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1. Introduction ‘

Spectroscopic information on the bound states of molecular systems is
usually analyzed with the aid of Born—-Oppenheimer electronically adiabatic
potential energy curves or surfaces. For collision problems attention is divided
more evenly between electronically adiabatic and electronically diabatic
representations. Adiabatic basis sets diagonalize the electronic Hamiltonian;
they have the advantages that they often provide the most uncoupled avail-
able representation for low-energy collisions, that adiabatic potential energies
may be defined and calculated accurately by the variational principle, and
that one can accurately include the important effects of molecular charge
relaxation in adiabatic basis sets. Adiabatic representations have the dis-
advantage that the coupling operators are derivative operators in the co-
ordinate representation and are somewhat inconvenient for calculations.

Diabatic representations are those in which the electronic Hamiltonian is
not diagonal. Suitably chosen diabatic basis sets have the advantage that they
provide representations that are more uncoupled for high-energy collisions
and cases of narrowly avoided crossings, and that their dominant coupling
may be provided by potential terms. For processes of interest in chemistry,
the advantages of the adiabatic representation are often more important.
This article is primarily concerned with the coupling between states in
electronically adiabatic representations. The advantages of adiabatic and
diabatic basis sets may often be combined by defining diabatic basis sets in
terms of adiabatic basis sets. This article is also concerned with the ways in
which this can be done.

Section II begins with a discussion of the different forms that the non-
adiabatic coupling operators and the coupled scattering equations take
when different coordinate systems are used to describe the electronic degrees
of freedom. We show that the correct scattering boundary conditions cannot
be enforced naturally in coordinate systems that are convenient for obtaining
and expressing Born-Oppenheimer electronically adiabatic wave functions.
This can lead to nonvanishing coupling even at infinite distances between
atomic and molecular subsystems. The lack of a clear-cut basis for choosing
a coordinate system can also lead to ambiguity in the coupling when the
subsystems are close together. Various approaches to resolving these prob-
lems are discussed. One approach is to pick a coordinate system, use it
consistently to calculate an approximate wave function with some finite
basis set, and extract scattering amplitudes from the calculation by imposing
scattering boundary conditions on the wave functions as well as possible
within the chosen basis set. This procedure is fool-proof in principle, but may
be slowly convergent as the size of the basis set is increased. It is necessary
to have procedures for such rigorous calculations to serve as foundations and

-
I~

4



Electronically Adiabatic States 217

enchmarks, and a large part of this article (especially Sections ILE; IL.G;
IIILA; and IV,B) is concerned with such procedures. Less rigorous procedures
are often more convenient and appropriate for obtaining meaningful
results for particular physical processes. A large variety of such procedures
have been suggested and we review them briefly in Section 1L, H. An example
of this approach is discussed in more detail in Section I11,B, and some useful
numerical methods are discussed in Section IV,A.

Section III discusses transformations between diabatic and adiabatic
coordinate systems. One important aspect of such transformations concerns
attempts to find diabatic representations in which the derivative coupling
is negligible. Another aspect concerns the possibility of using the non-
uniqueness of diabatic representations to constrain the matrix elements to
have simple or desirable properties. We discuss these questions with examples.

Sections I and I1I leave us with coupled differential equations to be solved,
and Section IV discusses an approach to the numerical solution of these
equations. In particular, Section IV is concerned with the use of approxi-
mately adiabatic representations that are independent of internuclear
distance over finite-length sectors. In such representations the states are
coupled by transformations at the boundaries of sectors rather than by
derivative coupling operators. We show how the R-matrix propagation
method with adiabatic basis function allows the use of derivative coupling
operators to be replaced by overlap integrals, which, in turn, we evaluate in
terms of standard nuclear-derivative matrix elements.

The physical effects and mathematical formalisms discussed in this article
are of interest for atom-atom, atom-molecule, and molecule-molecule
collisions. To emphasize certain important aspects of adiabatic representa-
tions with the fewest extraneous complications, we restrict most of the
detailed development to atom-atom collisions, but the subjects discussed
are motivated by the whole field of molecular collisions at chemical energies,
not just by atom-atom collisions. Some aspects of nonadiabatic effects in
atom-molecule collisions are treated in the article by Rebentrost in volume 6B
of this serial publication.

The treatment and the references of the present article are not intended to be
exhaustive, but rather to give a perspective on selected aspects of the problem.
Although semiclassical methods are often applied to electronically inelastic
collisions, the present article deals for the most part only with time-inde-
pendent quantum mechanical scattering theory; the reader is referred to the
introduction of Thorson’s 1965 paper for a discussion of the foundations of
the subject. A more general overview of the theory of electronically non-
adiabatic collisions in chemistry has been given by Tully (1976).

This article is partly a review and partly new work. The most important
new work is in Sections ILE; ITI,B; and IV,C.
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II. The Scattering Problem in a Born-Oppenheimer Electronically ’
Adiabatic Basis

A. COORDINATES, HAMILTONIANS, AND ANGULAR MOMENTA

As an example, we explicitly consider in Section II a system of two nuclei
A and B of masses m, and mg, respectively, and one electron of mass m,,
with the center of mass of the three-particle system at rest. We neglect spin
and we assume the charges of A and B are different. We exclude processes
in which an electron becomes detached (ionization). This example is repre-  ~
sentative of a system of two atomic cores and one active electron and
more broadly of a general diatomic system; however, it allows us to dispense
with the complications associated with antisymmetrization, homonuclear
symmetry, and final states with three separated subsystems. A set of relative
coordinates convenient for the description of the molecule are the relative
internuclear coordinate R’ (distance from A to B) and the location r’ of the
electron relative to the center of mass of the nuclei. The prime indicates the
coordinates are a space-fixed system. The components of R’ are

sin 6 cos ¢
R’ = R'{sin O sin ¢ €8

cos 0

where R’ is the magnitude of R’. The Hamiltonian in the space-fixed co-
ordinate system is .

I L oo ,
SR S v S W S T 'Y
= = s X " 2w, Ama + ) “R) @

where

Uap = Mamp/(ms + mp) 3) )

The body-fixed molecular coordinate system is taken to have the z axis
along the internuclear vector and will be denoted without the prime. The
space-fixed and body-fixed coordinates are related by a rotation

R = %(¢, 0, )R’ @
r = %(¢,0,0r %)
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.vhere‘f

cos 0cos ¢ cosfOsin¢p —sinb
R, 6,0) = —sin ¢ cos ¢ 0 )

sinffcos¢ sinfsin¢ cosb

= In the body-fixed coordinate system the Hamiltonian can be written (Kolos
and Wolniewicz, 1963 ; Pack and Hirschfelder, 1968)

= h? h? h?
) H= - Va3 ——V2—- — V> 41 V(IR 7
ZﬂAB R 2me r 2(mA + mB) r + (l', ) ( )
where
h? 02 L?
hz 2 _ - 7 _ -
VR R aRZ R RZ (8)
h? o2 J?
V2= _ -2
’ ror TR ©)

L is the angular momentum operator of the motion of A relative to B, and
J. is the electronic angular momentum operator relative to the center of
mass of the nuclei in the body-fixed coordinate system. The total angular
momentum is given by

.The eigenvalue of L? will be called I(I + 1)A? and the eigenvalue of the
component J,, on the body-fixed axis will be called Qh. Notice that L? is
not diagonal in the body-frame representation used in conjunction with
Eq. (7). One could simplify Eq. (7) by writing

Jo=L+ J (10)

pet=mgt + (my + mp)™! (11)

but we do not do this because the second electronic kinetic energy term
contains cross terms in many-electron systems and is often neglected. This
is the mass polarization term for our one-clectron system.

It is also possible to use coordinates in which the electronic coordinate is
not referred to the center of mass of the nuclei as origin. We define the

+ We use the same rotation matrices and representations of the rotation group as used by
Pack and Hirschfelder (1968). These differ from those of Rose (1957).
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space-fixed electronic coordinate with respect to an arbitrary point on a line'
between the two nuclei as

;

r,=r, — aR’ (12)

where g is a number between 0 and 1 and r} is the electronic coordinate
measured from nucleus A. The Hamiltonian can then be rewritten as

h? h? 1 —
H= _hvlz(&— Vf&—hz[ a_i:IVR‘;'Vra
PIUN 2m, ma mg
B2 (1 — a)? 2
- [( o 4 i]v,%, + V@, R) (13)
2 ma Mg

where R} is the same as R’, but Vg, implies (Vg),,, i.€., I, fixed, whereas V.
implies (Vz.),-. The coordinate r’ is the same as r;_,,, where CMN denotes
center of mass of the nuclei and

acunx = mg/(ms + mg) (14)

The choice of Eq. (14) is particularly convenient because it removes the
Vg, * V,, cross term. Another special choice of the (r;, R;) coordinate system
that is sometimes useful is to let r, be the vector to the electron from the
geometric center of the nuclei (see, e.g., Kolos and Wolniewicz, 1963; Kolos,
1970).

The body-fixed electronic coordinate with arbitrary origin is defined
amalogously, i.e.,

r,=r, —aR (15)
= A(¢, 6,0, (16)
The Hamiltonian in the body-fixed (r,, R,) coordinate system 1is

o1 9 L2
H= - — SR, +—"
2ppp R, ORT * 2usnR:

hll—a a 0 0 d 0
n _aly .0 0, a0 0
+ Ra[ my mB]{ ’ax,, Loy +1 oy, Lex 0z, OR, R“}

B[l 0o g

3 +

—]Vi + V(s R,) (17)
me Ma mg
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where L, is the nuclear angular momentum in the (r,, R,) coordinate system,
L, and L, are the body-fixed components of L,, and r, = (x,, y,, z,). This
can be rewritten as

W o1 0? 1
= —-——-—R
H 2uap R, OR? ° - 2HABR2 Lo -

hll—a a 0 e,

*ﬁj[ " ‘m:][‘ (a;"a—ya)u+‘1"+)
0 .0

+ (axa+lﬁya)(J' —Jea)

P, 02 T A
2h6_z; (E)Ra] -5 [me o + ]V + V(r,, R)  (18)

where J, is the electronic angular momentum relative to the origin specified
by a,

2‘]3 + Jza - Jea—J+ - Jea+‘]—]

'

Jear = Jeax T iJeqy 19
J =J, tot, x T lJtot y (20)

and Jeoy, Jeay and Jiy «, Jioy, , are the x and y components of J,, and J,

respectively. We have used the fact that the total angular momentum is the

sum of J,, and L, in obtaining Eq. (18). Notice that although H given by

Eq. (18) is Hermitian, Eq. (18) is not term-by-term Hermitian. This will be
‘ especially important for Eqgs. (65) and (66) later.

To describe the system with infinitely separated nuclei it is convenient to
use the space-fixed atomic Jacobi coordinates r, and R, where r, is the location
of the electron relative to nucleus o and R is the location of the other nucleus
o' with respect to the center of mass of nucleus a and the electron. These
coordinates are related to the molecular coordinate system by

R; - ma(mA + mg + me) R — fame r
1 (ma + me)(mA + mB) m, + me

[ fama’

h * mA+mB

@n

R +r (22)
where o' = A, B with o = B, A, respectively, and where

+1, o=A
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In the space-fixed Jacobi coordinates the Hamiltonian is ’
H = —(h*)2u3p) Vi, — (W°2u9) V7, + V(1,, R) (24)
where
.ugB = [(maz + me)ma’]/(ma + m, + ma’) (25)
He = myme/(m, + m,) (26)
hz 02 L/Z
hZ V2: - . p_ "«
R« ™ R, 0R2 R R? @7
h2 52 2 -
A 28)

— r —
roort "t 2
L is the angular momentum operator of the motion of nucleus o’ relative to
the center of mass of the a-electron pair, and J., is the electronic angular
momentum operator relative to the nucleus o. The total angular momentum
in these coordinates is given by

Joo =L, + I, (29)

The eigenvalues of L;? and the component L[, will be called L (I, + 1)A?
and m,h, respectively. The eigenvalues of J.2 and the component J_,,. will
be called j(j + 1)h* and m;h, respectively. The transformations of Egs. (21)
and (22) can be rewritten as

R. = (uan/tap)R’ — [(fou)/m,Ir' (30)

r, = [(fspan)/m,JR" + 1 (31 .
This transformation can be inverted to give

R' =R, + f(u/my)r, (32)

r' = (4ap/Uas)ty — fllian/m)R; (33)

B. ELECTRONIC BASES AND COUPLED CHANNEL EQUATIONS

Born-Oppenheimer electronically adiabatic states are eigenfunctions of
the molecular electronic Hamiltonian in the body-fixed frame with R fixed:

[—(®#*/2m) V} + V¥, R)]1¢%ma(r, R) = g3,0(R)P3malr, R) (34)

The first subscript on ¢2,q denotes the center to which the electron is bound
as R goes to infinity, and n denotes the molecular principal quantum number
for the electronic state. The basis functions ¢4, are defined relative to the
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ody-fixed axes and are functions of R, but independent of R. A caret denotes
a unit vector. The superscripts in Eq. (34) denote adiabatic.

In the space-fixed frame we explicitly indicate the dependence of the basis
functions upon angular components of R’, however, the eigenvalues &},o(R)
will still be simply functions of the magnitude of R".

The total wave function for a collisional event may be writtent

\Paonoﬂo(r,’ Rl) = Z d):nﬂ(rla R()ﬂznﬁmonoﬂo(R’) (35)

an

. where a,, ny, and , specify initial conditions and the wave function satisfies
(H — E)¥ypnp0, = 0 (36)

We note the important orthogonality property
{Gon, (1, R) | $hua(t’, R)Dp = 6,505, 00,0 (37

where a subscript on a matrix element denotes the variables integrated over.
Using Eqgs. (2), (34), (35), and (37), and requiring

{Ponia,(, R)H — E|¥ ne000r = 0 (38)

for a set of y, ny, Q; yields

hl
[ Vizl’ + 831:191(}2) - E]fymﬂlaonoﬂo(Rl)

B 2pas
@ Ll it
- —‘———< anl 1 Vr' 27! r + anl 1 \% '|¢:m r
5 s Ooml Ve + 5 i, V150
h2
+ ;A_B <¢3n101 |VR'|¢:nQ>r’ * VR’}fanQagnoQo(R’) = O (39)

We use the convention that a derivative or gradient operator in a matrix
element does not operate outside the matrix element.
Another expansion of the total wave function is given by

Wognoao(s R) = Y Wi 0,0, R) (40)

z JM

WM o, (', R) is the component corresponding to conserved values J and M
of the quantum numbers for total angular momentum and its component on a

+ When we use the same function name with different arguments we mean the same quantity
rewritten in terms of the new arguments. Thus the functional form is different.
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space-fixed axis; og, ng, and €, specify initial conditions; and the wave’
functions satisfy

(H — E)¥:on0, = 0 (41)
Jtzol \Paonoﬂo = J(‘] + l)hquaonoﬂo (42)
Jtot z' lPmonoﬁo th‘aonono (43) =

Specifying the initial conditions by €, is convenient for using body-fixed
coordinates (see, e.g., Pack 1974; Walker and Light, 1975; initial conditions .
are discussed in more detail in Section ILC). Wy o,(r’, R') can be rotated into
body-fixed coordinates by expanding in coefficients D§,, of the irreducible
representations of the rotation group (Pack and Hirschfelder, 1968), i.e.,

aonoﬂo(r R,) = Z D M(¢’ 03 O)lpglmonoﬂu(r’ R) (44)

in which
J!Ot,z\PKJlaonono = Qh\l}{lagnoﬂo (45)

The expansion coefficients can then be further expanded in the Born-
Oppenheimer basis set

annoﬂo(r R) -t z d)znﬂ(ra R)g:nQJOHOQQ(R) (46)

Substituting Egs. (7) and (44) into (41) yields the coupled equations (Pack
and Hirschfelder, 1968)

Hq o-1W- 1, 20m000(Fs R) + (Hag — E)‘"Pszaonoao(r, R)
+ Hﬂ, Q+1 \Ilgl +1, agnoﬂo(r9 R) = 0 (47)

where .
Hgq = i iR + ! [A2J(J + 1) — 2R2Q% + J2]
e 2uasR OR? 2uasR? ¢ -
h? h?
SN vZ S S, v 48
V" Sy T VR “8)
h[(J + Q + DU F D],
Hoasi = — [( X )1 Jex 49)

2uaR?
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@-

Substituting Eq. (46), using orthogonality,

‘]e:t=JexiiJey (%)

<¢$n101(r’ R)l ¢:nﬂ(r7 R)>r = 5ya 5n1n 5910 (51)
*  [which is consistent with Eq. (37)], and requiring
{ @m0, R)IEq. (47)), =0 (52)

for a set of y, n;, and Q, leads to coupled radial equations

W d? B2 .
—_—— a _ _ J
{ Vs iR? + &,0R) — E+ 2,uABR2 [JJ + 1) —2Q ]}g)’ﬂlmonoﬂo(R)

1 h?
+ Z [2—_ <¢;u1ﬂ|']§‘¢:nﬂ>r - D) <¢$nlﬂlvfl¢:nﬂ>r

tap R? (ma + mp)
"o, < \ . > d
2ﬂAB yniQ anS ,dR
+ <¢a ¢ > Ghrao®) = T
yn 2 anQ) . anQaonoo o 2,uABR2

X {[(J -Q + 1)(J + Q)]1/2<¢3n1,ﬂl‘]e+l¢:n,ﬂ—l>rggn,9—l,aonoﬂo

9
R

2

0R?

