
bending degrees of freedom compete, and the k*(T)/kCVT(T) ratio is
closer to unity. For the extended LEPS surface on which the saddle
point is well into the asymptotic product region, the location of the
CVT dividing surface is dominated by the bending degree of freedom.
The tightening of the bending potential contributes a factor of 3.79
toward reducing the rate constant upon moving the dividing surface
from the saddle point to the CVT transition state; the resulting

k¥ (T) /kCVT(T) ratio is 2.47 at 300 K. :

The results for the first of the two Cl1 + HF systems in Table 5
were obtained for a LEPS surface for which the equilibrium geome-
tries, range parameters, and dissociation energies for the input
Morse curves are the same as for the RMBEBO surface used for the
system listed in Table 4, and all Sato parameters are set to zero.
This gives a surface with a more symmetric saddle point than the
RMBEBO one, and the intrinsic barrier height is much larger, 9.62
kcal/mol as compared to 0.28 kcal/mol for the RMBEBO surface. For
the more symmetric LEPS system, the small skew angle of 16.1 degrees
leads to a large contribution (22.6, see Table 5) to the ratio of
conventicnal TST and CVT rate constants from the stretching degree
of freedom. The other surface studied for Cl + HF has the parameters
of Ding et al.8% This surface has its saddle point further into the
product channel than the previous LEPS surface but not as far as the
RMBEBO saddle point, and the intrinsic barrier height is 1.08
kcal/mol. In this system the stretching degree of freedom dominates
the location of the variational dividing surface, but the competition
of the bending degree of freedom makes the CVT dividing surface pass
only slightly less flux than the saddle-point one.

The Na + CIH reaction is studied with a potential surface of
Polanyi and Sathyamurthy;®% this surface has a saddle point that is
nearly symmetric and the effect of variationally optimizing the
dividing surface is to place it more towards reactants. This is a
consequence of the fact that the heavy-light mass combination of the
initial diatom leads to the reactant stretching frequency being
higher than that for the products. The conventional transition~-state
theory stretching frequency (832 cm~1) is also well below the product
stretching frequency (1829 em™1), but the optimum direction to move
the dividing surface is towards reactants. TFor this reaction moving
the dividing surface from the saddle point towards reactants tightens
both the stretching and bending vibrational motions and greatly
reduces the calculated rate constant.

The final system considered in Table 5 is the Br + HCl reaction
for the extended LEPS surface of Douglas et al.8% Although this
system has its saddle point well into the product chennel, it differs
from other systems with this property in that it does not have the
location of its variational dividing surface dominated by the bending




Table 7

Kinetic isotope effects for the three-dimensional reactions Cl + AB + ClA + B where

A,B=H, D, T.

(For homonuclear AB our rates are for reactions with both ends.)

k(AB) /k(CD)

AB/CD T surface 4 surface 27 b

(¥) Py 5 Py Y experiment
/W CVT/MCPSAG /W CVT/MCPSAG

H2/(HD+DH) 245 3.1 3.1 2.4 2.6 3.4
345 2.5 2.4 2.1 2.0 2.5
1000 1.5 1.5 1.4 1.4

1-12/1)2 245 13.7 7.2 10.4 5.1 14.6
345 8.0 4,7 6.6 3.5 7.5
1000 2.3 2.2 2.2 1.8

H2/T2 245 37.3 17.7 26.3 10.1 34,2
345 21.6 11.4 16.5 6.9 18.3
1000 3.5 2.5 3.3 2.5

a. reference 36

b. reference 78

1S1A A8 SNOID3H J03aN311108

£29




Table 8
Temperature dependence of CVT transition states and of factors controlling the CVT recrossing >
correction for three-dimensional reactions at 300 K (second line) and 2400 K (third line). s
% and CVT transition states . factors in k*/kCVT
System Surface VP 8 R A8 RB ¢ VMEP flms er ‘Fmb . . . . . VT
A+ BC (kcal/mol) (ao) (ao) (ao) (keal/mol) (cn!) (em1) v str b r
H+F, 9 -103.54 0.0 3.59 2.72 2.35 787 58
0.08  3.51  2.72 2.32 774 63 0.95 0.97 1.14 1.00 1.06
0.36  3.23  2.75 1.42 735 85 0.82 0.94 1.69  1.01  1.32
T+F, 9 -103.54 0.0 3.59 2.72 2.35 763 41
0.05  3.54 2.72  2.34 746 4  0.98 0.96 1,08 1.0l  1.02
0.25  3.33  2.76 1.91 665 54 0.91 0.87 1.42  1.03 1.16
H+Cl, 10 -48.64 0.0 4.25 3,81 2.42 524 37
0.11  4.14  3.82 2.38 519 41 0,93  0.99 1.17 1.00 1.08
0.48  3.77  3.84 1.32 509 58 0.79 0.97 1.80 1.01  1.40
0+ HI  RMBEBO -40.80 0.0 4.32 3,05 0.24 2321 112
0.59  3.71  3.05 0.03 2345 162 0.71  1.06 ~1.89 1.18 1,68
1.24 3,03 3.09 -1.99 2444 247 0.63  1.06 . 3.09 1.44 2,96
Pl 8 -31.75 0.0 2,91 1.4 _1.06 3843 452 =
C-0.03  2.94  1.44 1.06 3899 438 1,00 1,11 0.92 0.99  1.01 =~
0.22  2.67  1.48 0.83 3272 575 0.95 0.80  1.43  1.12  1.23 g
F+D, 8 -31,75 0.0 2,91 1.44 1.06 2726 320 o
0.01  2.90 1,44 1.06 2715 323 1.00 0.98 1.02 1.00 1.00 ;’},
0.24  2.66  1.49 0.80 2280 414  0.95 0.81  1.46  1.13  1.27 i
P+ H, EMBEBO - -3L10 0.0 2,95  l.46 - 1.87 4279 488 . m
: 0.09  2.85  1.45 1.83 4248 515 0.95 0.93 1.16 1.05 1.08 ;
0.34  2.58 1,50 1.22 4097 590  0.87 0.9  1.35 1.20 1,33 r
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-0.13