‘ +[(J + Q + DU — D al Ve 1m0+ 10x

X gin,ﬂ-*— l,monoﬂo(R)} (53)

The diagonal part (y = «, ny = n, Q; = Q) of this equation agrees with the
equation for the adiabatic approximation originally derived by Van Vleck
(1936).

The electronic wave functions can also be considered functions of the
space-fixed coordinates (r;, R;) and the total wave function ¥, ,.q, can be
expanded in this coordinate system to yield

Waono2o(Tas RD = Y BT, RO frntianono(Ra) (54

an)

The orthogonality condition now reads

<¢3n,91(r;’ R:;)l qb;nﬂ(r:v R:z))r; = 5}'1 5n1n 5910 (55)
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which follows from R;, = R’ and Eq. (51). We require that '
{Pona, (0, RYIH — E|¥, 00,00, = 0 (56)

for a set of y, n;, Q,. This yields the set of coupled equations

h? ,
I:_ Vlzzlz + Bgnxﬂx(R,ﬂ) - E:If;mlﬂlaonoﬂo(Ra) =
PITIN

h2
+ Z {— l:(‘f’;n.ni |V12<;,|¢§nn>r;, + 2{ P50, | VR, | Poner, - Vz.] )

anQ 2piag

1—a a
— hz[ —‘:I [<¢:mﬂ1 V., V.| ¢:"n>"‘
B

mpa m

h2 (1 - a)2 az
¢a ; , (ba s . v - —
(Pima Vil Gane e, - Vi 2 [ ma " mg]
X <¢$n1§l1, ;31‘I¢2”Q>r&}fanﬂaonoﬂo(R;) =0 (57)

Notice that these coupled equations can be obtained directly from the coupled
equations (39) in the (', R’) coordinates by use of the transformation

r, =1+ (acun — a)R’ (58)
R,= R (59).

and the relationships between the derivative coupling matrices

<¢;n1ﬂl I VR’ I ¢:nQ>r’

= {Pima | Vol Ponade + (aomn — )20, 1V, | $oads

= <¢3n101 lVRQ, ' ¢:nﬂ>r,’, + (aCMN - a)<¢2y‘mﬂl Ivr,’l ' ¢:nﬂ>r,’, (60) °
<¢3n101 IVIZ(' I ¢2n9>r’

= <¢;n191 lvﬁal‘bznn%; + 2acun — a)<¢:mn, |Vr;, : VR;|¢:nQ>r;, )
+ (acun = @) om0, | V2| Dnadr, (61)

Thus the derivative coupling matrices appearing in Eq. (39) are affected by
changing the electronic origin. Thus one is not free to use an arbitrary
origin for the derivative coupling matrices and still use Eq. (39).
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Coupled radial equations analogous to Egs. (47)-(53) can be obtained
in the body-fixed (r,, R,) coordinates. The wave function Wi o (rs, R
satisfies Eqs. (41)-(43) and can be rotated to the body-fixed coordinates as
in Eq. (44):

aonoﬂu(raa R:z) - Z DQM((;b 0 O)Tﬂaonoﬂo(raa a) (62)

Then we expand W, .., in the Born—-Oppenheimer basis set

\Ilg)aonoﬂu = Iza_1 Z d’:nﬂ(ra’ Ra)g:nﬂagnoﬂg(Ra) (63)

The coupled equations for W,,ma.(Tas R,) are obtained (see, e.g., Pack and
Hirschfelder, 1968) by use of the Hamiltonian of Eq. (18):

Haﬂ, Q- l\y‘g}~ 1, aonoﬂg(ra H Ra) + (HaQQ - E)lPSJIaonoﬂo(ra s Ra)
+ Ha9,9+ 1\{1{14- l,aonoﬂo(ra: Ra) = O (64)
where

h? 0? 1
Hoo= ———-5R, h2J(J — 2h2Q% + J2
o 2uasR, ﬁR‘f * 2usgR 2 (WG + 1) e

+hl—a_a 0 _iJ_i+_iJ
2R, \ my 0x, l@ya eat 0x, laya -

2 —a? &
ai&]—h—[;ql—+“ @, ]vuwra,R)

0z, OR, 2 ma ma
(65)

Heg0sy = —H[(J £ Q + D)(J F Q)]

J.. - h (1 — a_a 0 0
ea+ + [
x [2uABR3 2R, ( B)(axa ay)] (66)

The Born—-Oppenheimer basis states remain orthogonal in this coordinate
system

<¢$n1ﬂl(raa Ra)l ¢:n9(ras Ra)>ra = 5)«1 5nln 5010 (67)

and we require that

{@in0.(ta; R)|Eq. (64)) = 0 (68)
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for a set of y, n;, and Q,. Substitution of Eq. (63) gives the coupled radia.
equations for a set of y, ny, and Q;:

h2 g2 h2 ,
R 1) —2Q R
{ 2/’LAB dR2 + Synlﬂ( a) 2 ABR2 [J(J + ) ]}gl’"lﬂdonoﬂo( a)
h? 9?2 h2 \ d . d
+ ;{ < yniQ W ¢anﬂ>rﬂ - ﬁ< niQ 6—R,, ¢M9>rad_Ra .

1 h(fl—a a
+ Rz <¢yn,Q|J |¢an9>ra < ma - _)

2 2Ra mg
Jd . 0 A
x [< e (ax—a_ l(az)-]eu anQ>rn
a J .0 a
- < 1 (5)?“ +1 éﬁ)‘]ea— anQ>ra

o 0., d
—2hR < i Q a 6R anﬂ>ra 2hR < yn1Q ¢anﬁ> ad_Ra]
h2 1 —a)? 2
2 [( ) + _]<¢ nlﬂlv I¢anﬂ>ra}ganﬂaonoﬂo(Ra)
ma

= Z {h[(‘] +Q + 1)('] - Q)]1/2|: <¢ynlﬂ|'jea ‘¢om Q+1>rﬂ

h (1—a a ,
—— —_— a a R
+ 2Ra < N mB)< yn1, Q ¢an,Q+l>ra:|gan,Q+ 1s10n0510( ‘

1 .
+ h[('] - Q + 1)('] + Q)]I/z[zﬂABRZ <¢:mﬂl'lea+ |d’;n,ﬂ+l>r¢l
0 .0

h {1l —a a a g, >
2R, \ my my e ox, Ay, | ! ‘e

X g:n, Q-1, aonnﬂo(Ra) (69)

The derivative coupling matrices in the (r, R) and (r,, R,) coordinate systems
are related by the transformations

< 2y ¢anﬂ>

2uapR2
o .0

x, oy,

0
= <¢3n191 TR,, ¢:nﬂ>r + (acmn — a)< i€y a‘z,, ¢:nﬂ>r
a 0 a a 0 a
= QY a—}{a an$) y + (aCMN - a) b2 L a_za ¢azuﬂ .y (70)
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o S
< 12y W ¢un9>r
a 62 a a a a a
=< yn18 @ anﬂ>ru + 2(acmn —a)< i 6—15;842: anQ>ra
62
. + (acun — a)2< i€y 32 fmn> (M)

However, in transforming the coupled equations from the (r, R) coordinates

- to the (r,, R,) coordinates, it is also necessary to transform the angular
momentum matrix elements. The necessary relationships for such a trans-
formation are

0 0 0 0
2 _ g2 _ 3 _ i
Je - Jea + (aCMN a)hRa[(6Xa ! aya)JetH- <aXa +1 6ya)‘]ea—jl

62
- (aCMN — a)zhng‘Z, [V,?ﬂ - 622] (72)

Jer = Jear F (@cun — a)hRa[g(l ti 0 ] (73)
Xo © 0Ya
Using Egs. (70)—(73), the coupled equations (69) can be obtained from the
coupled equation (53) in the (r, R) coordinate system; therefore the radial
functions gnaumen, are actually the same in both sets of coupled equations.
n considering the whole set of equations, Eqgs. (53) or (69), we emphasize
hat the origin used in defining the derivative-coupling and angular-mo-
mentum-coupling matrices must be consistent with the origin used in
defining the coupled equations.
Another useful expansion of the wave function WM o is

J
lP:g:oQo = Z z DglM((bs 0’ O)T;annoﬂo(ra(a)’ Ra(a)) (74)

a=A4,B Q=~-1J

where r,,, and R, are defined in the body-fixed frame of reference and
a(e) = 0 or 1 for o« = A or B, respectively; ie., the electronic origin is at

- nucleus o for the states for which the electron is attached to atom o at large
R. Substitution in Eq. (41) gives the coupled equations

J
z [H awe0-1Ve o 1, aono@oTay Ra)
a=A,B

+ (Ha(a)m - E)‘Pzﬂagnoﬂo(ra(a)’ Ra(a))
+ H a(a)Q,Q‘Pl‘Pi.Q'*- 1, aonoo(Ta@» Ra@)] = 0 (7%
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where H, )00 and H,,q o+, are given by Egs. (65) and (66). The wave functlo.
W 0aomo00(Ta@)» Ray) can be expanded in the adiabatic basis set

lII;QozonoQo(ra(az)a Ra(a)) = R;(;) Z d):nﬂ(ra(a)a Ra(a))ginﬂaonoﬂo(Ra(a)) (76)
Substituting Eq. (76) into Eq. (75) and closing from the left with

fdray ¢$;191(ra(y)’ Rﬂ()’)) i

for a set of y, n;, and Q, leads to the coupled equations

n o d* h?
Y { [( + &analRow) — ~——2 R [+1)— ZQZ]> 00 Onyn
HAaB a(x)

an 2HAB dRa(a)
h? a? > < d > d
- gm + anl ap gn
2:“A << mae aR @ Ta(a) d)}’ “ aRa(a) @ Ta(a) dRa(az)
¢:nﬂ>
Fa(a)

a(a)

+ (2luAB Ra(az)) ! <¢ Q2 l ‘]ea(a) ] ¢2n9>ra(a)

hoJ, 9 d
_Ja a iV
* 2Ry M, [< e <5xa(a> l ‘3ya(a)) s

o .. @ ) >
- an - t 1 Jeaa - :nﬂ
< me (axa(a) aya(az) “ ra()

5,
—2h v
Ra(a)<¢7”‘“ 02wy Z o) aRa(az) ¢anﬂ> Ta(a)

d
) ] ®
“ Ta(a) dRa(a)

h2
- j;,l" <¢ ynQ | Vra(a) I ¢oamﬂ>ra(a):|g1n9aonoﬂg(Ra(a))

2hRa(zx)< yn1Q2

a(a)

_h[(‘] + Q + 1)(J Q)]l/Z ((2/“AB Ra(a)) l<¢2ylnlﬂl‘]ea(a)~ |¢2n,9+ 1 >l’a(u)

hf, )
2m 2R <¢

0 .0
j ——
axa(az) a.ya(oz)

J
¢:n, Q+1 > )gan, Q+1, aonoﬂo(Ra(a))
Ta(a)

- h[(‘] - Q + 1)(J + Q)] 12 ((2:uAB Ra(a)) ! <¢$n19 [ ']ea(a)+ | ¢:n, Q-1 >"a(rz)

- niQ am Q-1
zma Ra(a) ’ Ta(a)

X ggn, Q-1, aongﬂo(Ra(a))} = O (77)

0
axa(az) aya(az)
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Iternatively, using the transformations in Egs. (70)-(73) and the fact that
R = R, = Ry, the coupled equations given above can be derived directly
from those given in Eq. (69). Since the transformation involves no approxima-
tions, the radial wave functions in each set of equations are equivalent. The
advantage of using the coupled equations (77) is that they are more uncoupled
at large R.
It will be useful later to have defined electronic basis functions that are
* centered on one nucleus and translate with that nucleus, but do not rotate
with the R’ axis and have no explicit dependence upon the internuclear
distance. These functions do have an implicit dependence upon R’ because
they translate with the nuclei. They are eigenfunctions of the atomic electronic
Hamiltonian

[—#2u)V7, + V()15 m, (1) = &5 im (1) (78)

and are therefore called atomic states. V(r)) is the limit of V(r,, R}) as R},
and (R;/r;) tend to infinity. The label p denotes the atomic principal quantum
number and the label j denotes the electronic angular momentum quantum
number. The total wave function can be expanded in these (overcomplete)
atomic basis states to give

ﬂopojomjo - Z ¢PJ'”J(r‘l)ﬁw}mﬂollo]omm(R) (79)
apjm;
The wave function ¥, ,,jom,, satisfies the Schroedinger equation with the
Hamiltonian given most conveniently by Eq. (24). Requiring
<¢}/7|jlmj1(r;’ R:/)IH - EI\Paopgjo>r4, =0 (80)
‘or aset of y, py, j;, and my, yields the equation
Z <¢}’71j1mj'1(r;)| - (hz/zy’aAB) VIZQ{,, + Hea - El ¢;jmj(r;)j;pjm‘jaopojomjo(Rz/l)>r-’,
apjm;
=0 (81)
where
He, = —(W/21) V7, + V(,, R) (82)

The wave functions f,,m aopjom,o(R:) are explicitly included in this inte-

- gration because R is a function of r, for « # y. This leads to coupled integro-
differential equations that are much more difficult to solve than the differential
equations (39). The coupled equations are

[—(7*/21a8) Vi, — E1fypasim; aoposomio(R))
+ Z <¢;1j1mj1 IHea’ ¢Zvjm,->rl,f~ypjm1-aopojomj0(R;’)

pjmj
+ 2 2 LD iimp @) H — E| ¢, [r(r;, R})]

a#y pjm;j

X apjmjoopojomjo [R (l'),, I{y)]>ry - (83)
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The last term in Eq. (83) contains the rearrangement kernel that describ
the exchange of an electron between the nuclei during the collision.

A convenient method for coupling the angular momenta to obtain scatter-
ing wave functions obeying Eqgs. (42) and (43) has been given by Percival
and Seaton (1957) and Arthurs and Dalgarno (1960) (see also Blatt and

Biedenharn, 1952; Truhlar et al., 1975). The total wave function ¥, iom;, 15
expanded in scattering states that are eigenfunctions of J,, and J,,, .-
¥aopoiomso = 3. ¥iopaiomso 84)
and each JM component has the expansion .
‘Pigf)womm = Z Aaopo]omJoluo \P:z?xlfojolau (85)
The atomic states are expanded in spherical harmonics
pimfT) = Pofr2) Yim (7 (86)
and we expand W, ... as
W iapoiolao = M; Por)® i (#r RYRY) ™ Fpitapootao(RE) 87

The functions #4M(#,, R}) are eigenfunctions of J2,, Jo, -, L:2, and J/2 and
are given by
i Iy -
YMHE,RY= Y Y CUlJ;mmM)Y ()Y m (R (88)
mj=—jmg=—lg

where C(jl,J; m;m, M) is a Clebsch-Gordan coefficient. Coupled equations
for the radial functions g, (R}) can be obtained by substitutin
Eq. (87) into the equation b

Jar; [ar, Py, o0 6 RXH — DY =0 69)

«®0Ppojolao

where the Hamiltonian is given in Eq. (24). The resulting coupled equations
for a set of y, py, j;, and [,, are
N (L, + 1) . ®)
- 2Uip dRrZ zlu.yABR,z - yp1irly1z0pojolaot Ly -

v 3 [af; [, 020, Ryrf oty e Ry
pj

X Thoniona®) + T T [aR, [, P00, B)

a#y pila
X (H - E) pj[ra(ry’ y)]@ﬁ:’ u(rya y)7 Ra(ry’ R;)]
X Gapitaaopojoleol Ra(Fys R)] = 0. (90)
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‘. ASYMPTOTIC BOUNDARY CONDITIONS

Proper scattering boundary conditions can be imposed upon the total
wave function W, .0, O Wagpgjomse 001y in the (v, R;) coordinate system.
The coordinates (r, R') or (r, R) are not appropriate at large R because
neither r’ not r remains finite as R becomes large. In these coordinate systems
the electron is referenced to the center of mass of the nuclei, and it is translating
with respect to this origin. Because of this, the derivative-coupling matrices
do not vanish at large R. Consider the matrix element {¢;, o, | Vr | dima)r

fory = a = A and n; # n. From Eq. (60) we obtain

<¢?4n191 |VR’ | d);nQ)r’ = <¢;n191 IVR'A I ¢;nﬂ>r’4 + aCMN<¢;nlﬂl Ivrhl ¢?4nﬂ>rj4
o1

For large R the first term in this equation vanishes; however, the second term
does not. Since these derivative couplings between the electronic states
persist at large R in Eq. (39), the channel functions f,,q,.n.0,(R") do not
satisfy the usual scattering boundary conditions (Mott and Massey, 1965,
p. 429). Similar considerations apply to Egs. (53) and (69) and to the functions
G hncmonono(R)- A formal analysis of the asymptotic behavior of W, fr, R)
has been given by Kouri and Curtiss (1971).

In the space-fixed (r,, R}) coordinate system, the correct scattering
boundary conditions for the total wave function ¥ aret

aopojom o

‘Pdopojomj'o(r;o 4 Rdo) exp(lkpo)o )¢p010m]0(r;0)

+ Z R; le/'azpjm,-azupujom,-Q(Raz) exp(lk a)¢pjm](r;) (92)
apjm;
Q«/here F apimyaopo Jomw(R;) is the amplitude for scattering from state agpgjom ,o

and k%,

to state apjm;, and the initial and final wave vectors are kp?; pj> T

poJjo
spectively. The magnitude of the wave vector is
ki = [Quka/INE ~ 5] ©3)

It is also possible to impose the scattering boundary conditions directly
upon the wave functions fap imaopojomyo Ra) and Frpitazopojolo Ry). Comparing
Egs. (79) and (92) show that

fapjmjaopojom,o(Ra) exp(lkpojo ao) brmo 511170 5110 5mlmjo
11 .
+ Ra '/’aijjaopojng'o(Ra) exp(lk;jR;) (94)
+ Throughout this article the asymptotic boundary conditions are given for the case where
the long-range potentials decay more rapidly than Coulomb potentials. The extension to include

Coulomb boundary conditions in some or all channels is straightforward (see, e.g., Messiah,
1965, p. 421; Faist, 1975).
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Equations (92)-(94) may be derived from the asymptotic limit of th
coupled equations (83). As R;, becomes large with 7/, finite, the matrix elements
of the electronic Hamiltonian become diagonal with the atomic energies
&}; on the diagonal, and the rearrangement kernel vanishes as the overlap
between the electronic wave functions on the different nuclei goes to zero.
Therefore, the limit of Eq. (83) as R}, and (R;/r}) tend to infinity is

[_(hZ/ZHAB) V (hz/zuAB)ka“] f;pulm}laopojomjo(R ) = 0 -
for large R, 95)

Similarly, the coupled equations (90) for the radial wave functions
G pit,aopojol.o(Ry) decouple at large R), and finite r,. The expression in braces
involving the electronic energy reduces to ¢,; 5“ p9j1j 01,1, the rearrange-
ment kernel vanishes, and Eq. (90) becomes

h? d? L(,+1) N ,
Z#KB |:_ dR;,Z + ! ;(;2 (kp111)2 gimhlwdopojolao(R)’) =0

for large R, (96)

The asymptotic behavior of the radial wave functions is given by

gapﬂaaopojolao(Ra) 50!0!0 5ppo Jio 51 ala0 eXp[ ’(ka R, lan/ 2)]

- (kpojo/ ks )llzsawlaaopomluo cXp [l(ka R, — 1,7/2)] 7

where Smpﬂmwm,0 is an element of the scattering matrix (S matrix). The
expansion coefficients AWO jomsolao Of EQ. (85) can be identified by using the
asymptotic limit (97) in combination with Egs. (84), (85), and (87) to obtain
the asymptotic limit of the total wave functions ¥, jom .- Comparison of thi
asymptotic behavior to Eq. (92) gives (see, e.g., Child, 1974, p. 102)

AM = [(2lyo + Dm]*7i lao+1(kpujo) LC*(jolaoJ s mjoOM)  (98)

and the scattering amplitude is given by

aopojomjolao

F apimjaopojomjo(R )

keo ks

poJjo

20 + 1
= Z l:( 9 )] =0 I+IC*(]OI<10J m;oom ) -
Jlgolamiy
x [S;pilaanpojolao - wzo ppo JJO 511 ]C(ll J; m; My ;O)Y;“m,a(R)
99)
In Section II,B we considered several basis sets and coordinate systems
for expanding the total scattering wave function. The most convenient from

the point of view of solving the coupled equations is the Born-Oppenheimer
basis set in the body-fixed coordinate system (r, R). However, we have just
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"IOWII that these coordinates are not appropriate for imposing scattering
boundary conditions. Although we can easily impose scattering boundary
conditions by using atomic basis states expressed in the space-fixed co-
ordinates, the coupled equations for the radial wave functions g, ;..o pojoto(R%)
are very complicated in this coordinate system. Further, the expansion of the
molecular electronic wave functions in terms of pure atomic states is slowly
convergent. Many procedures for circumventing these problems have been
proposed in the literature and we_shall discuss some of them in Sections
IL,D; ILE; I1,G; and II,H.

D. ELECTRON TRANSLATION FACTORS

Bates and McCarroll (1958) suggested removing the defect of the molecular
coordinate system by employing electronic basis functions that include
electron translation factors (ETFs), and there is a large literature concerned
with the further development of this approach (see, e.g., Hahn and Russek,
1968; Schneiderman and Russek, 1969; Riley and Green, 1971; Tauljberg
et al., 1975; Dahler et al, 1977; Crothers and Hughes, 1978; Basu et al,
1978; Thorson and Delos, 1978a; and references cited in these articles).
Most of this work has been formulated in a semiclassical framework, the
classical path method (Bates, 1962, p. 549; Mott and Massey, 1965, p. 802;
Bates and Holt, 1966; Delos et al., 1972; Riley, 1973; Tully, 1976) in which
internuclear motion is treated classically. The most common version of this
is the time-dependent straight-line impact parameter method. The classical

ath approximation is not always valid at chemical energies. We shall

ntinue to use the time-independent quantal formalism already presented
in Sections IILB and II,C. In this section we derive the coupled channel
equations for the case that ETFs are included in the basis set.

ETFs can be motivated by manipulating the asymptotic boundary con-
ditions of Eq. (92) for the total wave function in the space-fixed coordinates
(r;, R.). Substitution of Eq. (30) for R)(r', R} into Eq. (92) gives

‘.Paopgjomio R,/-:-:o Z (}Sijj(r;) exp[ - l(f:z /’t:/ma)k;j : l'/]

apjmj
X {5”0 517170 5jjo 5m1‘m,-o exp[i(.uAB//'liB)k;j * R/]
+ R:z_lyapjmjaopojomjg(ﬁ;) exp[ik;jR; + i(f;uu:/ma)k;j * I',J} (100)

From Eq. (30) we note that

a /.R/ a\ 2
R, =g Jakel:] +0[<&>] (101)

a
HaB m, R my
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where O(x) denotes a quantity of order of smallness of x. This simplifies t]‘
last exponent in Eq. (100) to

s ! . fy' /
lkija + lﬂk;']' r
m(l

=i

U a ' . flﬂue a ’ a D7/ ’ : z
ﬂ:: kR +lfma &2 — kR -1 + 0[(%) ] (102)

@,

The second term on the right-hand side of Eq. (102) vanishes at large R’
because
kiR o= ki (103)

(R'frg)—

We can use Egs. (30) and (31) to obtain R; as a function of R" and r,. This
yields

R, = R" — (fate/my)r, (104)
and the limits
R, o> R — (fupe/m)l(r;- R)/R] (105)
(R'jri)— oo
R, &~ R "+O0R™) (106)
(R'[rg)=
R, /~ R +O0OR™ (107)
(R'[rg)— 0
Substituting Egs. (102), (103), (106), and (107) into Eq. (100) yields ‘
lPatopn:)jomjio I{‘\-:/oo Z ¢;jm,‘(r;) exp[_ i(fz;z:ug/ma)k;j * r,]
apjm;

X {50110 5ppo 5jjo 5mjm_)'() exp[i(.uAB/,ua/!\B)k;j * R,]
+ R i leg;azpjmjazopojomjo(Ii/) exp[i(ﬂAB/ﬂaAB)k;jR,]}
+ O(R'"™) + OL(ne/my)*] (108)

The first exponential in Eq. (108) is the ETF. This equation shows that if we
multiply each electronic basis function by an ETF we may impose the usual
scattering boundary conditions on the R’ coordinate. The ETF in Eq. (108)
depends on o and the energy of the atomic state but not on m;. Other choices
are possible.

To motivate the choice of ETFs in a molecular basis, we must first consider
the large-R limit of the molecular basis functions. Every molecular state
tends to either one atomic state or a linear combination of degenerate
atomic states; however, there are some subtleties. First, the equations
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fining the molecular and atomic states, Eqgs. (34) and (78), respectively,
contain different masses. These masses are related by

“ae! = me[l - (me/ma)] + 0[(me/ma)2] (109)

Because of this the electronic eigenvalues in the two basis sets differ even
asymptotically, and it can be shown (Delos and Thorson, 1979) that

ganQ(R ) R'= o p_) + O(m /ma) (110)

A second difference is that the molecular states rotate with the body-fixed
z axis, whereas the atomic states do not. If we consider atomic states that
rotate with the internuclear axis and we assume that the atomic states are
(2j + 1)-fold degenerate, then we can write the limit of ¢, as follows (Pack
and Hirschfelder, 1970):

bznar, R) oy Z D (9, 0, 0)$5 i, (1) + O(me/m,) (111)

where pj(nQ) denotes the values of p and j for the atomic level to which ¢},
tends. Let

kena = lim {2usg[E — (R }12 (112)
R
Then, Eqgs. (93) and (110) yield
kanﬂ = k;j(nﬂ) + O(me/ma) (113)

Motivated by Eqs. (108), (111), and (113), the total wave function may be
expanded in basis functions ¢%,o(r', R') that include ETFs and involve the
adiabatic states instead of the atomic states. Thus,

‘ Fagnoto = an) 2o, R) [ inuonoo(R) (114)
where K
(s R) = @hua(r', R) exp[ — (fup/mKpjmey - ¥'] (115)
Coupled equations are obtained by requiring
{Pime, | H — E|¥sgneno0r =0 (116)

for a set of y, n;, and Q,. We note that although the {¢2,o} functions form an
orthonormal basis set the functions ¢¢,, do not; we will denote their overlap
integrals by

S;nlﬂlanﬂ(R,) = <¢;n191 ' ¢§nﬂ>r’ (1 17)

By use of the Hamiltonian of Eq. (2), we obtain the coupled equations

ZQ{S;nlﬂlanQ(R,)[_(hz/zﬂAB) VIZQ' - E] + 2F;n191anﬂ(Rl) . VRf

+ G;nlﬂlanﬂ(R’) + H;mQ;anﬂ(R,)}f:nﬂaonoﬂo(R() = 0 (118)
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in which '

FinamaR) = — (12 2uap) $5n0, | Ve | Pina e (119)
Goni0amnaR) = — (02 2papX P52, | Vi | Bonedr (120
H;mﬂlanﬂ(R/) = <¢;n191| _(hz/zme) Vf’ + V(r/’ R/)|¢:nﬂ>r’

— 1*/[2(ma + mp)I P5ns0, V7 | Ponade (121)

We now wish to show that in the large-R’ limit, the couplings arising from
the terms F3, o ..o(R) and G5, q,o(R’) are canceled by terms arising from
the ETFs.

We can replace all derivative operators in the (r', R") coordinate system
with those in the (r,, R}) coordinate system by using the transformation
given in Egs. (30) and (31). This yields

Ve = (uas/tian) Ve, + (fattan/m) V,, (122)
Ve = Vo, = (fatte/my) Vi, (123)

If the adiabatic states tended asymptotically to linear combinations of the
nonrotating atomic states, then Vg, operating on these asymptotic states
would be strictly zero. However, because of the relationship in Eq. (111), the
situation is more complicated. To illustrate the essential feature of ETFs
we continue the present development with the approximation

lim Vg, ¢4or,R) =0 (124)
RI‘{/rj’—'oooo '
which is equivalent to the approximation
Hm @300, R) = ) dunom; O jnaym, (1) (125)
R~ mj

R'jr'— o

where the d,,q., are some constants.

Actually, this is not an approximation if one limits the state expansion
to T states that tend to atomic states of § symmetry. (The more complicated
situation is discussed further in Section ILF.) With these approximations
we can write the asymptotic limits of the coupling matrices and Hamiltonian
matrix

F;nnﬂmnn(R') R/::.;o - (hzfa/zma) Z d;’knlnlmjl danQMj
approx Eq. (125) mjim;

x fdrl Iyi*ljl(n191)mj1(r;)e;’kmﬂl(r()eanﬂ(rl) Vr& ¢;j(nﬂ)ruj(r;) (126)
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‘ GynlﬂlanQ(R/) é:/w _(hzlu'AB/zmi) Z d;'knlnlmj'1 danﬂmj

approx Eq.(125) mjimj

fdr ¢p111(nlﬂl)mn(ry)eynlﬂl(r )eanﬂ(r ) V ¢pj(nﬂ)m1(r ) (127)

e
Hynlﬂan(R) Rfr:-;o Z dynlﬂlmjl danﬂmj
approx Eq. (125) Mj1m;

hZ u 2
J.dr 11111("191)m11(r7)e)’"191(r )eanﬂ(r,){_ 2,“ [ (me Z,(M}))

, i Jebe kp,(nm Ve, + Vf;] + V@, R')}¢>Z,-<umm,-(ri.) (128)
where the electron translation factors are given by
eana(r') = exp[—i( futte/m,)K} jnay + ¥'] (129)
For sufficiently large R’, f anzonoo(R') behaves as a free translational state,
f anaonoo(R') 77 expli(uap/Han)Kyjme) - R'] (130)
and
VS ntzonaoR) e itas/HaB)KS, j(nﬂ)i an02omeo(R) (131)

Combining Eqs. (126)-(128) and using Eq. (131), we obtain
[2F;nlﬂlunQ(R/) * VR’ + Gin;ﬂlunﬂ(R/) + Henlﬂlanﬂ(R,) - E]f:nlﬁlagnoﬂo(Rl)

. R_.w Z d)’nlﬂlmjl anﬂmj{fdr ¢p111(mﬂl)mn(rv)eymm(r)

h? HaB Jable Jalt
Xanr/ —— V2+h2 Jalle aHAB V
euaal )[ 2 <#° m? mats | mopg) P
hz
+ 55— 2# m kpj(nﬂ) + V - E:' ¢;j(nﬂ)mj(r;)}j‘:nﬂaongﬂo(Rl) (132)
. = Z dynlﬂlmﬂ ‘anmJ[J‘dr pljl(m(h)m,l(ry)e'ynlﬂ (l’ )eanﬂ(r)

h? nue .
X ( 2ul Vrz“ tV-E+5— 5 2. m kPJ("Q)>¢;j(nﬂ)mj(r;):lf :nﬁaonOQO(R,)
(133)
h (u
= 2#AB (u:B kPJ("Q)) Z dvmﬂlm,l anQm; fdr Pul(mﬂl)m,l(ry)

X e‘pnlﬂl(r )eanﬂ(r’)¢pj(nﬂ)mj(ra)f;nﬂaonoQO(R/) (1 34)
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We used Egs. (3), (11), and (12) and the fact that the terms containing,
cancel to obtain Eq. (133), and we used Egs. (78) and (93) to obtain Eq. (134).

Therefore, in the asymptotic limit, the coupled equations (118) simplify to

3 Shuomcl®) a1 e )] Pt ®)
n1QyanQd 2#AB R Z,MAB ,uaAB pj(nQ) anQuaonoSo
=0 for large R’ (135)

where

4 *
ynlﬂtanQ(R)R S Z dynls’hmjldangmj

x <¢;1j1("101)"‘j1 |CXP{i[(fyﬂz/mv)kfnjx(mn;)
- (f;z”:/ma)k;j(nﬂ)] * l',} | ¢;j(nﬂ)mj>r’ (136)

Notice in Eq. (135) that all derivative coupling vanishes; however, there still
remains a trivial coupling due to the nondiagonal overlap matrix S35, 0, ma-
This can be removed by multiplying the matrix equation (135) from the left
by the inverse of the overlap matrix. The transformed coupled equations
decouple asymptotically with the correct speeds Ak,;/ip-

Although the previous development, Egs. (100)-(136), has been based on
the (r', R’) coordinate system and ETFs of the form

exp[ - l(fz; Au:/ma)k;j(nﬂ) ° l")

a similar development could be carried out using the (r;, R}) coordinate
system and ETFs of the form ‘

exp(— iy, k; J(n€Y) * r) or exp(— iy, k;j(nﬂ) * Togw)

In addition one could consider an expansion in basis functions that tend to
d):nﬂ CXp( M’aa kpj a)

at large R’ but have arbitrary modifications in the ETF at small R". The
arbitrariness of a and of the ETFs at small R’ is a serious drawback of the ETF
approach. Another, even more serious, drawback of ETFs is that the required
input to the coupled equations includes the electronic matrix elements (121),
which are much more difficult to compute and much less readily available
than the Born-Oppenheimer electronic potential curves &,o(R), which are
required in the coupled equations (39) or (53). In Section ILE we discuss a
method for solving the more convenient coupled equations (53) obtained
without using ETFs in the expansion, but nevertheless applying correct
boundary conditions to the scattering wave functions. The relative merits
of the two approaches are compared briefly in Section ILH.
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. REARRANGEMENT-ANALYSIS METHOD

Another approach to computing the scattering amplitude is suggested by
considering the collision from the point of view of rearrangement scattering
theory. Recall that the difficulty is associated with the fact that the most
convenient coordinate systems, the (r, R) or (r/, R’) coordinates, for com-
puting the scattering wave function are not natural coordinate systems for
applying scattering boundary conditions. The same problem also occurs
in chemical reactions, which are a special case of rearrangement scattering.
The connection of the present problem to rearrangement scattering can be
seen even more directly by considering the (r,, R}) coordinate system. In
this coordinate system the infinite-range coupling between states in which
the active electron resides on 4 at R = oo (A4 states) can be eliminated
by choosing a = 0, and the infinite-range coupling between B states can be
eliminated by choosing a = 1. (The coupling of A states to B states has a
finite range in any coordinate system because of overlap effects.) But if A
and B states are important for the same problem, then no one choice of a (i.e.,
no one choice of origin for the electronic coordinates) can eliminate all the
infinite-range coupling. The presence of both A and B states means that
rearrangement scattering is possible. Thus the possibility of rearrangement
scattering is intrinsically tied to the difficulties.