0.0
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0.0
-0.09
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0.0
0.23
0.16

0.00

0.28
0.17

2.29
2.43
2.37

2.91
2.91
2.91

2.76
3.08
3.08

3.04
3.24
3.24

2.43
2.75
2.75

2.40
2.55
2.56

2.16
2,36
2.33

3.37
3.11
3.13

3.37
3.10
3.13

1.63
1.56
1.59

2.56
2.56
2.56

2,42
2.14
2.14

2.27
2.14
2.14

2.43
2,16
2.16

2.40
2.29
2.29

2.16
2.01
2.02

3.37
3.85
3.75

3.37
3.89
3.76

5.48
5.30
5.41

23.69
23.69
23.69

5.75
4.69
4.67

7.64
7.21
7.21

4.49
3.68
3.67

12.67
12.13
12.05

4.30
3.92
4,00

1.53
1.12
1.23
1.35
0.96
1.09

3260
3733
3589

427
427
427

472
1879
1891

679
1834
1838

510
1765
1768

621
2364
2421

665
3402
3319

146
1563
1390

149
1662
1430

603
584
593
591
591
591
588
333
532

589
533
532

62
57
57

508
497
496

354
336

1340

392
314
316

395
302
334

0.73
0.98

1.00
1.00

0.17
0.80

0.49
0.91

0.25
0.84

0.40
0.88

0.52
0.94

0.50
0.94

0.52
0.95

3.03
1.13

1.00
1.00

31.7
4.21

16.2
2.82

21.68
3.61

65.8
4.21

18.3
5.79

58.1
9.81

72.0
9.91

0.91
0.98

1.00
1.00

0.75
0.85

0.74
0.85

0.74
0.85

0.94

'0.96

0.90
0.94

0.60
0.79

0.55
0.77

0.95
0.97

1.00
1.00

0.98
0.98

0.97
0.97

0.98
0.98

0.99
0.98

0.97
0.98

0.94
0.90

0.93
0.89

1.90
1.05

1.00
1.00

3.91
3.01

5.68
2.12

3.98
2.53

24.7
3.49

8.33
4.99

16.5
6.52

18.9
6.47
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c1

Cl

Ccl

c1

+ C1C

+ DH

RMBEBO

25

25

25

24

0.00

0.00

0.0

0.0

3.01

3.01

3.01

3.01

0.0
0.00
0.18

0.0
-0.21
-0.20

0.0
-0.20
-0.21

0.0
0.00
0.00

0.0
0.02
0.82

0.0
~0.24
-0.24

0.0
=0.01
-0.24

0.0
~0.01
~0.24

0.0
-0.19
-0.22

3.66
3.66
3.54

1.76
2.01
2.00

1.76
2.04
2,05

1.76
1.76
1.76

3.01
2.98
1.72

2,64
2.95
2.95

2.64
2.66
2.95

2.64
2,65
2.95
2.64
2.86
2,89

3.66
3.66
3.83

1.76
1.56
1.56

1.76
1.53
1.53

1.76
1.76
1.76

3.01
3.03
4,34

1.88
1.52
1.52

1.88
1.85
1.53

1.88
1.86
1.52
1.88
1.58
1.56

6.16
6.16
5.89

9.80
8.96
9.00

9.80
8.80
8,76

9.80
9.80
9.80

7.40
7.40
4.86

7.67
5.79
5.79

7.67
7.66
5.82

7.67
7.67
5.81
7.67
6.48
6.22

520
520

1773
2608
2574

1328
2231
2265

1190
1190
1190

257
629

1358
2766
2761

985
979
1929

819
1571
1252
2084
2264

75
75
74

871
826
829

817
759

526
526
526

352
352
353

710
747
748

503
510
530

412
417
433
563
623
596

1.00
0.95

0.25
0.85

0.18
0.81

1.00
1.00

1.00
0.59

0.42
0.67

0.98
0.68

0.99
0.68

0.13
0.74

1.00
1.14

7.20
1.53

8.51
1.79

1.00
1.00

1.00
2.46

2,79
2.21

0.59
2.04

0.99
1.96

7.21
1.90

1.00
0.97

0.80
0.92

0.75
0.87

1.00
1.00

1.00
1.06

1.24
1.12

1.04
1.12

1.03
1.11

1.40
1.20

1.00
0.99

0.95
0.95

0.96
0.95

1.00
1.00

1.00
0.91

0.96
0.96

1.00
0.96

1.00
0.96

0.95
0.94

1.00
1.03

1.35
1.13

1.15
1.20

1.00