One approach to rearrangement scattering is to use “natural collision
coordinates”; these are coordinates defined in such a way that as each possible
combination of ratios of interparticle distances approaches an asymptotic
limit, the coordinates tend to the natural coordinates for applying scattering

undary conditions for that arrangement of particles (see, e.g., Marcus, 1968).
‘ the present problem one would require a single set of coordinates that
becomes equivalent to (r), R)) as R’, (R/r)), and rp tend to infinity, but
becomes equivalent to (rz, Rp) as R’, (Rp/rp), and ), tend to infinity. Ap-
proaches to the present problem based on natural collision coordinates have
been published recently by Mittleman and Tai (1973) (see also Mittleman,
1975) and Thorson and Delos (1978b). The disadvantage of natural collision
coordinates is that they are very complicated and are often difficult to deal
with. In addition the mass ratios involved make them less appropriate for
electron transfer than for-chemical reactions.

Another method for electronic-state coupling based on recognizing that
electron transfer is a rearrangement collision has been presented by Stechel
et al. (1979). Their method uses nonorthogonal coordinates and non-
orthogonal (tending to overcomplete) basis sets. Various aspects of their
methods are discussed later in this section in Section ILH, and in Section IV.

Another approach to calculations on systems involving more than one
arrangement channel is to obtain a set of linearly independent solutions
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to the Schroedinger equation in any convenient coordinate system, and th
take linear combinations of these solutions that satisfy the correct res
arrangement-scattering boundary conditions (Diestler and McKoy, 1968;
see also Truhlar and Kuppermann, 1972). In practice one obtains a set of
linearly independent approximate solutions because one truncates the
coupled equations by retaining only a finite number of terms in the expansion
of the wave function. The last step in the procedure just outlined is called the
asymptotic analysis and we will call it the rearrangement-analysis method.
A particularly close analogy to the present problem is provided by Diestler’s
(1971) method for treating the collinear reaction A + BC by solving coupled
equations in the coordinate R,¢ (the A-to-C distance) and imposing correct
scattering boundary conditions involving both the (Rap, Rap,c) and
(Rac, Ra, ) coordinates, where, e.g., Rap, ¢ is the distance from the center of
mass of AB to C. This is analogous in the present problem to solving coupled
equations in the coordinates (r, R) or (r', R’) and imposing correct scattering
boundary conditions involving both the (rj, Rj,) coordinates and the
(rg, Rg) coordinates. This approach is worked out in the rest of this section.

The most convenient way to obtain a set of linearly independent approxi-
mate wave functions is to propagate the radial wave functions g;,0uom.0,(R)
in the body-fixed (r, R) or (r,, R,) coordinate system into the asymptotic
region. Using Eqs. (44) and (46), the component of the total wave function
with a particular J and M and initial conditions i, is constructed from the
radial functions as follows:

P, R) = ZQszM(dJ, 0, 0)¢imal®, RIR ™' ganaio(R) (137)
where we have replaced the indices aynyQ, by i, because we here choo’
arbitrary initial conditions in the solution of the equations (53) or (69). On
possible choice of initial conditions is

Jansri(R)[r=0 = 0 (138)
(d/dR) Gungriol R) [R=0 = 9is, (139)

where i is a linear index denoting the ith combination of a, n, and Q. Given
WIM(r', R'), one could use the fact that R is (6, ¢) to project out the radial
functions at R = R, as follows

G on®s) = R, f iR f dr 6% o (F, Ry)

x [(2J + 1)/4n]' Dy, (9, 6, OWLM(', Ro, R)  (140)

Equation (140) shows that we obtain the same radial function for each choice
of M in W{M(r', R'); one could use this feature to simplify the subsequent
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lgebra by using the fact that for the convention used by Pack and Hirsch-
felder (1968) and here,
Doy, 6,0) = (= 1)°[47/(2J + 1)]"2Y;0(6, )

In the space-fixed (r;, R;) coordinate system W™ has the asymptotic form

M o X Y E, RIP(rdR, (T dpj1.i exp[— ik, R, — 1,1/2)]
apjle

+ Aspitaio €XpL+i(ky; R, — 1,7/2)]} (141)
Subst1tut1ng Eq. (141) into Eq. (140) and using the asymptotic forms for R/,
and R/, given in Eqgs. (105) and (107), we obtain

g/nlﬂlm(R )R S Z {jymﬂlapﬂ,(RZ) exp[_i(k;jRZ - lan/z)]ripﬂaio

apjle

+ j)mlﬂlapﬂ‘,(RZ) exp[i(k;jRZ -1 7[/2)] Aapjlazg} (142)

where

FE e (R) = [2U + 1)/dn]'2 f iR f A % oK', R)DE(, 6, 0)

X exp[+lfa(ug/m )kpj a(r RZa R) R]
x WM, Ry, R), RIPAF(Y, Ry, RY] (143)

Jla

Although the .#-matrix elements depend on R,, they do go asymptotically
to a constant limit J/,,lgam, Using Eq. (111) for the limit of the molecular
states at large R and replacing the integration variable r’ by r,, we obtain

.]‘){:lﬂlallﬂm ym[(z‘l + 1)/47[]1/2 Z dR dr, Dlen((tb 0 0)¢p111(n19;)m11(r)
Dy, (. 6, 0) expl +if(ue/mo)ki;x, - RIHIME,, R)PE(r,)
(144)

The Kronecker delta é,, arises because at large R the overlap of the atomic
basis functions on different nuclei is negligible.
The derivative of Eq. (142) gives a second set of equations

O Gana(R) =, T A=K g (Ro)
apjla
X exp[_i(k;jR2 - l n/z)]rapjlalo + ik;jjyn_lﬂapjl,,(RZ)
x expli(k2;Ry — L,1/2)] Alpoic} (145)

The derivatives of the .#-matrix elements are set equal to zero in Eq. (145)
because these matrix elements approach constant asymptotically. The
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procedure is now clear. One retains N terms in the expansion of Eq. (46) anc'
solves the N coupled differential equations (53) with arbitrary initial con-
ditions [e.g., those in Egs. (138) and (139)] over an interval of R from the
origin to some R,. Then one calculates the integrals in Eq. (143) or their
limits [Eq. (144)] and solves the 2N simultaneous equations (142) and (145),
or their analogs with .# matrices substituted for .# matrices, for {Tiiaio) and
{A) i} for N sets of o, p, j, and I,. Notice that if the N terms retained in
Eq. (46) could be expanded in N atomic states, then one would at this point
have the same information as if one had: (1) retained N terms in the ex-
pansion of Eq. (87); (2) solved the coupled equations (90) with N sets of
arbitrary initial conditions for N sets of N radial functions §3,; ;, over the
interval of R, and R, from 0 to about R,; and (3) analyzed the N linearly
independent radial functions for their asymptotic form. One would then take
linear combinations of the §7,;.:o(R,) to form a set of scattering states
Frpitazopojolo(Rs) Using one of the standard methods (e.g., Gordon, 1971,
or Lester, 1971) appropriate to nonrearrangement scattering. The same linear
combinations procedure can be applied in the present case as follows. The
correct scattering states are linear combinations of the functions W™ whose
asymptotic form is given in Eq. (141):

Yo, = Z Blpitio¥ia" (146)

The coefficients in Eq. (146) are determined so that the linear combinations
have the asymptotic form obtained by substituting Eq. (97) in Eq. (87):

Z vaml 1io zpﬂato 5% 511117 5111 51«/11 (147). ‘
Z melyuo aPJlmlO (kpun/k J)stwmlwapﬂm (148)

Equation (147) for N sets of y, p;, j;, and 4, is a set of N equations that is to
be solved for the B matrix for N sets of «, p, j, and [,. The results are to be
substituted into Eq. (148) to yield the S matrix. The scattering amplitude is
then given by Eq. (99). In principle, the results should then be converged with
respect to increasing both R, and N.

The procedure just described has the advantage that the propagation step
(solution of the truncated coupled equations over an interval from 0 to R,)
is carried out using the convenient body-fixed expansion basis, but correct
scattering boundary conditions are applied at large R, and R,. The body-fixed
expansion basis is convenient because the required input is that which is
most readily available from ab initio electronic structure calculations, and
because the coupled equations are simpler than those for the atomic basis.
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In addition, in the energy range of interest for chemistry, one would generally
expect more accurate results by retaining N adiabatic electronic states in the
expansion at small R than would be obtained by retaining N states in an
atomic basis.

There are many possible variations of the previous procedure that may
be useful in practice. For example, it may be advantageous to propagate
the coupled equations in the form of Eq. (53) only out to some intermediate
distance R = R; < R,. Then one could transform to some other representa-
tion that is more convenient at large R and propagate to convergence in the
new representation. For example, one could transform to the representa-
tion of Egs. (74) and (76) and propagate the solutions to the coupled equations
(77). This involves the coordinates (r,,, R) and is equivalent to using both
(ra, R) and (rg, R). This provides a link to the asymptotic analysis involving
boundary conditions expressed most naturally in terms of (r)y, R}, )and (rg, Rj).
1t also provides a closer analogy to the propagation step Diestler employed
in his treatment of the A + BC chemical reaction. The modification of Egs.
(137)-(148) when Eqgs. (74) and (76) are used instead of Egs. (44) and (46) is
straightforward.

Another interesting possibility is to transform at large distance to the atomic
representation. The main disadvantage of using atomic basis states in the
(r', Ry) coordinate system is the difficulty of solving the integrodifferential
equations (90). However, at large R the rearrangement kernel vanishes and the
two arrangements decouple. Thus it might be convenient to propagate the
radial wave functions g;,a,.m.a,(R) int the interaction region R < R, and use
these to calculate values of the radial wave functions g 1 .o pojor.o(R%) at large
R. Once these are obtained they can be propagated and analyzed for the
scattering information.

To accomplish the transformation described in the previous paragraph,
we first note that the component of the wave function with specified J and M
and arbitrary initial conditions has the expansion

LP‘i,o]‘/l = Z @jjll:,l A )P J(ra)R' 1gap}!¢zo(R(;) (149)

apjle

Thus the radial wavefunctions at R, = R}, are projected out of the wave
function W by

FapiioRor) = Ry de; Jdr;@fzt‘*(?;, R)P(r)¥i” (150)

The wave function WM required in Eq. (150) may be constructed from Eq.
(137) and the functions gJ,q;, obtained by solving the body-fixed coupled
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equations. Doing this yields .
Do Ror) = 3. [aR, [, 00 2 ROP00DA(#, 0,0
yn

X (b?nﬂ[r(r;a ;tl’ R;)’ R(r;) R;l, ﬁ:z)]
X Ry R0, Riy, Rygluai[R(, Ry, R))] (151)

Computing §7,..(R.) and its derivative at R}, = R}, or the function at two
values of R; will give sufficient information to initialize the integration of
Eq. (90). The value of R;; should be taken large enough that the rearrange-
ment kernel vanishes and the equations can be propagated separately in
each arrangement, i.c., the channels with & = A decouple from those with
o = B. The transformation step (151) replaces the rearrangement-analysis
step. The calculation can be completed by analyzing for the I'and A matrices
as in nonrearrangement scattering and by applying Eqs. (146)-(148).

Another transformation procedured is incorporated in the method of
Stechel et al. (1979). They suggest performing special propagation steps to
convert information about the derivative matrix (i.e., the Wigner R matrix,
defined in Section 1V) from a constant-R surface in (r},, R’) coordinates to
constant-R, surfaces in both of the (r,, R}) Jacobi coordinate systems. These
special propagation steps are very complicated, and they were not imple-
mented in the computations of Schmalz et al. (1979).

One of the main goals of this section has been to provide a formally correct
method for handling the infinite-range coupling in scattering calculations
involving several electronic states and body-fixed coordinates. In particular,
we have sought and presented a method that (1) uses as input the electronically,
adiabatic potential curves and derivative coupling matrices that are available
from state-of-the-art ab initio claculations in the (r, R) coordinate system;
(2) makes no restriction on the kind of basis sets used to calculate these
quantities and in particular does not require a basis of atomic states; and (3)
provides a formally correct and computationally oriented way to eliminate
spurious infinite-range coupling even when the important electronic states
include states differing by an electron transfer at large R and when more than
one electronic state is important for each of the separated collision partners.

F. BoDY-FRAME RADIAL EQUATIONS FOR X STATES

In many applications of the theory, the coupling between states with
quantum numbers Q and Q + 1 can be neglected. This is true for scattering
governed by Z potential energy curves when the coupling to I states may be
neglected at all R. Consider, for example, a scattering problem involving only
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2 states that tend at large R to atomic states of S symmetry. For this case,
the matrix elements of J? vanish asymptotically. Neglecting them and the
mass polarization terms, we obtain the following from Egs. (47) and (48) for
this case:

07 h? h?
2,u'ABR aRZ 2 ABRZ 2me
+ V(r,R) — E]‘I’f)%,,oo(r, R)=0 (152)

For this special case we introduce a simplified notation in which the super-
script J = [ is not shown, g is a collective index replacing «, n, and Q, and g,
is a collective index used to replace y, ny, and Q,. Then ¥y, ..o, R) is
renamed and expanded in the adiabatic basis as follows:

W, (r, R) = R™1 Y @i(r, R)a,(R) (153)

where the superscript on the radial function is a reminder that this expansion,
like all other expansions considered in Section II, involves electronically
adiabatic basis functions. The expansion (153) leads to the coupled equations

{ nrod* R+ D

d
5 ap3 T T3 pz T o 2 R) —
2pap dR? + 2,UABR2 E]quO(R) + % |: ‘Wl(R) + Fihq( )dR

+ GZM(R)}XZ%(R) =0 (154)

'in which

H; ((R) = <5, | = (h?/2m.) V? + V(1 R)|§>r = &(R) 8,4 Oy (155)
Fq(R) = —(1/2pap){ ¢, |0/OR| $3 )¢ (156)
Gi.o(R) = —(W*/2uap)<5,10%/0R? | $3), (157)

At this point it is instructive to examine the projection method for imposing
scattering boundary conditions for this simplified example. We will assume
that the projection is being carried out at large enough R that .#-matrix
elements nondiagonal in the arrangement index « may be neglected, and the
others have assumed their asymptotic form .#. For this example, Eq. (142)
simplifies to

Koo = Z {F 3001 Typotio €XpL—i(kLo R — In/2)]

+ fq_m,o, A, o, €XplikLo R — Im/2)]1}, for large R (158)
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where, writing g, explicitly as yn,0, ‘
Fhomor = [Q1+ 12/ [aR (a1, Ppmofr)Db(8, 0,0)

x exp[ iklo( f, /m,)¥, - R Yio(R)Pio(r') (159)

This integral may be reduced to a finite sum of one-dimensional integrals.
This short section has illustrated the great simplifications that occur when
only X potential curves and S atomic states are involved. Other cases rapidly
become more complicated. For example, consider a state involving only
2-Z coupling at small R but where one of the T states dissociates to an atom
in a P state. In such a case, body-fixed adiabatic states at large R are linear
combinations of states defined in the space-fixed frame, and the uncoupled
space-fixed states at large R are linear combinations of both T and IT body-
frame adiabatic states. This means that one cannot replace J(J + 1) —2Q?
+ JZ by I(l + 1) in Eq. (48) and that the transformation to an uncoupled
representation at large R is more complicated. Not only is it more compli-
cated to remove the infinite-range couplings, but also one must consider
an appropriate basis for treating efficiently (e.g., transforming away or
diagonalizing) the long-range couplings that decay as R~ ! and R~ 2. Various
aspects of these problems have been discussed in the literature (see, e.g.,
Bates, 1957a,b; Thorson, 1965, 1969; Knudson and Thorson, 1970; Pack and
Hirschfelder, 1970; Rosenthal, 1971; Mies, 1973; Thorson and Delos, 1978a).

G. DIAGONALIZATION METHOD

In Section ILE we discussed the imposition of scattering boundary condi—‘
tions by projecting the basis states onto the uncoupled states of the atomic
Jacobi coordinate system. This allows the scattering boundary conditions
to be satisfied as well as possible within the finite basis set used. Clearly, the
same objective can be achieved by diagonalizing the asymptotic coupling
matrix in the chosen basis set, and that is the subject of the present section.

In the semiclassical formalism (see references cited in the first paragraph of
Section II,D), once can remove the infinite-range coupling without using
electron translation factors by a diagonalization technique that has been
presented in various versions by Knudson and Thorson (1970), Rosenthal
(1971), Albat et al. (1975), Albat and Gruen (1976), and Albat and Wirsam
(1977). One advantage of a diagonalization technique over the method of
Section ILE is that a diagonalization is easier than the computation of the .
or .4 integrals. Since the classical path assumption of the semiclassical for-
malism is often invalid at chemical energies it is useful to have an analog of
this diagonalization technique for the time-independent second-order
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uantal equations. Such an analog was worked out in the Wentzel-Kramers—
Brillouin (WKB) approximation by Knudson and Thorson (1970). For the
purely quantal case a Hermitian equivalent of the second-order equations
that can be diagonalized has been obtained by M. E. Riley (personal com-
munication, 1979), and the rest of this section is based on his development.
We consider the Z-state equations given in Eq. (154) and rewrite them in
matrix notation as
[ d? 4ipn

WI— n2

d
F*R) 1R + T(R)]x“(R) =0 (160)

in which I is the N x N unit matrix and
Y(R) = — [l + 1)/R*] — Quap/h*)[HY(R) + G*(R) — E]  (161)

is an N x N matrix that is a generalization of the square of the local wave
number. The matrices F?, G* and H® are given by

Fg(R) = —(1?/2ppp){ 3l d/dR| dg,> (162)
Giao(R) = —(h*2pap) 3| d*/dR? | $,> (163)
Hqo(R) = 5qq082(R) (164)

We wish to deal with Eq. (161) for R = oo and so we note that G*R) be-
comes Hermitian in this limit. Therefore Y(c0) may be diagonalized by a
unitary transformation U™, i.e.,

UP*Y(o0)UP = (KP)? (165)

where T denotes the Hermitian adjoint and KP is a diagonal matrix. We then
transform the solution vector, first-derivative coupling matrix, and coupled
equations as follows:

2*(R) = UP'P(R) (166)
FP(R) = UP*F*(R)UP?! (167)

d’ 4Hian P d P)2 |np _
[djgfl— W F(R)ZﬁﬁL(K)]X(R)—O (168)

Next we must convert these equations to an equivalent fifst-order system.
To do this we define = by

d ) dpuag
% P — KPP
iR X iKP?(R) + W2

FP(R)¢"(R) (169)
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Equations (168) and (169) and the fact that FP(R) becomes constant at larg‘
R imply

d
" pP — KPP
an iKPx"(R) (170)

Equations (169) and (170) are together equivalent to the coupled equations
(168) and we write them in a supermatrix notation as

d _
TR U= TRP®) (171)
where
P(R
F(R) = (“ )) (172)
\T(R)
and
- — (4uapi/h?)FP(R) KP)
Y = 173
(R) ( o ) (173)

It is interesting that Eqs. (171) are the same in form as those treated in the
semiclassical framework by Albat and Gruen (1976) at R = co. We could
now use their procedures. They made an R-dependent transformation
designed to minimize the long-range coupling. Here we make a simpler
single transformation based on one large-R value or on R = 0. A single
transformation can eliminate the infinite-range coupling between states of th
same Q and the R™' coupling between states of different Q, but an R-de-
pendent transformation is generally required to eliminate the R ~? coupling.