1.00

1.00
1.40

1.40
1.59

1.01
1.47

1.01
1.41

1.29
1.58
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Cl + HD

ClL + H

2

Cl + T2

Cl + HD

Cl + DH

Cl + DH

o+ H

C+H

Na + C1H

27

27

27

27

RMBEBO

26

RMBEBO

17

3.01

3.01

3,01

3.00

3.90

7.38

0.0
0.14
-0.23

0.0
-0.18
-0.17

0.0
-0.11
-0.16

0.0
-0.16
-0.16

0.0
-0.16
-0.16

0.0
-0.21
-0.26

0.0
-0.02
-0.20

0.0
-0.12
-0.13

0.0
-0.42
-0.41

2.64
2.48
3.00

2,78
3.02
3.01

2.78
2.93
2.99

2.78
3.04
3.04

2.78
2.96
2.97

2.55
2,78
2.82

2.11
2.13
2.38

2.36
2,52
2.53

4,83
5.25
5.24

1.88
2.15
1.49

1.72
1.53
1.53

1.72
1.58
1.54

.72
1.51
1.51

1.72
1.56
1.56

2.06
.71
1.67

1.80
1.77
1.51

1.79
1.65
1.64

2.91
2.64
2.64

7.67
7.04
5.42

7.71
6.88
6.94

7.71
7.32
7.01

7.71
6.82
6.82

7.71
7.15
7.13

8.00
6.73
6.34

12.49
12.46
10.26

14.60
13.91
13.83

10.61

10,15

10.17

1061
1937
2532

1496
2739
2682

894
1297
1512

1081
2332
2333

1488
2288
2310

1521
2452
2691

1533
1545
2842

1759
3118
3178

832
1722
1709

664
544
669

782
758
762

453
455
444

726
695
695

625
624
623

444
515
518

725
732
717

662
673
672

47
56
57

0,35
0.62

0.25
0.85

0.52
0.86

0.22
0.83

0.40
0.89

0.12
0.71

0.96
0.63

0 32
0.85

0.46
0.91

8.04
2.57

18.9
1.92

2.64
1.73

19.5
2.29

6.65
1.62

9.04
1.90

1.03

2.01

24.5
1.99

8.44
2.12

0.53

1.03

0.90
0.97

1.01
0.98

0.86
0.94

1.01
1.01

1.53
1.33

1.04
1.00

1.06
1.03

1.34
1.30

0.97
0.97

0.94
0.94

0.97
0.95

0.95
0.95

0.94
0.94

0.97

1.00

0.96
0.96

1.42
1.61

3.98
1.50

1.35
1.38

3.60
1.70

1.21
1.00

1.57
1.69

1.03
1.20

7.94
1.68

4.47
2.16
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Na + 1%c1H 23 7.38 0.0 4.83  2.91 10.61 833 49
-0.42. 5.26 2,64  10.14 1742 58  0.45 8.82 1.33  0.86  4.57
-0.41  5.24  2.64  10.16 1723 58  0.91 2.14 1.29 0.8  2.17

89

Cl + HO RMBEBO 8.30 0.0 2.42 3,56 8.65 3020 171
=0.40 2,46 2.92 8.45 3053 235 0.72 1.08 1.82 1.15 1.63
-0.73 2.55 2.50 7.28 3074 311 Q.75 1.02 2.39 1.31 2.41

Br + HC1 18 16.16 0.0 2.78 3.18 16.69 1437 307

0.24 2.72 3.48 16.55 2148 226 0.83 5.38 0.54 0.93 2.25

0.06 2.76 2.76 16.64 1733 283 1.00 1.22 0.89 0.98 1.06 |
Na + FH 22 17.23 0.0 3.73 2.74 18.84 517 168

-0.05 3.75 2.59 18.74 533 195 0.85 1.05 1.34 1.00 1.19

-0.28 3.91 2.02 15.89 1786 307 0.54 3.61 2.74 0.95 5.06

Li + HI RMBEBO 17.90 0.0 3.02 5.36 18.85 1390 172
~0.74 3.03 4.64 18.62 1418 226 0.67 1.07 1.72 1.20 1.48
-1.66 3.18 3.66 17.35 1542 320 0.73 1.12 2.72 1.52 3.38

Cl + CH RMBEBO 25.50 0.0 3.40 3.00 30.28 761 198
-0.04 3.43 2,87 30.13 851 213 0.77 1.27 1.17 1.00 1.15
-0.16 3.53 2.59 28.22 1451 247 0.65 1.95 1.49 0.97 1.82

Cl + CH 13 25.50 0.0 3.42 3.22 31.01 695 109 g
-0.07 3.43 3.16 30.99 693 115 0.96 0.99 1.10 1.00 1.05 g