Since KP is diagonal and FP(R) is skew-Hermitian, Y(R) is Hermitian.
Therefore it can be diagonalized by a unitary transformation; we do so at
R =

K(R) = UPY(R)T™ (174)

in which all quantities are 2N x 2N matrices and U™ is chosen so that K(c0)
is diagonal. This yields

P(R) = UP%(R) (175)

and

d _
7R &' = KRT(R) (176)
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Qince K(0) is diagonal, Eq. (176) shows that the scattering equations have
een decoupled at R = co. The decoupled equations imply a new electronic
basis that is as uncoupled as possible at large R. One can then obtain solutions
to the coupled equations in any convenient representation, transform to the
new one at large R, and apply uncoupled scattering boundary conditions in
the new representation. The electronic basis functions in the first new repre-
sentation are given by

o = UPg? (177)

but those defined implicitly by Eq. (175) are more complicated.

Riera and Salin (1977) have questioned the physical relevance of the trans-
formed states obtained by a diagonalization scheme. The physical relevance
is that they take into account the electron translational effect as well as pos-
sible within the finite basis used. The assumption of a finite basis is practically
unavoidable. Notice that even adiabatic basis sets are in practice strictly
adiabatic only within a finite basis.

H. Discussion

We have seen in Section IIB that different coordinate systems lead to
different sets of nonadiabatic coupling terms in the time-independent
quantum mechanical formulation of scattering problems involving more than
one electronic state. In Section I1,C we saw that no choice of origin for the
electronic coordinates makes the radial part of the nonadiabatic coupling
between all electronically adiabatic states vanish for infinite separation of

he subsystems. This may also be an indication that adiabatic basis sets do
‘10‘( account properly for the physics of nonadiabatic coupling at small R
and that small expansion sets will be inaccurate. General practical tech-
niques for overcoming these difficulties have not yet been demonstrated in
the literature, but several possibilities have been suggested or suggest them-
selves. Some of these have been discussed in Sections II,D, ILE, and ILG, and
further discussion is presented in this section.

The most common approach to this problem in the chemical literature
is to ignore it. One assumes that all coupling due to nuclear derivative
operators vanishes in some diabatic representation.t Then one diagonalizes
the electronic Hamiltonian in that representation to compute an adiabatic
basis. The radial part of the nuclear-derivative coupling in the adiabatic
basis is then given entirely by derivatives of the matrix elements of the di-
agonalizing transformation; these are independent of origin and vanish at

t Any basis that is not adiabatic (i.e., in which the matrix of H, is not diagonal) will be called
diabatic.
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infinity. Although this approach is quite common, the assumptions ar
usually only implicit, and the dangers and nonuniqueness of neglecting the
nuclear-derivative coupling in any particular diabatic basis are often not
mentioned. This approach, however, is sometimes made explicitly, and it
need not be a bad approximation in all cases. For example, Preston and
Tully (1971) and Tully (1973) use this procedure in their approximation of
nonadiabatic coupling terms by the diatomics-in-molecules method. In that
method the diabatic basis is a generalized valence-bond basis. Tully (1973)
argues that in many cases of interest, the nonadiabatic coupling between two
adiabatic states is important only in fairly localized regions in which two
diabatic states cross and the adiabatic states avoid crossing. In this case the
derivatives of the transformation matrix elements from the diabatic basis are
indeed much larger than the transformation of the nuclear-derivative coupl-
ing of the diabatic basis. There also exist, however, very many interesting
transitions where the coupling is not so strong and localized and the above
approximation is poor (seg, e.g., Oppenheimer, 1972). The nonuniqueness of
this approach is also ill-suited to the present state-or-the-art of quantum
chemistry. Accurate adiabatic potential energy curves are independent of
the basis set and coordinate system used to calculate them, and ideally one
desires the same kind of independence for the nonadiabatic coupling terms.
This is especially important for highly accurate calculations employing
large basis sets chosen for their ability to span a space in a computationally
convenient way rather than on the basis of physically motivated diabatic
models.

The danger of assuming that the nuclear-derivative coupling is zero in

physically motivated diabatic cases is illustrated by considering the nature ob

a complete diabatic basis in which the radial nuclear-derivative coupling doe
vanish. In such a diabatic representation (Smith, 1969),1 the basis functions
are totally independent of R (Andresen and Nielsen, 1971; Gabriel and Taulj-
berg, 1974). Such a basis would consist, for example, of sets of Slater-type
orbitals centered at two points a distance R, apart. This basis would have to
be able to describe the electronic states not only when R = R, but also for all
other R values. Clearly, it would take many such basis functions to represent
the adiabatic states, and the diagonal Hamiltonian matrix elements as a
function of R in this basis would not be expected to resemble the usual
diabatic potential curves. Truncated basis sets within which all the radial
first-derivative coupling vanishes may be useful from a computational
point of view because they allow a treatment of truncated abiabatic spaces,

+ Smith’s treatment of diabatic states has been generalized to include atom-molecule
collisions by Baer (1975, 1976) (see also Top and Baer, 1977).
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ncluding all derivative coupling, by a transformation to a representation
with no derivative coupling. This kind of incomplete diabatic basis is discussed
further in Sections III and IV.

To obtain only the physically meaningful part of the nonadiabatic cou-
pling, one might consider a basis set that depends as little as possible on R, but
still allows a description of the molecular states in a reasonably small basis
set. The minimum R dependence in such a basis set would be that due to
configurations constructed with fixed linear combinations of frozen atomic
orbitals that translate with the nuclei. Numrich and one of the authors
(Numrich and Truhlar, 1975) suggested that a molecular adiabatic represen-
tation be constructed using such a basis and that the nonadiabatic coupling
be obtained by retaining the action of the nuclear-momentum operators on
the transformation coeflicients from this basis to the adiabatic basis. These
contributions are independent of origin and vanish at infinity. In this ap-
proach one neglects the action of the nuclear momentum operators on the
translating frozen atomic functions but keeps all other contributions. The
retained contributions correspond physically to polarization of the atomic
charge distributions, covalent bonding, and charge transfer. In the language
of Delos and Thorson (1979), a basis of state functions that translate with
the nuclei but do not change in any other way is called “F diabatic” where
F stands for fixed one-center orbitals. Such a basis is also called a valence-
bond basis, and a separated-atom basis is a special case. Notice, however,
that a generalized valence-bond calculation (Goddard et al., 1973) or a
diatomics-in-molecules calculation with semiempirical adjustment of in-
tegrals (Tully, 1977) does not correspond to frozen atomic orbitals as the
original valence-bond scheme does. The assumption that the nuclear
momentum coupling vanishes in an F-diabatic representation provides a
consistent scheme for obtaining physically reasonable nonadiabatic terms
at chemical energies (Numrich and Truhlar, 1975; Delos and Thorson,
1979). However, its usefulness is limited by the necessity to do the calculation
in an F-diabatic basis, which is not computationally the most efficient one,
or to reexpress an adiabatic representation obtained some other way in an
F-diabatic basis. Delos and Thorson (1979) have suggested that a nearly
optimal definition of nonadiabatic coupling in a general molecular basis
can be obtained by using a “special switching function” defined so that the
results are equivalent to neglecting the nuclear momentum coupling in an

. F-diabatic basis. The implicit assumption in this and related approaches
is that redefining the nonadiabatic coupling terms compensates for lack
of ETFs in the basis and speeds convergence for truncated expansions. Results
obtained with basis sets of fixed atomic orbitals will be discussed further in
Section IIL



254 Bruce C. Garrett and Donald G. Truhlar

Redmon and Micha (1974; Redmon, 1973) also used a valence-bond basis.
They performed the transformation to the adiabatic basis in two steps, a
Schmidt orthogonalization and diagonalization of H,, and retained the deriv-
ative coupling caused by the latter but not that caused by the former. This
procedure means that their results are not independent of the method of
orthogonalization and are not equivalent to neglecting derivative coupling
in an F-diabatic basis. Numrich and Truhlar (1975) used symmetric ortho-
gonalization that makes the orthogonal basis as similar as possible to the
valence-bond basis. Furthermore, they retained the action of the derivative
operators on the orthogonalizing transformation so that their derivative
couplings in the adiabatic basis are independent of the method of ortho-
gonalization (the adiabatic potential curves are independent of the method
of orthogonalization in either case). In unpublished work Redmon and Micha
showed that the derivative coupling caused by the orthogonalizing transfor-
mation did not make a large difference for the case they studied (M. J.
Redmon, personal communication, 1979). This need not always be true.

A procedure for redefining nonadiabatic coupling terms that removes the
nonzero coupling at infinity has been derived by Chen et al. (1973; Hatton
et al., 1975). The net result of their manipulations is that one calculates the
nonadiabatic coupling with the origin at the center of mass of the nuclei and
then subtracts from each nonadiabatic coupling matrix element at every R
the value calculated for it with this origin for R = 0. This approach has been
criticized for not addressing the correct physics of the nonadiabatic coupling
at small R (SethuRaman et al., 1973; Thorson and Delos, 1978a).

For some problems, one of the subsystems is in the same asymptotic elec-
tronic state for all channels of interest. Examples are

H* + A(state ) ———— H* + A(various states) (R1)
H(ls) + A(state 1) ——— H(ls) + A(various states) (R2)

We have pointed out already that in cases like the above, the nonadiabatic
coupling can be made to vanish at infinity by putting the origin at the center
of mass of A. This approach has recently been discussed and used in a semi-
classical framework by Riera and Salin (1976). If, however, we must also
consider electron transfer to H(1s) and H(2s) in Eq. (R1) or if we must also
consider excitation of H(2s) in Eq. (R2), then no single choice of origin will
make all the nonadiabatic couplings vanish at infinity. Thus the method is
not general. Another defect of the method is its lack of uniqueness for the
nonadiabatic coupling at small subsystem separations. For example, we
could consider letting the origin be a function of internuclear distance R in
an atom—atom collision. The Riera—Salin prescription corresponds to putting
the origin at A4 for all R. But any other choice for which the origin tends to
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4 as R tends to infinity will also eliminate the nonzero couplings between
channels differing only in the electronic state of A. One requires a prescription
for the choice of origin at small R.

Piacentini and Salin (1974, 1977) have proposed an extension of the above
scheme in the context of the semiclassical formalism. With the electronic
origin on center A the coupling between states with @ = A vanishes at large
R, and they calculate state-to-state cross sections among these states in a
standard fashion. Since their method conserves flux they then calculate the
sum of all cross sections for transitions involving an electron transfer from A
to B by subtracting the sum of the A-to-A transition probabilities (including
the elastic one) from unity. This shows that one can calculate the total cross
section for charge transfer even in the presence of the infinite-range coupling
but that state-to-state cross sections for charge transfer are more difficult.

It is appropriate here to recall that any choice of electronic origin other
than the center of mass of the nuclei introduces an electronic-nuclear cross
term into the kinetic energy. This term need not be considered in the semi-
classical treatments for the following reason. The choice of electronic origin
at the center of mass of the nuclei implies a unique factorization of the nuclear
motion in the semiclassical treatment (Riley, 1973). A change of origin im-
plies a new factorization and introduces a new electronic derivative and cross
term. One can, however, make the cross term vanish by multiplying by a
coordinate-dependent phase factor; this yields the same form of equation
for any choice of electronic origin (Riley, 1973; see also Thorson and Delos,
1978b). One need deal with this change of factorization only if the phase of
the wave function is used. The same simplification cannot be achieved in the
purely quantal formalism employed here. In the quantal formulation, if
the electronic-nuclear derivative cross term is not included, then one should
choose the origin at the center of mass of the nuclei for a consistent calculation
(however, one presumably might leave the cross term out if one is trying to
introduce purposeful inconsistencies to compensate for the lack of ETFs).t

Melius and Goddard (1972, 1974) have proposed a scheme for fixing the
origin in the semiclassical formalism for collisions with only one active
electron, i.e., for calculations in which all electrons except one may be
considered to be frozen cores. Let the orbital of the active electron be ¢,(r, R)
in state i. Based on considering the atomic cores as potentials moving in the

t Another simplification that occurs in the semiclassical framework is that in the semi-
classical limit the second-derivative coupling does not occur. The first-derivative coupling, which
is multiplied by the internuclear velocity, becomes for this reason relatively more important
than the second-derivative coupling as the velocity increases, and the second-derivative coupling
need not be considered in the semiclassical limit. This does not, however, mean that the second-
derivative coupling is unimportant in the low-energy quantal case; on the contrary it is some-
times quite important.
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reference frame of the electron, they propose calculating the nonadiabatic.
coupling at R between states i and j with the electronic origin at

Cl¢ir, R)||z] | ¢Ar, R)[ ),
<1¢:(r, R)[1]}or, R)[ ),

This scheme makes all nonadiabatic couplings vanish at infinity, even when
electronic excitation is allowed on both centers as in

4 ij(R) =

(178)

Li* + Na(3s) ——— Li* + Na(3p) (R3)
—— Li(2sor 2p) + Na* (R4)

Furthermore, it corresponds to a physically motivated choice of origin for
small R, e.g., for i = jit corresponds to putting the origin at the center of mass
of the electron when the system is in that state. One should keep in mind,
however, that it is mathematically inconsistent to use a different origin for
the different elements of the coupling matrix at one R. Notice the relationship
of this method to that embodied by Egs. (74)-(77). Those equations involve a
different electronic origin for different derivative coupling matrix elements
but in a completely consistent way.

Tauljberg and Briggs (1975b) have also suggested a scheme that involves
different origins for different matrix elements. In their scheme each coupling
is evaluated using the origin that makes it vanish at infinity. The exchange
couplings that vanish at infinity for any origin are evaluated using the CMN
origin} Like the modifications suggested by Melius and Goddard (1972, 1974)
and Thorson and Delos (1978a), their suggestion is motivated by trying to
compensate for missing ETFs.

Other approaches to correcting the deficiencies of the Born-Oppenheimer
electronically adiabatic representation involve expanding the total wave-
function in modified electronic states. One possibility is to include electron
translation factors. In this approach one actually replaces the Born-Op-
penheimer electronically adiabatic basis by another one modified so as to
satisfy the correct scattering boundary conditions. This approach has been
discussed in detail in Section IL,D. Other approaches involve expanding in
atomic bases. Poppe and Wolken (1977) have suggested expanding the
wave function in an atomic basis in orthogonal Jacobi coordinates and
expressing the Hamiltonian and coupled equations in the standard body-fixed
coordinates. Stechel et al. (1979; see also Schmalz et al., 1979) have suggested
expanding the wave function in an atomic basis and expressing the Hamil-
tonian and coupled equations in nonorthogonal coordinates. They suggest a
special R-matrix-propagation step for transforming the Wigner derivative
matrix at large R from a surface of constant R to a constant-R, surface at
which one can apply scattering boundary conditions.
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. There is no guarantee that electron translation factors, despite the addi-

tional difficulties and complexities they introduce, will speed up convergence
of the state expansion at small R,} and one expects a separated-atom basis to
lead to even slower convergence than either the adiabatic basis or the ETF-
modified basis. For these reasons we prefer to expand the total wave function
in the standard Born-Openheimer basis set. It should be noted that the
expansion of Eq. (46) in adiabatic basis functions in the (r, R) coordinates
can always be made sufficiently exact by adding more terms. However, it is
possible that it is slowly convergent in some cases and may require many
terms. Inclusion of basis functions containing electron translation factors
might provide a more rapidly convergent expansion in at least some cases,
but these factors are difficult to handle in practice and involve choices in
computational strategy that have not been well studied. The advantage of an
optimal basis is that one gets convergence with less functions. An advantage
of a simple basis is that one can apply a rigorous formalism without extra
approximations (aside from truncation to a finite basis). Then one is at
least assured that the calculations will converge (and will converge to the
correct answer) when the basis gets large enough to span the necessary space.
It is sometimes stated as a disadvantage of the Born-Oppenheimer (BO)
basis that the expansion of state functions involving ETFs in a BO basis will
require contributions from continuum functions of the BO basis. This need
not be a serious obstacle to the use of a BO basis because (1) the expansion
needs to be reasonably converged but not complete, and (2) expansion of
continuum contributions in a square integrable basis is now a well-established
technique in practical scattering calculations (see, e.g., Gallaher and Wilets,
1968 ; Geltman, 1972; Heller et al., 1973, see also the discussion in Riley and
Green, 1971). If one uses the standard BO basis though, one requires special
techniques to impose the scattering boundary conditions as well as possible
within the chosen basis. Such special techniques have been presented in
Sections ILE and II,G. The method of Section ILE employs a straightforward
expansion in the standard body-fixed Born—-Oppenheimer basis functions at
small R in conjunction with a rearrangement-analysis and application of
correct scattering boundary conditions at large R. The method of Section
IL,G involves an asymptotic diagonalization of the coupling instead of a
rearrangement analysis.

+ Inclusion of electron translation factors is known to improve the basis at such high energies
that internuclear velocities are not negligible with respect to electronic orbital velocities, but
there is not much computational experience for energies of chemical interest [e.g.. for He?* +
H — He* + H7, it appears that the standard electronically adiabatic basis is adequate for
relative kinetic energies up to a few hundred eV, but that electron translation factors speed con-
vergence at higher energies (Winter and Lane, 1978; Vaaben and Tauljberg, 979)].
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The use of standard BO basis sets and the methods of Sections ILE an
II,G has a number of advantages. Such combinations of procedures do not
involve inconsistencies or extra assumptions to remove the infinite-range
coupling, do not involve the extra labor of solving coupled differential
equations containing complicated terms from electron translation factors,
and do not require using an atomic basis in the small-R strong-interaction
region. The use of the standard Born-Oppenheimer basis set means that
these approaches can take advantage of state-of-the-art techniques (see, e.g.,
Browne, 1971; Green et al.,, 1976; Albat and Wirsam, 1977; Olson et al.,
1975, 1976, 1978; Shipsey et al., 1978; Stern et al.,, 1978; Winter and Lane,
1978 ; Macia and Riera, 1978a, and references therein) for calculating adiabatic
electronic energies and derivative-coupling matrix elements.

Additional practical considerations related to two of the approaches
discussed in this section form the basis of the rest of this article. Sections
IILA and IV,C are concerned with further aspects of the rigorous approach
involving a BO adiabatic basis as discussed in the previous two paragraphs.
Sections III,B and IV,B discuss some practical techniques for implementing
the approach of physically motivated diabatic basis sets.

III. Transformation to Diabatic Representations

A. P-DIABATIC BasIS SETS

In this section we consider some practical aspects of transformations.
between diabatic and adiabatic representations. We will illustrate the
discussion by considering an N-electron generalization of the radial equa-
tions (154) of Section IL. Let r] be a vector from the center of mass of the
nuclei to electron i in the space-fixed frame of reference, and let x denote the
collection {r;}s,. The Hamiltonian for the system of N, electrons and 2
nuclei may be written (Hirschfelder and Meath, 1967)

H = —(W2up) Vi + He — [7?/2(mp + mg)] 3.V, * ¥, (A

ij
in which the electronic Hamiltonian is

He = —(#*/2m) ¥ V2 + V(X, R) (A2)

and the term containing the double sum in Eq. (A1) is the mass polarization

term. As in Section II we rotate to a coordinate system (x, R) = ({r;}<,, R)
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‘uch that R lies on the z axis. In these body-fixed coordinates the total
Hamiltonian is

H= w 162R+ L’ + H r ZV 'V, (A3)
~ 2usp ROR? 2uapR? ) 2(mA + mpg) 4
X and the electronic Hamiltonian is
= —(h*)2m,) Z Vfi + V(x, R) (A4)

The approximate radial equations (154) are generalized to a many-electron
system by noting that the electronic Hamiltonian in the matrix element
Hj (R) is now given by Eq. (A4). The mass polarization term of Eq. (A3)
and Z-II coupling are neglected in the approximate radial equations, which
can be rewritten in matrix notation as

{ h? [dz (+1

= 2 a a a a —
i~ ' *K ]1 + V&(R) + 2F (R) <+G (R)}x (R)

(A5)

in which I is the unit matrix,
Kyq = 044K, (A6)
kg = R2uan(E — )12/ (A7)
‘ g, = 111_{1; £3(R) (A8)
VadR) = 04,,[(R) — ¢&,] (A9)
F Ry = — (W 2pam){ 93, (X, R)|d/dR [ $}(x, R))x (A10)

G.q(R) = —(1*/2paB){ ¢}, (%, R)|d*/dR? | $3(x, R)Dx (AlD)

and ¢5(R) is an adiabatic potential curve given by
£g(R) = {¢(x, R)| H.|$3(x, R)>x (A12)
In matrix notation, Eq. (153) for a set of initial conditions ¢, is summarized as
¥ = R7'[¢*(x, R)]"X(R) (A13)

where ¥ is a row vector of elements ¥, , ¢* is a column vector of elements

o, superscript T denotes a transpose, each column of x*(R) corresponds to a
different linearly independent solution of Eq. (154), and the different rows of
x*(R) correspond to different channels.
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We will assume in Sections III and IV that the electronic basis functions ar’
chosen as real. It follows that F® is a skew-symmetric matrix, i.e.,

[F*(R)]" = —F*(R) (Al4)

A consequence of Eq. (A14) is that the diagonal elements of F#(R) are zero.
If the electronic basis is complete, then it can be shown (Smith, 1969; Sidis
and Lefebvre-Brion, 1971 ; Andresen and Nielsen, 1971 ; Babamov, 1978) that

d 2
G*(R) = - F(R) — 532

[F(R)}* (A15)

A disadvantage of using the Born—-Oppenheimer adiabatic basis is that
the derivative coupling terms complicate the numerical solution. It is
interesting to examine a transformation to a representation in which the
first-derivative coupling vanishes; for a truncated basis, Delos and Thorson
(1979) have called this a P-diabatic representation. Any basis that is not
adiabatic (i.e., in which the matrix of H, is not diagonal) will be called diabatic.
First we consider the transformation to a general orthogonal diabatic repre-
sentation

¢*(x, R) = [U(R)]"$°(x, R) (A16)
in which
[U*R)]™! = [UR)]" (A17)
In terms of this basis the total wave function may be written
¥ = RT[$(RI(R) (AIS)‘

From Egs. (A13), (A16), and (A18) and the fact that U°*(R) is unitary, we
obtain

X'(R) = [U*R)IX(R) (A19)
Under a unitary transformation the derivative coupling matrices transform as
F°(R) = —(h*/2uap){$°(x, R)|d/dR|[$°(x, R)] )« (A20)
= URF(R)[U*(R)] ™! — (W/2uap)U(R)(d/dR)[U(R)]
(A21)
and
G°(R) = —(1*/2uap)<$°(x, R)|d*/dR?|[¢°(x, R)] )y (A22)

= U(R)GR)[U(R)] ™" + 2U(R)F*(R)(d/dR)[U*(R)] ™"
— (1 /2p2p) U (R)(d? /dR*)[U(R)] ! (A23)
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‘ow we consider a basis {¢*(x, R)} for which the first derivative coupling
FY(R) vanishes. The unitary transformation U%(R) that generates this basis
must satisfy the differential equation obtained by setting the right-hand side
of Eq. (A21) to zero:

(% /2pap)(d/dR)[U*(R)] ™' = FYR)[U*(R)] ™ (A24)

Notice that the solution to this differential equation is automatically unitary
if F%(R) is a real skew-symmetric matrix. In this case the coupled equations
(AS) of the adiabatic representation transform to

{— 22; [%2 _u ;’2 D, 2 ;l‘fE]I + HYR) + G"(R)}xd(R) =0 (A25)
in which
HY(R) = U(RX$*(X, R)|H,[[$*(x, R)TDLU(R)] ™! (A26)
G*(R) = U*(R){G*(R) — (dF*/dR) + (Quap/h*)[F*(R)]*}[U*(R)] ™"

(A27)

Although G%(R) does not vanish for a finite basis, Egs. (A15) and (A27)
show that for a complete set, GY(R) vanishes if F%(R) vanishes.

It has been noted in Section II,G (and originally by Andresen and Nielsen,
1971; and Gabrietl and Tjaulberg, 1974) that in the limit of a complete elec-
tronic basis, the diabatic basis functions defined by Egs. (A15) and (A24) are,

part from possible phase factors, independent of internuclear separation.
It would be impractical to perform accurate electronic structure calculations
in such a basis in which the functions do not move with the nuclei. One pos-
sible use of the transformation just defined is for numerical work with trun-
cated (i.e., finite or incomplete) basis sets (see, e.g., Heil and Dalgarno, 1979).
In truncating a basis one should ideally first transform to the representation
in which the expansion is expected to be most rapidly convergent, then
truncate, then transform within the truncated manifold to the representation
that makes the coupled equations most convenient. This is the rationale for
using P-diabatic bases, i.., one truncates the adiabatic representation, then
for convenience one transforms away the coupling caused by the first
derivative in the truncated manifold.f

There are an infinite number of P-diabatic transformations corresponding
to different boundary conditions on the differential equation (A24). If F*(R)

tA similar idea has been used by Johnson (1974) and is called the diabatic decoupling
approximation.
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vanishes at large R, a convenient boundary condition for Eq. (A24) is ‘
lim U%(R) =1 (A28)

R—=0o0

B. APPROXIMATELY P-DIABATIC BAsIS SETS

Equations (A24) and (A28) give a well-defined procedure for obtaining a
P-diabatic basis from an adiabatic basis in which the derivative coupling
matrices are known. However, in many studies of electronic excitation
problems, reasonable approximations to the adiabatic potential energy
curves are known but the derivative coupling terms have not been computed.
Faist and Levine (1976) have developed a method that does not require
knowing the derivative couplings for obtaining the P-diabatic transformation
approximately for two-state models in which the adiabatic curves show an
avoided crossing. Another procedure is to use physical arguments to ap-
proximate the diabatic basis, i.¢., to define a basis in which the basis functions
in some sense vary slowly with R. One might then assume that all the coupling
in the adiabatic basis arises from the transformation from the slowly varying
basis to the adiabatic basis; this is equivalent to assuming that the slowly
varying basis is the P-diabatic basis. Some examples of this approach (using
valence bond bases and F-diabatic bases) are mentioned in Section II,H and
there are many other examples in the literature (see, e.g., O’Malley, 1971;
Sidis and Lefebvre-Brion, 1971; Evans et al., 1971; Evans and Lane, 1973;
Tauljbergand Briggs, 1975a; Aubert and Le Sech, 1976; Cohen, 1976; Kubach
and Sidis, 1976; Stern et al., 1977; Sidis and Kubach, 1978 ; Gauyacq, 1978)
Macias and Riera (1978b) have proposed a method for constructing diabatic'
states that is based on a formal analysis of the variation of expectation values
in the vicinity of an avoided crossing and employs special oribtal models
designed to eliminate or considerably reduce the derivative coupling within
a limited manifold. A special case of common occurrence concerns fine-
structure transitions. In many cases the adiabatic states computed without
spin-orbit coupling form a good diabatic basis when spin-orbit coupling is
included, i.e., the nuclear-derivative operators cause much less coupling than
the spin—orbit interaction does (see, e.g., Mies, 1973; Cohen et al., 1978;
Becker et al., 1979). In the present section we consider methods of approxi-
mating the diabatic bases that are based on assuming some knowledge of the
diabatic Hamiltonian matrix H%(R). The goal is to obtain diabatic bases that
are slowly varying and thus have only small derivative coupling.

One procedure for obtaining diabatic bases is to model the off-diagonal
elements of HYR) and then solve for the diagonal elements that give the
correct adiabatic energies. For a two-state curve crossing problem this
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.mounts to solving the foliowing set of bilinear equations for H{, and H$,
at each R:

det[HYR) — R)I] =0, g=1,2 (A29)

These two equations have two roots, one of which is obtained from the other
by interchanging HY, and H$,,

H(R) = 3[e1(R) + &5(R)] £ ({3[e3(R) — e3(R)]} — [Hix(R)]D)'?
(A30)

Curve crossings occur in the diabatic representation whenever the radicand
in (A30) is zero. However, for real roots, H{,(R) is restricted to be no greater
than the adiabatic energy splitting. Thus HY,(R) must equal but not cross
1[€3(R) — €4(R)] at the curve crossing, and one must be very careful in
constructing diabatic curves that cross but remain real.

For systems with more than two states the problem becomes more com-
plicated. Since the off-diagonal elements of the diabatic Hamiltonian matrix
tend to zero at R = oo, its eigenvectors all have only one component at
infinity. But for an N-state problem, the matrix of eigenvectors may tend to
any one of N'! possible permutations of the unit matrix. For the physical root
the eigenvector matrix tends to the identity matrix as R — oo; this ensures
that

Hy(R) 7= &(R) (A31)
for all g. A numerical solution for the Hj,(R) that reproduces a set of i(R)
’vill not necessarily yield the physical root.

One particular way to model the off-diagonal elements of the diabatic
Hamiltonian matrix is to calculate them with physically motivated, slowly
varying basis functions, e.g., with F-diabatic basis functions. Such basis
functions do not form an orthogonal set at finite R so we must generalize the
formulation of Eqgs. (A16)-(A27), which applies only for an orthogonal
diabatic basis. Consider an expansion of the total wave function in a non-
orthogonal diabatic basis:

¥ = R™'[¢"(x, R)]("(R) (A32)
- This expansion yields the following coupled equations:

h? > Wl +1) 2umE
{_ 2ﬂABS(R)[Zl’1€7_ RZ TR

:| + H(R) + 2F"(R) diR

+ G"(R)}x“(R) =0 (A33)
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in which : ‘

Sa:4(R) = {3,(x, R)| 93(x, R))x (A34)
Hj, (R) = {¢5,(x, R)| He| 93(x, R)>y (A35)
Fy (R) = —(h*/2usp){dj,(x, R)|d/dR | dy(x, R)) (A36)

Gg,o(R) = —(W*/2pap){¢3,(x, R)|d*/dR? | $j(x, R)) (A37)

Notice that Eq. (A33) contains the derivative coupling matrices F*(R) and
G"(R). In Section IV,B we shall discuss the solution of these coupled equa-
tions when F*(R) and G"(R) are neglected. The nonorthogonal basis of
Eqgs. (A32)-(A37) can be transformed to an orthogonal basis by

$°(x, R) = [A°(R)]"$"(x, R) (A38)

in which
A°(R) = C(R)U*(R) (A39)
C(R) = S"V4(R) (A40)

and where U (R) is an arbitrary unitary matrix. In this general orthogonal
coordinate system the wave-function expansion and coupled equations are

¥ = [¢°(x, B]'(°(R) (A41)
and
N Al + 1)
{[— 2#ABW * 2#ABR2 B E:|l
+ H°(R) + G°(R) + 2F°(R) agiR}x"(R) =0 (A42.

where H%(R), G°(R), and F°(R) are defined analogously to the quantities in
Egs. (A34)-(A36), but with ¢3,(x, R) and ¢g(x, R) replacing ¢ (x, R) and
¢a(X, R), respectively.

A particularly useful orthogonal diabatic basis set ¢°(x, R) is defined by
taking U%(R) as the identity matrix; in this case the transformation (A38)
is called symmetric orthogonalization (Lowdin, 1970). The total wave
function can be expanded in this basis by

¥ = [¢(x, TR (A43)
= [¢°(x, R)]"CRX'(R) (Ad4)
= [¢"(x, R)]"Y"(R) (A45)

In deriving (A45) we used
L(R) = CTHRX"(R) (A406)
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hich follows from Eqs. (A32), (A38)-(A40), (A43),and U* = L. The coupled
equations transform to

{[ o d* R+ 1)

- — E|I + H(R G*(R
2piap dR? 2uasR? ] +HR) + GR)

S d S, _
+ 2F%R) d—R}X (R)=0 (A47)
in which
H%(R) = C(R)H(R)C(R) (A48)
F(R) = —("*/2u,p)C~ '(R)(dC/dR) + C(R)F(R)C(R)  (A49)

G¥(R) = —(1*/2u5p)C™ (R)Yd*C/dR?)
+ [C(RYG™(R)C(R) + 2C(R)F*(R)(AC/dR)] (A50)

Another possible choice of U**(R) is the transformation U**(R) that diagon-
alizes H*(R). This yields the adiabatic basis

$*(x, R) = [U*(R)]"$°(x, R) (A51)
= TH(R)$™(x, R) (A52)

where
T(R) = C(R)U*(R) (AS3)

From Eqgs. (A43), (A51), and (A52) we obtain

¥ = [¢%(x, R)]"(*(R) (A54)

where
. 1(R) = [U(R] ™ "¢*(R) (ASS)
= [T(R)]™'x"(S) (A56)

The coupled equations transform to those given in Egs. (A5)-(A12). We note
the relationships between the matrix elements in the diabatic bases ¢° and ¢"
and the adiabatic basis:

ei(R) = Y [U(R))gq, H3, 0, (R)UZL(R) (A5T)
9192 .
FY(R) = —(*2u,)[U™(R)] " *(@U/dR) + [U*(R)]™'F(RU™(R)
(AS8)
= —(#*/2uxp)[T(R)]~ '(dT/dR) + [T(R)]"F"T(R) (A59)
G*(R) = — (W [2pap) [U(R)] ™ {(d*U**/dR?) + 2[U*(R)] ™ 'F*(R)(dU*/dR)
+ [U*(R)] *G(R)U*(R) (A60)

—(?/2pp)T ™ H(RX*T/dR?) + {2[T(R)]"F"(R)(dT/dR)
+ [T(R)]TG"(R)T(R)}. (A61)
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As an example of the above procedure we shall attempt to model '
states of K + H by using as input some electronic structure calculation
(Numrich and Truhlar, 1975, 1978) that employed an F-diabatic valence-bond
basis. We neglect spin-orbit coupling. The calculated nonorthogonal
diabatic Hamiltonian matrix wi. be called H*(R) and the calculated overlap
matrix will be called S(R). Retaining three valence-bond F-diabatic basis
functions, the predicted adiabatic energies are in only qualitative agreement
with experiment. This is illustrated in Fig. 1a. We tested several procedures
for obtaining a new 3 x 3 diabatic Hamiltonian matrix [also called H(R)]
that, combined with the 3 x 3 part of the valence-bond S(R), yields adiabatic
energies for the two lowest 'E* states in agreement with experiment. (The
more common but less realistic procedure of modeling the curve crossings in
this system by two-state models will not be considered here.) The three lowest
adiabatic !X states will hence forth be called X, A, and B'. These three states
correlate in the separated-atom limit with K(4s) + H(ls), K(4p) + H(ls),
and K(5s) + H(ls). However this correlation of the B’ state results from an
avoided crossing at R > 20qa, with a state correlating with K* 4+ H™. Here
we are interested in R < 154, so we may consider the third asymptote to be
the ionic one. The diabatic states will be labeled 1, 2, and 3 corresponding to
asymptotic correlations with K™, K(4s), and K(4p), respectively. In each case
considered below, H{{(R) and one or more additional H{(R) were adjusted
so that the experimental values of ¢x(R) and &3(R) are reproduced.