-0.12 3.48 2.86 29.94 706 147 0.80 1.02 1.57 1.00 1.27 m

[2]

Cl + CH 14 25.50 0.0 3.33 5.14 25.61 827 12 (2]
-0.31 3.34 4.17 25.34 799 34 0.64 0.93 3.79 1.09 2.47 g

~0,57 3.38 3.35 23.09 718 80 0.59 0.87 10.3 " 1.15 6.06 a

Cl + HF 15 34.10 0.0 2.55 2,58 43,72 755 435 a
0.09 2,45 2.75 43.30 2057 383 0.49 22,6 0.73 0.87 7.91 ;

0,08 2,45 2.75 43.34 2022 385 0.92 2.82 0.83 0.97 2.11 r




Cl + HF

Cl + HF

I+ ﬂz

Li + HO

16

RMBEBO

RMBEBOQ

33.93

34.10

35.80

58.70

0.0
0.12
-0.05

0.0
-0.50
~1.04

0.0
0.02
-0.05

0.0
-0.16
-0.45

2.47
2,45
2.48

2.41
2,42

. 2,46

3.17
3.15
3.22

3.04
3.05
3.08

2.81
2.95

w

.88
.36
.77

Now

2.33

3.28
3.11
2.80

35.01
34,98
35.00

34,38
34.17
32.29

35.87
35.85
35.75

62.66

62.57.

61.49

2288
2525
2115

3008
3035
3120

1320
1377
1212

1546
1603
1757

383
338
407

143
203
300

483
466
525

320
341
385

0.94
1.00

0.70
0.64

0.98
0.98

0.85
0.78

1.75
0.91

1.07
1.05

1.15
0.91

1.14
1.15

0.75
1.10

1.89
2.92

0.91
1.14

1.16
1.38

0.96
1.02

1.18
1.44

1.00
1.01

1.05
1.15

1.18
1.02

1.67
2.84

1.01
1.02

1.19
1.43
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degree of freedom. Moving the dividing surface further Into the
product region tightens the stretch while decreasing the bending
frequency. Thus the only factor of FCVT(T) that is greater than
unity is Fg, . (T).

VI. KINETIC ISOTOPE EFFECTS

Conventional and variational transition state calculations
often lead to considerably different predictions for kinetic isotope
effects.27535:36 This is illustrated for two different potential
energy surfaces for Cl + Hy and isotopic analogs inm Table 7, where
we have included quantal corrections on the reaction-coordinate
motion by the methods discussed in sections IT.A and V.A.36 Because
variational transition state theory predicts more accurate kinetic
isotope effects than the conventional theory does for collinear reac-
tions, where the predictions have been tested against accurate quan-
tum mechanical dynamics,21"23’26 and because it is a more internally
consistent theory, we prefer to accept its predicted kinetic isotope
effects for three-dimensional reactions for any given potential energy
surface in preference to those of the conventional theory. For
example, since the */W isotope effects in Table 7 agree with experi-
ment better than the CVT/MCPSAG ones do, we conclude that at least
part of the good agreement is fortuitous; we suggest that errors
in the potential energy surfaces are compensating for errors in the
conventional transition-state-theory calculations in this case.

A noteworthy qualitative aspect of variational-transition-state-
theory calculations of kinetic isotope effects is that the geometry
of the variational transition state may differ for each isotopic
variation of a reaction. This means that the usual methods®® of pre-
dicting isotope effects, based on the simplifications possible when
nuclear masses are changed with fixed force fields, do not apply.
Instead of using such simplifications, we perform completely inde-
pendent variational calculations for each isotopic case.

VII. TEMPERATURE DEPENDENCES OF BOTTLENECK LOCATIONS AND VARTATIONAL
FACTORS FOR QUANTIZED THREE-DIMENSTIONAL REACTIONS; HIGH-
TEMPERATURE REACTIONS

Table 8 shows how the location of the CVT transition state, the
four factors Fgpp(T), Fp(T), Fr(T). and Fy(T), and the k¥(T)/KCVI(T)
ratio change as the temperature is increased from 300 K to 2400 K
for most of the systems of Tables 4 and 5 plus some others. Although
the table shows that the location of the CVT transition state does
often change with temperature, the typical trends can be understood
by simple arguments for prototype cases in which the temperature
dependence of s;""(T) need not be mentioned. For a fixed dividing-
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surface location sy the Boltzmann factor, exp{-8[Vypp(s=0) -
Vmpp(s%) ]}, is an increasing function of temperature. Approximating
the ratio of stretching partition functions by exp{—B[eStr(n=0,s=0)—
Estr(n=0’s*)]} we see that it is a decreasing function of temperature
for the common case ggy,(n=0,5=0) < estr(n=0,s=s§VT). Since the
stretching degree of freedom strongly dominates the k¥(T)/kCVT(T)
ratio of symmetric systems, this ratio is also a decreasing function
of temperature in this case. For example, consider the symmetric

C + HC reaction; for this reaction k*(T)/kCVT(T) decreases with
temperature and is 24.7, 6.12, and 3.49 at 300, 600, and 2400 K,
respectively. For si fixed the ratio of bending partition functions
is approximated by wp(sx)/wp(s=0) and is nearly comnstant; therefore,
when the product of this factor and the Boltzmann factor are the
dominant contributions to k¥(T)/kCVT(T), it increases with the
temperature. The I + HBr reaction is an example of an endoergic
reaction which has its saddle peint far into the asymptotic product
reglon. For this system the bending degree of freedom dominates

k¥ (T)/KCVI(T), and this ratio has the values 1.98, 2.44, and 4.19

at 300, 600, and 2400 K, respectively. These two examples are
typical cases, and the trends for most of the other cases can be
understood by the same kinds of arguments.

VIIT. CONCLUDING REMARKS

The results discussed in this chapter show that the rate con-
stant calculated by applying the transition state assumption at the
dynamical bottleneck for a reaction is often quite different from
that calculated by conventional transition state theory. Thus it
is necessary to understand the properties of potential energy sur-
faces in bottleneck regions as well as near saddle points. In this
chapter we have discussed some of the systematics of potential
energy surfaces that are responsible for the location of the bottle-
neck regions, and we have given many numerical examples. In many :
cases one can estimate, based on the experience gained from these
calculations, what kind and size of effects will be important for
a reaction with given saddle point properties and masses. This
should make it easier to search for the bottleneck region without
having to calculate the whole potential energy surface.

IX. ACKNOWLEDGMENT
This work was supported in part by the U.S. Department of

Energy. Office of Basic Energy Sciences, through contract no.
DE-AC02-79ER10425.



632

1.

10.

11.

12,

13.

14.

15.

BRUCE C. GARRETT ET AL,

REFERENCES

S. Glasstone, K. J. Laidler, and H. Eyring, "'Theory of Rate Pro-
cesses", McGraw-Hill, New York (1941); H. S. Johnston, "Gas
Phase Reaction Rate Theory'", Ronald Press, New York (1966);

D. L. Bunker, "Theory of Gas Phase Reaction Rates", Pergamon
Press, Oxford (1966); K. J. Laidler, '"Theories of Chemical
Reaction Rates'", McGraw-Hill, New York (1969).

E, Wigner, Calculation of the rate of elementary association
reactions, J. Chem. Phys. 5: 720 (1937).

J. Horiuti, On the statistical mechanical treatment of the
absolute rate of chemical reaction, Bull. Chem. Soc. Japan 13:
210 (1938).

J. C. Keck, Variational theory of chemlcal reaction rates applied- %

to three-body recombinations, J. Chem. Phys. 32: 1035 (1960).

J. C. Keck, Variational theory of reactionm rates, Advan. Chem.
Phys. 13: 85 (1967).

P. Pechukas, Statistical approximations in collision theory,
in: "Dynamics of Molecular Collisions, Part B", W. H. Miller,
ed., Plenum, New York (1976), p. 269.

E. Pollak and P. Pechukas, Transition states, trapped trajec-—
tories, and classical bound states embedded in the continuum,
J. Chem. Phys. 69: 1218 (1978).

B. C. Garrett and D. G. Truhlar, Criterion of minimum state
density in the transition 'state theory of bimolecular reactions,
J. Chem. Phys. 70: 1593 (1979).

B. C. Garrett and D. G. Truhlar, Generalized transition state
theory. Classical mechanical theory and applications to colli-
near reactions of hydrogen molecules, J. Phys. Chem. 83: 1052,
3058(E) (1979).

K. Morokuma and M. Karplus, Collision dynamics and the statis-
tical theories of chemical reactions. II. Comparison of reac-
tion probabilities, J. Chem. Phys. 55: 63 (1971).

G. W. Koeppl and M. Karplus, Comparison of 3D classical trajec-
tory and transition-state theory reaction cross sections, J.
Chem. Phys. 55: 4667 (1971).

P. Pechukas and F. J. McLafferty, On transition-state theory
and the classical mechanies of collinear collisions, J. Chem.
Phys. 58: 1622 (1973).

S. Chapman, S. M. Hornstein, and W. H. Miller, Accuracy of
transition state theory for the threshold of chemical reactions
with activation energy. Collinear and three-dimensicnal H + H,,
J. Amer., Chem. Soc. 97: 892 (1975).

-W. J.. Chesnavich, On the threshcld behavior of collinear bimole-

cular exchange reactions, Chem. Phys. Lett. 53: 300 (1978).

B. C. Garrett and D. G. Truhlar, Improved canonical variational
theory for chemical reaction rates. Classical mechanical theory
and applications to collinear reactions, J. Phys. Chem. 84: 805
(1980).

RN T i R e




L Al A SR 5 L e sl L A

o e gt it BB ET il , 8230 A 1

BOTTLENECK REGIONS BY VTST ’ 633

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29,

30.

E. Wigner, The transition state method, Trans. Faraday Soc. 34:
29 (1938).

W. H. Miller, Quantum mechanical transition state theory and a
new semiclassical model for reaction rate constants, J. Chem.
Phys., 61: 1823 (1974).

W. H. Miller, Semiclassical limit of quantum mechanical transi-
tion state theory for nonseparable systems, J. Chem. Phys. 62:
1899 (1975).