Figure 1b shows the resulting H},(R) and H3,(R) when they are readjusted
to reproduce ex(R) and e3(R) over the range where the values are known from
a Rydberg-Klein-Rees (RKR) analysis of spectroscopic measurements.
The procedure is more complicated than Egs. (A29) and (A30) because it is
based on a 3-state formalism including overlap. H},(R) and H},(R) must be’
obtained from

det[H*(R) — e(R)S(R)] = 0, i=X, A (A62)

The solution is
11(R) = w; — (0] — 4w)'? (A63)
22(R) = (ax23 H11 — bx)/exss HYy — axis) (A64)

where

@y = (Ax130a23 — da130x23 + Cx33ba4 — Ca33bx)/2(Cx330a23 — Ca330x23)
(A65)
®; = (ax13ba — aa13bx)/(Cx33Ga23 — Ca33ax23) (A66)
a;j = [H3%(R) — 8?(R)Sjk(R)]2 + €338/ (R) (A67)
b; = 2¢;15¢i13Ci23 — A3 & (R) + a;236XR) — ¢33¢h, (A63)

¢ije = Hj(R) — e (R)Su(R) (A69)
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Fig. 1. Adiabatic potential curves and diabatic potential curves and couplings for KH as
functions of internuclear distance as discussed in Section III. (a) Adiabatic potential curves:
solid curves are RKR values (Numrich and Truhlar, 1975) for X and A states and 4-state
valence-bond calculations (Numrich and Truhlar, 1975) for the B’ state; dashed curves are
3-state valence-bond calculations for X, A, and B’ states. (b) Diabatic potential curves: solid
curves are adjusted so that solid X and A adiabatic potential curves of (a) are reproduced in a
3-state calculation ; dashed curves are valence-bond calculations. (c) Diabatic potential curves:
solid curves are adjusted so that solid X, A, and B’ adiabatic potential curves of (a) are repro-
duced in a 3-state calculation; dot-dashed curves are a false root. (d) Diabatic potential curves
and couplings: solid curves are adjusted so that solid X and A adiabatic potential curves of (a)
are reproduced in a 3-state calculation ; dashed curves are valence-bond calculations.
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A second root can be obtained by changing the sign before the square ro
in Eq. (A63); however, this root has the undesirable behavior that H},(R)
and H%,(R) tend to e%(R) and €3(R) at large R. Equations (A63)—-(A69) were
evaluated as a function of R, and the results are shown in Fig. 1b. The most
interesting aspect of the results is that H{,(R) and H%,(R) do not cross as
they did in the valence-bond calculation. [For comparison, the values
calculated by the valence-bond method are also shown in Fig. 1b.]

Another way to adjust the diabatic curves is to solve for H}(R),i = 1, 2, 3,
subject to the constraint that the 3-state calculation [again using the S; (R)
and the other H{(R) unchanged from the valence-bond calculation] re-
produce the RKR values for the adiabatic X and A states and the 4-state
calculations for the B’ state (the latter being the most accurate result available
for the B’ state). This corresponds to solving Eq. (A62) with i = X, A, and B’
for HY(R), H},(R), and H5;(R). There are six sets of roots to these equations,
and we solved for some of them numerically. Two of these roots are shown in
Fig. 1c. The root that goes to the correct asymptotic values is indicated as a
solid curve. This root could not be found for R < 6.8a,, presumably be-
cause it is not a real root in this region. However, for the region where these
curves exist they do not cross. A second root in which the H{,(R) and
H%,(R) curves have their correct asymptotic value interchanged is shown as
a dot-dashed curve. The existence of this root shows that physically meaning-
less diabatic curves can be obtained that reproduce the experimental adi-
abatic potential curves. If one found such a root numerically at small R, one
might be tempted to join it smoothly to the correct asymptotes; this would of
course lead to incorrect conclusions. It is important to establish that any
numerically determined root is a physically meaningful one. (’

Another way to adjust the diabatic curves is by a “least-squares” procedur
We tried this by adjusting all six H(R) such that the RKR values were
exactly reproduced for the X and A states, the 4-state calculations were
exactly reproduced for the B’ state, and subject to these constraints the sum
of the squares of the deviations from the original six H{{(R) were minimized.
The results are shown in Figs. 2a and b. Notice that H{{(R) and H5,(R) now
cross in a physically realistic way. Comparing these results to those in Figs.
1b and c illustrates the wide diversity of diabatic Hamiltonian matrices that
can reproduce the experimental X and A adiabatic potential curves. Figure 2b
shows the original Hf}(R) for comparison to the new ones. It is encouraging
that the differences are small. The present treatment would appear to be more
realistic than requiring H}(R) be locally constant so that the minimum
splitting of the adiabatic potential curves coincides with the diabatic crossing
(see, e.g., Stine and Muckerman, 1976).

Two problems with the least-squares procedures are the numerical dif-
ficulty of finding the solutions and the possibility to find local minima in the
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‘ Fig.2. Diabatic potential curves and couplings for KH as functions of internuclear distance
as determined by least-squares procedure discussed in Section III. The solid curves are: (a)

Potential curves for root 1; (b) couplings for root 1 ; (c) potential curves for root 2; (d) couplings
for root 2. The dashed curves in (b) are the valence-bond results.

sum of squares. Such a local minimum was found for R < 7.5a, and is illus-
trated in Figs. 2c and 2d. The diabatic Hamiltonian matrix is quite different
for this root, but it correctly reproduces the adiabatic energies at all R and it
can be connected continuously to the correct asymptotes.

One difficulty with all the procedures explained so far is that they lead to
more long-range attraction in H3,(R) than seems physically reasonable. So
we performed a final calculation in which H%,(R) was constrained to its
original value. We varied H7,(R) and HY,(R) to obtain the RKR values for
&&(R) and &4 (R). These results are shown in Fig. 1d where they are compared
to the original values. The diabatic potential curves H},(R) and H35,(R)
do exhibit a curve crossing. Further, the modified H],(R) and H},(R) show
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qualitatively the same character as the originally calculated matrix elemen’
Since the original calculation employed an F-diabatic basis, one woul
probably be safe to use the modified H*(R) with the assumption that deriva-
tive coupling is negligible. Notice that we have not obtained a unique or
rigorous diabatic basis set but rather one that should give physically mean-
ingful results in practical calculations. This completes our illustration of
model calculations of diabatic representations. The KH system has illustrated
some of the practical ambiguities and pitfalls in such calculations.

C. RECAPITULATION

Diabatic bases, i.e., bases that do not diagonalize the electronic Hamil-
tonian, may be used in two quite distinct ways. One use is to provide a repre-
sensation equivalent to some adiabatic basis, but in which the first-derivative
coupling has been transformed away. In the limit of an infinite basis it is
possible to simultaneously transform away the second-derivative coupling;
however, the diabatic basis becomes quite unphysical in this limit. Diabatic
basis sets defined so that the first derivative coupling vanishes within the
finite set are called P diabatic.

The second kind of diabatic basis set does not really correspond to no
derivative coupling. Compared to the mathematical transformations used
to obtain P-diabatic basis sets, the second kind of diabatic basis is generally
obtained by physical arguments. This kind of basis set is called approximately
P diabatic. The justification for approximately P-diabatic basis sets is that
for many problems it should be possible to write down basis sets that hay,
strong potential couplings but only weak derivative couplings. Then it is '
reasonable approximation to neglect the derivative couplings in such a basis,
i.e., to assume that the basis really is P diabatic.

One particularly useful way to define approximately P-diabatic basis sets
is to build them from functions that are adiabatic in different subspaces. Thus
approximate electronic wave functions corresponding to various configura-
tions may be optimized using the variational principle by diagonalizing
the electronic Hamiltonian in appropriately restricted subspaces. When
these approximate electronic wave functions are then considered together
the electronic Hamiltonian need not be diagonal and may in fact show strong
interactions. If the original subspaces were suitably restricted these potential
couplings will dominate the derivative couplings. Several references for this
approach are given in the first paragraph of Section III,B. Notice that this
approach allows one to incorporate important effects of electronic relaxation
as a function of R into a convenient diabatic framework. These electronic
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‘e]axation effects are very important for collisions at chemical energies. Only

at much higher energies can quantitative results be obtained with small
diabatic basis sets composed of atomic orbitals without molecular charge
polarization. Nevertheless, the latter basis sets provide a useful limit in that
the derivative coupling is as small as possible, consistent with the potential
curves and couplings still behaving in a chemically intuitive and physically
reasonable way. Thus it is useful to have a name for diabatic basis sets of this
type and they are called F diabatic.

IV. Solution of the Coupled Channel Equations by R-Matrix Propagation

In this section we show how the R-matrix propagation method of Light
and Walker (1976) can be implemented to solve the coupled channel equa-
tions in the various representations considered in the previous sections.
Section IV,A considers the coupled equations (A42) in a general orthogonal
basis and shows how to obtain a solution when the derivative coupling mat-
rices F°(R) and G°(R) are neglected. In that case, the close-coupling equations
reduce to the standard form for inelastic collisions of distinguishable par-
ticles when no rearrangement is possible. These equations could be solved
by many standard techniques (e.g., the Numerov method), and we use this
standard case to illustrate the R-matrix propagation method. The coupled
equations (A47) are a special case of (A42) and their solution when F*(R)
and G*(R) are neglected can also be obtained by the method of Section IV,A.
In Section IV,B we consider the more general coupled equations (A33)

at hold in a general nonorthogonal basis and we present the equations
‘veloped by Stechel et al. (1979) for solving these equations when the
derivative coupling matrices F*(R) and G"(R) are neglected. The approach
in Section IV,C is for calculations in an adiabatic representation where the
input information is the set of electronically adiabatic potential energy
curves and the nonadiabatic derivative coupling matrices, and no derivative
coupling matrices are assumed negligible.

The reader is referred to the literature for an introduction to the R-matrix
propagation method and for other ways of applying it (Light and Walker,
1976; Stechel et al., 1978 ; Mullaney and Truhlar, 1979; Truhlar et al., 1979;
Light et al., 1979). The only other application of the R-matrix propagation
method to electronically inelastic scattering is the work of Stechel et al.
(1979) (see also Schmalz et al., 1979 Light et al., 1979). That work is discussed
in Sections IV,B and D. Johnson and Levine (1972) have also proposed a
method, not involving R-matrix propagation, which is similar to our method
of Section IV,C. A comparison is made in -Section IV,D.
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A. INPUT IN AN ORTHOGONAL DIABATIC REPRESENTATION ‘

We subdivide the radial coordinate into sectors labeled (i). Within each
sector, the wave functions W, (x, R) are expanded in a primitive electronic
basis that is independent of R within the sector. For example, within sector
(i) we may expand in a general orthogonal basis ¢°(x; i)

PO(X, R) = ) d3(X; )x3e(R; i) (B1) -
q

where ¢g(x; i) is the value of ¢(x, R) at the center of sector (i). We assume all
¢(x, R) are real. Since the ¢(x; i) are unchanged within a sector, substitution
of Eq. (B1) into the Schroedinger equation leads, using the approximations
of Section ILF, to coupled equations in each sector with no derivative
coupling. For example, in sector (i) one obtains

(d*/dR*)Y°(R; i) = D°(R; iy*(R; i) (B2)
where
orp. n _ 2HAB Jrro o n2(l + 1)
DR 1) = =3 {H (R; i) + [m - E]I} (B3)

Ri is the center of sector (i), and
H(R; i) = {$3%x; RO H(R)| 95(x; ROy (B4)

Thus Hg,(R; i) involves using basis functions that would usually be used only
for calculations at R = R{ to calculate the Hamiltonian matrix at a general
R in sector (i). We shall see that the algorithm we derive will require H*(R;
only for R = R¢.

The first step is to diagonalize D°(i) defined by

D°(i) = D°(RE; i) = D°(RQ) (B3)

This yields a diagonal matrix A*(i) that is related to the quantities appearing
above by

A1) = [U*H]DGU() (B6)
= Quap/BY[UOIHHOUG) + {[F*I1 + 1)2uapR*] — E})
(B7)
= Quap/M*YHRE) + {[W*UI + 1)/2uasR?] — E}N) (B8)
where

HE,(R) = 04, @3(x, R)| H{R)| d3(X, R))x (B9)



Electronically Adiabatic States 273

‘\Iotice that the transformation U® is the same as defined in Eq. (A16) and
can be related to those of Egs. (A39) and (A51) by

U*() = [U(ROITU™(RE) (B10)

U*(R) and U**(R) are defined by Eqgs. (A39) and (AS51), respectively. The
diagonalization defines the transformation to the general orthogonal
adiabatic basis ¢*(x; i) where

$°(x; i) = ¢*(x, R¢) (B11)
YO(x, R) = [¢%(x; D]T0*(R; ) (B12)
$*(x; i) = [UD)]$(x; ) (B13)
LR i) = [UO]%°(R; ) (B14)

These equations are analogous to (AS1), (A54), and (A55). In this convention,
the columns of ¥ and y¥*(R; i) correspond to linearly independent wave
functions, i.e., solutions to the coupled equations with different initial condi-
tions or boundary conditions. In the adiabatic representation, the coupled
equations (B2) become

(d*/dRM)XX(R; i) = M*(R; )x*(R; i) (B15)
where
M(R; i) = [U()]™"DAR; HU*() (B16)
Notice that M(R; i) is diagonal only at R = RL. We rewrite Eq. (B15) as
. 4R;0) 3 0 I R;i
‘7% [(d/:R)xa(R; i)} - [7»(1')2 0} [(d/;;)x“(l)i; i)] ®1D
where 0 is the null matrix. This has the solution by the Magnus method

(Light 1971):

[Rc — 25 0] i i pi i
[(d/d)lci)x“ER" - ' i]] = exp{B[Rc — 3/, R¢ + 1]}
C s

®IRG + 3h'; ]
X [(d/dR)Xa[RiC + Ly i]} (B18)

in which

1
B[RL — in, RL + 10'] = —hi[ } + O[(K')*] (B19)

MiP 0
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and A’ is the length of sector (i). The final results of the calculations should b
converged with respect to decreasing the set of {A'}. The radial wave function
in the adiabatic basis can be propagated across the sector (i) by retaining only
the leading term in Eq. (B19). This yields

(R ;i Py PY (Ri; i
[ Z(RL; D) }z[ H L(RE; i) } (B20)

(dx*/dR)(RL; i) Py PY [ (dx*/dR)(Rk; 1)
where Ri, R§ are the value of the radial coordinate at the left and right

boundaries of sector (i). The sector propagators P{) are expressed in terms
of the diagonal matrix A2(i) as follows:

(P = [P = {5jk cosh[ =K'l 2, (DI, A > 0

8, cos[— K| A, (011, 2@m<o B2

o [l DI sinh[— R AT, A% >0

[P35 = {5,-klﬂj,~(i)!‘1 sin[—kIL0[  AH <o B
v (Sl D] simh[—H1A, 01, A% >0

[P0 = {-@,fu SOlsnl—KiL00 2w <o PP

To obtain a solution that is continuous and has continuous first derivatives
between sectors it is required that

Wi, Ry Y = Y%, RD) (B24)
and
d (i—1) i-1 d \P(i) i B25
d‘R_LPj (x, Rk )=dMR j(x9RL) ( )
Substituting Eq. (B12) gives
[d'(x: i — DIT0(RE ' 51 = 1) = [6°0 DTX'(RL: D (B26)

(4706 1 — DI o0 (R 51— 1) = [0 017 & X RE ) (B27)

Defining

O(i — 1;1) = {Pg(x; i — DI @g(x; i))x (B28)
T (i — 1;0) = [U*G — DITOG — 1; )HU*() (B29)

and using
(x50 — D]dg(x;i — D))y = 04 (B30)

(P i = DIGH; D)y = X UG — DS, (x5 1 = DG, (x; 1))y

$141

x Ugi (D
= {[U*( — DITO°G — 1;)U(i)},, (B31)
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we obtain

A VI [f(i—l;i) 0 ] x*‘(RL;i)]
Ay/dRYREi—n[ | o TG — 1;0)] [(dx/dRYRL: 1)

(B32)

Combining Egs. (B20) and (B32) and the result to be derived below for
«  O(i — 1;i)allows the wave function to be propagated over many sectors.
In the method of Light and Walker (1976), the Wigner derivative matrix,
called the R matrix, is propagated instead of the wave function. The sector
« R matrices r{ relate the wave function at the right-hand sides of sectors
(i + 1) and (i) to their derivatives,

[x“(Ri(l; i— l)l [r‘f’ r‘z"’] [(d/dR)xa(R'i{l; i—1)
X*(Ri; 1) —(d/dR)x*(Ry; 1)
The sector R matrices are determined by combining Egs. (B20) and (B32) to
relate the wave functions and derivatives at the right-hand side of sector
(i — 1) to the wave functions and derivatives at the right-hand side of sector

(©). The resulting equations are then rearranged to the form of Eq. (B33) and
the sector R matrices are identified as

0 0 (B33)

K = (G — 1;DPOLT( — 1; PP (B34)
) =76 — ;)PP (B3))
9 = [7G— 1;)PY]~! (B36)
r) = PO~ 1 PO (B37)

or regular solutions, the global R matrix RY is the Wigner derivative matrix,
1.e., it relates the radial wave functions at the right-hand side of sector (i) to
their derivatives (see Stechel et al., 1978 ; Harvey, 1979; Truhlar et al., 1979):

a [ i d a i,
X'(Ri; i) = —R&’ﬁx (Rg; 1) (B38)

The global R matrix is obtained by combining the sector R-matrix equations
(B33) for sector (i) with the global R-matrix equation (B38) for sector (i)
to give the R-matrix propagation equation (Zvijac and Light 1976)

RY = £ — ([RY™Y + 11719 (B39)

Thus the global R matrix is obtained by applying Eq. (B39) recursively with
the global R matrix for the first sector given by

R = ) (B40)

in which r{" is determined from the behavior of regular solutions for small R.
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For the rearrangement analysis presented in Eqs. (137)-(148) of Section.
ILC, it is necessary to obtain N linearly independent regular radial wave-
functions and their derivatives at R = R,, where R, is some large value.
This is easily accomplished by using Eq. (B38) with R, = R} and letting
Y*(R;; i) = 1. Alternatively, since F°and G° are being neglected one might wish
to apply scattering boundary conditions directly in the body-fixed coordin-
ates. In this case a scattering matrix can be calculated directly from R} with
large R} using standard techniques (see, e.g., Harvey, 1979; Truhlar et al.,
1979).