W. H. Miller, Path integral representaticn of the reaction rate
constant in quantum mechanical transition state theory, J. Chemn.
Phys. 63: 1166 (1975).

D. G. Truhlar, Accuracy of trajectory calculations and transitiom
state theory for thermal rate constants of atom transfer reac-—
tions, J. Phys. Chem. 83: 188 (1979).

B. C. Garrett and D. G. Truhlar, Accuracy of tunneling correc-
tions to transition state theory for thermal rate constants of
atom transfer reactions, J. Phys. Chem. 83: 200, 3058(E) (1979).
B. C. Garrett and D. G. Truhlar, Generalized transition state
theory. Quantum effects for collinear reactions of hydroegen
molecules and isotopically substituted hydrogen molecules, J.
Phys. Chem. 83: 1079 (1979); 84: 682(E) (1930).

B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnuson,
Improved treatment of threshold contributions in variational
transition-state theory, J. Phys. Chem. 84: 1730 (1980).

B. C. Garrett, D. G. Truhlar, and R, S. Grev, Applications of
variational transition-state theory and the unified statistical
model to H + Cl, + HC1 + Cl, J. Phys. Chem. 84: 1749 (1980).

B. C. Garrett, D. G. Truhiar, R. 8. Grev, and R. B. Walker,
Comparison of variational transition state theory and the
unified statistical model with vibrationally adiabatic trans-
mission coefficients to accurate collinear rate constants for

T + HD + TH + D, J. Chem. Phys. 73: 235 (1980).

B. C. Garrett, D. G, Truhlar, R. S. Grev, A. W. Magnuson, and

J. N. L. Connor, Variational transition state theory, vibra-
tionally adiabatic transmission coefficients, and the unified
statistical model tested against accurate quantum rate constants
for collinear F + H,, H + F,, and isotopic analogs, J. Chem.
Phys. 73: 1721 (1980).

B. C. Garrett and D. G. Truhlar, Generalized transition state
theory calculations for the reactions D + Hp and H + D using
an accurate potential energy surface: Explanation of the kinetic
isotope effect, J. Chem. Phys. 72: 3460 (1980).

B. C. Garrett and D. G. Truhlar, Reliable ab initio calculation
of a chemical reaction rate and a kinetic isotope effect: H + Hj
and 2H + 2H,, Proc. Natl. Acad. Sci. USA 76: 4755 (1979).

B. Liu, Ab initio potential energy surface for lirear Hj, J.
Chem. Phys. 58: 1925 (1973).

P. Siegbahn and B. Liu, An accurate three-dimensional potential
energy surface for Hz, J. Chem. Phys. 68: 2457 (1978).

—



634

31.

32.

33.

34.

35,

36.

37.

38.

39.
40.
41.
42.

43.

44,

45.

46.

47.

BRUCE C. GARRETT ET AL.

D. G, Truhlar and €. J. Horowitz, Functional representation of
Liu and Siegbahn's accurate ab inftio potential energy calcula-
tions for H + Hy, J. Chem. Phys. 68: 2466 (1978); 71: 1514(E)
(1979).

D. G. Truhlar and B. C. Garrett, Variational transition state
theory, Acc. Chem. Res. 13: 440 (1980).

B. C. Garrett and D. G. Truhlar, Generalized transition state
theory. Bond—energy-bond-order method for canonical variational
calculations with applications to hydrogen atom transfer reac-—
tions, J. Amer. Chem. Soc. 101: 4534 (1979).

B, C. Garrett and D. G, Truhlar, Generalized transition state
theory. Canonical variational calculations using the bond-energy-
bond-order method for bimolecular reactions of combustion pro-
ducts, J. Amer. Chem. Soc. 101: 5207 (1979).

B. C. Garrett and D. G, Truhlar, Variational transition state
theory. Primary kinetic isotope effects for atom transfer reac-
tions, J. Amer. Chem. Soc. 102: 2559 (1980).

B. C. Garrett, D. G, Truhlar, and A. W. Magnuson, Variational
transition state theory and vibrationally adiabatic transmission
coefficients for the kinetic isotope effects in the Cl-H-H
reaction system, J. Chem. Phys. 74: 1029 (1981).

S. Chapman, B. C. Garrett, and W. H., Miller, Semiclassical tran-
sition state theory for nonseparable systems: Application to the
collinear H + Hp reaction, J. Chem. Phys. 63: 2710 (1975).

See also H. S. Johnston and D. Rapp, Large tummeling corrections
in chemical reaction rates. II, J. Amer. Chem. Soc. 83: 1 (1961)
and reference 39.

E. Wigner, Uber das Uberschreiten von Potentialschwellen bei
chemischen Reaktionen, Z. Phys. Chem. B 19: 203 (1932).

D. G. Truhlar and A. Kuppermann, Exact tunneling calculations,
J. Amer. Chem, Soc. 93: 1840 (1971). _

D. G. Truhlar, The adiabatic theory of chemical reactions, J.
Chem. Phys. 53: 2041 (1970), and references therein.

R. A. Marcus and M. E. Coltrin, A new tunneling path for reac-
tions such as H + Hy - H + H, J. Chem. Phys. 67: 2609 (1977).
For a review see P. Pulay, Direct use of the gradient for
investigating molecular energy surfaces, in: "Applicatiomns of
Electronic Structure Thecry", H. F. Schaefer, ed., Plenum,

New York (1977), p- 153.

J. A. Pople, R. Krishman, H. B. Schlegel, and J. 8. Binkeley,
Derivative studies in Hartree-Fock and Mdller-Plesset theorles,
Int. J. Quantum Chem. Symp. 13: 255 (1%79).

B. C. Garrett and D. G. Truhlar, Importance of quartic anharmoni-
city for bending partition functlons in tran51tion state theory,
J. Phys. Chem. 83: 1915 (1979).

For further discussion see D. G. Truhlar, discussion remarks,

J. Phys. Chem. 83: 199 (1979).

R. L. Jaffe, J, M, Heary, and J. B. Anderson, Variational theory
of reaction rates: Application to F + Hy ¥ FH + H, J. Chenm.
Phys. 59: 1128 (1973).

¥
X
‘]
&
&
2
i

5




e L S G -

BOTTLENECK REGIONS BY VTST 635

48.

49.
50.

51.

52.

53.

54.

55.

56.

57.

58.

9.

60.

61.
62.

63.

64.

G. W. Koeppl, Alternative locations for the dividing surface

of transition state theory. Implications for application of

the theory, J. Amer. Chem. Soc. 96: 6539 (1974).

W. H. Miller, Unified statistical model for "complex" and
"direct" reaction mechanisms, J. Chem. Phys. 65: 2216 (1976).

G. Koeppl, progress report for Alfred P. Sloan Fellowshlp for
Basic Research, Nov. 9, 1977 (unpublished).

E. Pollak and P. Pechukas, Unified statistical model for "com-
plex" and "direct" reaction mechanisms: A test of the collinear
H + Hy, exchange reaction, J. Chem. Phys. 70: 325 (1979).

P. Pechukas and E. Pollak, Classical transition state theory is
exact if the transition state is unique, J. Chem. Phys. 71: 2062
(1979).

J. P. Davis, A combipned dynamical-statistical approach to cal-
culating rates of complex bimolecular exchange reactions, J.
Chem. Phys. 71: 5206 (1979).

J. P. Davis, A combined statistical-dynamical approach to cal-
culating rates of complex bimolecular exchange reactions:
Asymmetric systems, J. Chem. Phys. 73: 2010 (1980).

W. J. Chesnavich, T. Su, and M. T. Bowers, ILon-dipole colli-
sions: Recent theoretical advances, in: “Kinetics of Ion-Mole—
cule Reactions", P. Ausloos, ed., Plenum, New York (1979), p. 31.
W. J. Chesnavich, T. Su, and M. T. Bowers, Collisions in a non-—
central field: A variational and trajectory investigation of
ion-dipole capture, J. Chem. Phys. 72: 2641 (1980).

B. C. Garrett and D. G. Truhlar, Improved canonical variational
theory for chemical reaction rates. Classical mechanical theory
and applications to collipnear reactions, J. Phys. Chem. 84: 805
(1980).

E. Pollak, M. S, Child, and P. Pechukas, Classical transition
state theory: A lower bound to the reaction probability, J.
Chem. Phys. 72: 1669 (1980).

E. Pollak and R. D. Levipe, Statistical theories for molecular
collisions: A waximum entropy derivation, J. Chem. Phys. 72:
2990 (1980).

J. B. Anderson, Statistical theories of chemical reactioms.
Distributions in the transition region, J. Chem. Phys. 58:

4684 (1973).

B. C. Garrett and D. G. Truhlar unpublished.

E. K. Grimmelman and L. L. Lohr, On the exactness of classical
transition state theory for collinear reactions, Chem. Phys.
Lett. 48: 487 (1977).

D. I. Sverdlik and G. W. Koeppl, An energy limit of tramsition
state theory, Chem. Phys. Lett. 59: 449 (1978).

D. I. Sverdlik, G. P. Stein, and G. W. Koeppl, The accuracy of
transition state theory in its absolute rate theory and varia-
tional formulations, Chem. Phys. Lett. 67: 87 (1979).

D. Martin and L. M. Raff, A general procedure for classical
variational rate calculations for three-body exchange reactionms,
J. Chem. Phys., submitted for publication.




636

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

8l.

BRUCE C. GARRETT ET AL,

D. G. Truhlar and A. Kuppermann, Exact and approximate quantum
mechanical reaction probabilities and rate constants for the
collinear H + Hy reaction, J. Chem. Phys. 56: 2232 (1972).

J. Troe, Unimolecular reacticns, Int. Rev, Sci., Phys. Chem.,
Ser. Two 9: 1 (1976).

M. Quack and J. Troe, Unimolecular reactions and energy transfer
of highly excited molecules, Specialist Periodical Reports Chem.
Soc., Gas Kinetics and Energy Transfer 2: 175 (1977), aud
references therein.

W. J. Chesnavich, L. Bass, T. Su, and M. T. Bowers, Multiple
transition states in unimolecular reactions: A transition state
switching model. Application to the CyHg' system, preprint.

C. A. Parr and D. G. Truhlar, Potential energy surfaces for atom
transfer reactions involving hydrogens and halogens, J. Chem.
Phys. 75: 1844 (1971).

D. G. Truhlar and R. E. Wyatt, H + Hp: Potential energy surfaces
and elastic and inelastic scattering, Advan. Chem. Phys. 36: 141
(1977).

F. T. Wall and R. N. Porter, General potential-energy function
for exchange reactions, J. Chem. Phys. 36: 3256 (1962).

J. W. Duff and D. G. Truhlar, Effect of curvature of the reac—
tion path on dynamic effects in endothermic reactions and product
energies in exothermic reactions, J. Chem. Phys. 62: 2477 (1975).
R. N. Porter and M. Karplus, Potential energy surface for Hj,

J. Chem. Phys. 40: 1105 (1964).

L. M. Raff. L. Stivers, R. N. Porter, D. L. Thompson, and L. B.
Sims, Semiempirical VB calculation of the (H,I,) interaction
potential, J. Chem. Phys. 52: 3449 (1970); 58: 1271(E) (1973).
H. S. Johnston and C. A. Parr, Activation energies from bond
energies. I. Hydrogen transfer reactions, J. Amer. Chem. Soc.
85: 2544 (1963).

S. W. Mayer, L. Schieler, and H. S. Johnston, Computatlon of
high-temperature rate constants for bimolecular reactions of
combustion products, Eleventh Symp. (Int.) Combustion 837
(1967).

M, J. Stern, A. Persky, and F. S. Klein, Force field and tunnel-
ing effects in the H-H-Cl reaction system. Determination from
kinetic isotope effect measurements, J. Chem. Phys. 58: 5697
(1973).

C. A. Parr, Ph.D. thesis, California Institute of Technology,
Pasadena, 1968; C. A. Parr and A. Kuppermann, unpublished.

J. T. Muckerman, Applications of classical trajectory techniques
to reactive scattering, Theoret. Chem.: Advan. Perspectives bA:
1 (1981).

N. Jonathan, S. Okuda, -and D. Timlin, Initial vibrational energy
distributions determined by infrared chemiluminescence. III. i
Experimental results and classical trajectory calculations for
the H + F, system, Mol. Phys. 24: 1143 (1972).

b SRR s B il E TR e I P e o MR TR




BOTTLENECK REGIONS BY VTST 637

82.

83.
84.

85.

86.

87.

88.

89.
90.

91.
92.

93.
94.

95.

P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, S. D. Rosner, and

C. E. Young, Energy distribution among products of exothermic
reactions. II. Repulsive, mixed, and attractive energy release,
J. Chem. Phys. 44: 1168 (1968).

J. A. Kaye and A. Kuppermann, Chem. Phys. Lett. 77: 573 (1981).
A. M. G. Ding, L. J. Kirsch, D. S. Perry, J. C. Polanyi, and

J. L. Schreiber, Effect of changing reagent energy on reaction
probability and product energy distributicn, Faraday Disc. Chem.
Soc. 55: 252 (1973).

J. C. Polanyi and N. Sathyamurthy, Location of energy barriers.
VII. Sudden and gradual late-—energy barriers, Chem. Phys. 33:
287 (19738).

D. J. Douglas, J. C. Polanyi, and J. J. Sloan, Effect of changing
reagent energy on reaction dynamics. VI. Dependence of reaction
rates on vibrational energy excitation in substantially endo-
thermic reactions, XH(v') + Y » X + HY, Chem. Phys. 13: 15 (1976)
(1976). '
P. J. Runtz, E. M, Nemeth, J. C. Polanyi, and W. H. Wong, Dis-
tribution of reaction products. VI. Hot-atom reactions, T + HR,
J. Chem. Phys. 52: 4654 (1970).

T. Valencich, J. Hsieh, J. Kwan, T. Stewart, and T. Lenhardt,
Simulation of the effects of translational and vibrational energy
on H and D atom reactions with HC1l and DCl, Ber. Bunsenges.
Phys. Chem. 81: 131 (1977).

B. R, Johnson and N. W. Winter, Classical trajectory study of
the effect of vibrational energy on the reaction of molecular
hydrogen with atomic oxygen, J. Chem. Phys. 66: 4116 (1967).

M. Baer, An exact quantum mechanical study of the isotopic
collinear reactive systems H, + Cl and Dy + C1, Mol. Phys. 27:
1429 (1974). :

See, ¢.4., H. Eyring, S. H. Lin, and S. M. Lin, "Basic Chemical
Kinetics", John Wiley & Sons, New York (1980), p. 145.

¢. S. Hammond, A correlation of reaction rates, J. Amer. Chem.
Soc. 77: 334 (1955).

R. A. Eades and D. A. Dixon, personal communication.

T. A, Halgren and W. N. Lipscomb, Self-consistent-field wave-
functions for complex molecules. The approximation of partial
retention of diatomic differential overlap, J. Chem. Phys. 58:
1569 (1973).

See, €.g., L. Melander and W. H. Saunders, Jr., "Reaction Rates
of Isotopic Molecules", John Wiley & Soms, New York (1980).

t