The R-matrix propagation method has the important practical advantage
that channels can easily be deleted as the propagation proceeds from the
strongly coupled small-R region to the weakly coupled large-R region. This
advantage is not unique to R matrix propagation, but the channel-reduction
procedure can be carried out particularly easily in this method (Harvey,
1979; Truhlar et al., 1979).

The R-matrix propagation method does not require explicit knowledge
of the internal (i.e., electronic) wave function. However, the derivation just
given shows that it is equivalent to propagation in an adiabatic representation.
Although we chose to expand in an orthogonal diabatic primitive basis, we
immediately made a transformation to the adiabatic representation. Consider
using the adiabatic representation as the primitive basis for expansion

g

PO, R) = Y, $3(x; D2qo(R; ) (B41)
q
This leads to the coupled equations
d2

Jrz LR i) = D(R; D)y*(R; i) (B42)
in which ‘
D*(R; i) = Quas/WYHY(R; D) + {[A°I(I + 1)/2uapR*] — E}I)  (B43)
and
Hi(R; i) = 8, $ix, RO HLAR)|$3(X, Re)x (B44)
Comparison of Egs. (B43) and (B44) to Eqgs. (B3), (B4), (B10), and (B16)
shows that
D*R; i) = AX(R; i) (B45) -
Comparison of Egs. (B42) and (B45) to Eq. (B15) shows that the coupled
equations in a given sector are independent of representation. Since the
matching is already done in the adiabatic representation, the R-matrix
propagation is independent of basis set.
To complete the algorithm we must show how to obtain the overlap matrix
0°(i — 1; i) of Eq. (B28). In principle, it could be evaluated by performing
the integration

Osi — 1;i) = f dxg?'(x, RE )p(x, RE) (B46)
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owever, in this section we wish to obtain @°(i — 1;i) in a manner consistent
with neglecting all derivative coupling in the orthogonal diabatic basis, i.e.,
consistent with the solution to Eq. (A42) of Section III with F° and G° set
to zero. We do this by comparing the solution to the coupled equations as
obtained by the method described earlier in this section to a direct solution to
the coupled equations (A42) with these derivative coupling matrices neglected.

A method for solving the coupled channel equations (A42) directly is the
Magnus-Light method (Light, 1971). This method is similar to the Light-
Walker R-matrix propagation method and is outlined below. Equations
(A42) may be rewritten

d? 2Uag I(+1 2usgE
(WI - :2 H*(R) — (1‘:2 )I + 'u;:z I)XO(R)
0, 0, d 0, —_—
—n[g (R) + 2°(R) Eﬁ]x (R)=0 (B47)
where
2°(R) = Quap/h*)G°(R) = —(¢°|d*/dR?*|$°) (B48)
f°(R) = 2uap/h*)F°(R) = — (¢°|d/dR|¢°) (B49)

and we have introduced a parameter 7 in front of the derivative coupling
matrices so that we can neglect F° and G° by setting n = 0. Equation (B47)
can be written in a matrix notation as

p °(R) x°(R)
o Al eaw | g (B50)
dR — © . ~O,
R X R ¥R
where A"(R) is a 2N x 2N matrix given by
0 I
A"(R) = [ ] (B51)
D%(R) + ng°(R) 2nf°(R)
in which
1 2
Do(R) — 248 oGy 4+ | X4 D 2anE (B52)
h R h
The solution to Eq. (B50) may be written (Light, 1971)
X’(Ro — h) 1’(Ro)
d = exp[C(Ro — h, Ro)]| 4 (B53)

EX(RO_}’) EX(RO)
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where
Ro Ro Ro
C'(Ry — h, Ry) = — f dRA"(R) + J dR dR'[A"(R), A"(R"]
Ro—h Ro—h R
+ O(h?) (B54)

and [..., ...] is the quantum mechanical commutator. We divide the R
coordinate into sectors of length h' from R{ to R and approximate the
matrix A"(R) within each sector as linear in R

dAT . .
A"(R) = A"(j) + (R — RY) ‘Z—R (R5) for Ri <R<Ri (B55)

Substituting this in Eq. (B54) yields
C'(R{, R) = —h'A"(i) + O[(h)*] for R <R <R} (B56)
Through terms of order (h')?, Egs. (B53) and (B56) yield

1°(RR)
d_dzi FRY| TSP HA@T e[ —IAG)] -
LRY)
x exp[—hADI| ¢ (BS7)
P 4R FRD

This solution to the coupled channel equatiorfs is particularly useful for
comparison with the result of the R-matrix propagation method since both
use the idea of dividing the R coordinate into sectors.

We now wish to cast the solution to the coupled equations by the R
matrix propagation method into a form similar to Eq. (B57). The adiabatic
radial wave functions can be propagated across many sectors by using Egs.
(B20) and (B32).

2*(Ri; 1)

d y
a -1
dRX (RR’ )

71,2 0 ]|[p2 PP[723n o [PP PP
1 o ga)Pp PRIl 0 F@3||PY PP )
. : a R[ R
T —1;0) 0 PO PY xRk 1)
X e X ‘ . d .
0 FTi— 1Py PP dARxa(Rk; i)

(B58)
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‘ rom Egs. (B6) and (B18)-(B20) we can show that
Py Py
o
= exp {— h"[ 0 I]} (B59)
A0 0

[U@i)]" 0 | { [ 0 ]1[U°a(1) 0 ]
= expq —h'
0 [UG)]"] D) 0] U*(i)

(B60)

[[U()]" 0 ] o U*G) 0

= exp[ —HA"=°(1)] (B61)
| 0 [u@]"| 0 U(i)

Using Eq. (B14) to transform Eq. (B58) to the nonorthogonal diabatic
representation and using Eq. (B29) for 7 (i — 1; i) and Eq. (B61) for the
sector propagation yields

2’ (Ri; 1)
LR D)
1;2) 0 °2;3) 0
= _h2Arl=0 2

[ 0 (90(1;2)} expl ( )Jl 0 @ 3)]

. h3A47=9(3 [@O(i — b 0 }
n= e X
x exp[. (3)] x 0 G- 1:0)
x°(Rk; i)
x exp[h'A"=°()]] 4 . (B62)
T R D

Although Eq. (A62) is not written explicitly as a propagation of an R
matrix, it is equivalent to the R-matrix propagation method presented earlier
Comparingit to Eq. (B57) withn = Oshows that the overlap matrix consistent
with setting # equal to zero is

O —1;i) =1 (B63)

This completes the method of propagation when the input information is in
an orthogonal representation and derivative coupling is neglected (or
negligible) in that representation.
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B. INPUT IN A NONORTHOGONAL DIABATIC REPRESENTATION .

In this section we consider the coupled equations (A33) corresponding to a
nonorthogonal basis, and we discuss the solution for the case that the
derivative coupling matrices F" and G" are neglected (or negligible). One
could attempt to find the solution by the methods of Section IV, A, but Stechel
et al. (1979) have pointed out that such an approach leads to questions about
the proper definitions of Hermitian operators and transformations in Hilbert ~ *
spaces defined by nonorthogonal basis sets. In order to derive the correct
solution, they developed the algebra of nonorthogonal basis sets in a given
Hilbert space and of transformations between Hilbert spaces, each defined
by nonorthogonal, incomplete bases. In this section we summarize their
solution. The radial coordinate is again divided into sectors labeled (i) and
within each sector the total wave function is expanded in a general non-
orthogonal basis ¢"(x; i) that is independent of R within the sector.

PR R) = X 03(%; Dtaee(R: 1) (B64)
q
Substitution into the Schroedinger equations gives
d2
IR? X"(R; ) = D' (R)X™(R; i) (B65)

where

DA(R; i) = 28 {s- "OH(R; i) + [——hzl(l D E]I} (B66)

hz 2,uAB I’z2
S(i) = S(R¢) (B67.
H(R; i) = {$3(x; RO HR)| $5(x; RE« (B68)

The matrix D"(R; i) is diagonalized to yield
AR i) = T™'@HD"(R; )T(G) (B69)
where
T() = S™V2(HU*(Re) (B70)

The transformation from the nonorthogonal basis to the adiabatic, diagonal
basis is given by

$*(x; i) = T (DHP"(x; 1) (B71)
x°(x; i) = T~ H(Dx(x; i) (B72)
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Qhe sector R matrices are again defined in the adiabatic representation by
q. (B33) and are given by Eqgs. (B34)-(B37). However, the recursion
formula for the global R matrix is now given by

R =1 — 19 + 7(G - ;)T - 1; HRE-D]-1)  (B73)
where
TG —1;1)=T (i — DTG (B74)

Notice that the extra matrix product in Eq. (B73) vanishes in the case S = L
T. G. Schmalz, J. C. Light, and E. B. Stechel (personal communication) tried
substituting 7 ! for 7T in Eq. (B73) for problems with S # I, and they
found that conservation of probability was often violated by several orders
of magnitude. Only the transpose form preserves the unitarity of the scattering
matrix. Since 7 ~! equals 7 " for orthogonal basis sets, a careful analysis of
the correct treatment of mappings between nonorthogonal Hilbert spaces is
required to derive the correct equation (Stechel et al., 1979).

C. INPUT IN AN ADIABATIC REPRESENTATION

Another approach to electronic state coupling problems is to assume that
one has the adiabatic potential energy curves and nonadiabatic derivative
coupling matrices from electronic structure calculations carried out in a
Born-Oppenheimer framework.

There has been little work on the direct integration of the coupled dif-

erential equations that arise when the adiabatic representation is chosen.
tvans et al. (1971) have solved these equations by a finite difference method
including deferred corrections through sixth order. Their method has the
disadvantage that it requires more than one pass through the integration
region. Zimmerman and George (1975a,b) have rewritten the N coupled
second-order differential equations as 2N coupled first-order differential
equations and solved them by a predictor—corrector method. Babamov (1978)
has developed a method that involves first solving the coupled equations
with the nonadiabatic couplings set equal to zero, then using these solutions
to construct the solutions with nonadiabatic coupling present ; the uncoupled
equations were solved by a piecewise analytic method and the integration
for the inelastic problem was carried out with a predictor~corrector al-
gorithm. Thus all these cases involved finite difference approximations at
some stage. In the examples considered it was assumed that the derivative
coupling in the adiabatic representation arises entirely from the transforma-
tion from another basis set that was assumed to have no derivative coupling.
This simplifies the adiabatic-diabatic transformation and makes it convenient



282 Bruce C. Garrett and Donald G. Truhlar

to test the solution in the adiabatic representation by comparison to a sol
tion obtained in the more standard diabatic representation.

In this section we present a method that is very convenient when the start-
ing information consists of electronically adiabatic potential curves and
nonadiabatic derivative coupling matrix elements. The method includes the
full coupling caused by both first-derivative and second-derivative couplings,
and it does not require finite difference approximations, prior solution of the
uncoupled equations, or an explicit transformation to a diabatic basis. It is
based on the R-matrix propagation method. We believe that it shares some
of the advantages of the R-matrix propagation technique of Stechel et al.
(1979). However, their method involves an expansion in atomic states and
nonorthogonal coordinates. Thus the two methods are quite different. In
particular, the present method has the characteristic, which should be a
distinct advantage at chemical energies, that it allows for input in the form of
standard Born-Oppenheimer potential energy curves and nonadiabatic
coupling matrices, and it involves the usual body-fixed coordinate system.
Again, we use the R-matrix propagation method. The primitive electronic
basis is taken to be the adiabatic basis ¢*(x; R), and ¢*(x, R%) is used as
an R-independent basis function in all of sector (i). The propagation matrices
P are given by Egs. (B8) and Egs. (B21)-(B23). The only difference for this
case from the method of Section IV,A is the determination of the matrices
Z (i — 1; i) that give the correct matching conditions. These are now to be
determined in such a way as to include the effect of all the derivative coupling
terms.

From Egs. (B29) and (B31) we see that

T (i3 1 + 1) = x5 D (x5 i + 1)) (B75
Define '
M (RG, y) = (@3, RO DX, RE + 1))y (B76)
so that
T (s i+ 1) = M [RE 3 + T Y] (B77)

Differentiating M(R(, y) with respect to y we obtain

d .
dy «% Re + y)> (B78)

X

d . )
d-y qu(RlC’ J’) = <d)§(x5 Ré)

= —Quap/h®) Y, M (RE, PIF5(Re +y)  (BT9)

where F*(R) is the nonadiabatic derivative coupling matrix of Eq. (A10).

Equation (B79) can be solved for M(RE, y) by the Magnus method ; the result
is

M(Rc, y) = M(Rg, 0) exp[N(R¢, y)] (B80)
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here

y .
N(RE, y) = —Quag/h) f dyF(RE + )
(4]

y Y’
+ 2uap/h?)? f dy’ f dy'TF*(R¢c + ), FARC + y)] + -
T (B81)
and
M(RL,0) =1 (B82)

We expand the coupling matrix in a Taylor series around the midpoint R}
between two sector centers

. ) . . dF*
F*R¢ + y) = F*(Ry) + ( + Rc — Ry) iR (Rw) (B83)
where
Ry = HRE + RE!? (B84)

Substitution of Eq. (B83) into Eq. (B81), retaining terms through order
(h' + Kt 12, yields

NIRE, 3 + K] = —Quan/30 + b DIFRY) + OL(H + )]

(B85)
and
T (i;1 + 1) = exp[— Quap/M)Fh* + b HIFRW] + O + '')*]
(B86)

he exponential of FA(Riy) can be evaluated in the usual way by diagonalizing
F2(R)). Since F?* is skew symmietric, it can be diagonalized by a unitary trans-
formation. If it is more convenient one could approximate F*(R) by
HFY(RL) + F(REHY)]. This completes the method of propagation when the
input information is in the adiabatic approximation and derivative coupling
is included.

D. COMPARISON OF APPROACHES
Notice the similarity between Eqgs. (B79) and (A24). Taking a transpose of
Eq. (A24) and using Eqgs. (A14) and (A17), we obtain
dU*/dR = —(2p5p/h*)U*(R)F*(R) (B87)

Comparison to Eq. (B79) shows that U%*(R) and M(RL, y) obey the same
differential equation. However, the boundary conditions are different. In
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practice, if the last sector is sector (i,,,,), the boundary condition (A28) that '
applied to U%(R) when the derivative coupling vanishes at large R become

Ud(Riro) = 1 (B88)

whereas Eq. (B82) shows that M gets re-initialized to I at the center of every
sector. Therefore,

U(R:) = (MR, J(hims=t o pimes)])T ‘
x {M[R@"2 J(him=2 4 o ))T
x - x {MLRE, §(h' + B )T (B89)

Using Eq. (B77) we can write Eq. (B89) as

Uda(RiC) = [g-(imax - 15 imax)]T[g—(imax - 2’ imax - 1)]T e
x [T i+ DT (B90)

This shows that when the derivative coupling vanishes at large R, and is
included in the R-matrix propagation method, the transformation matrices
T (i; i + 1) can be used to construct the transformation from the adiabatic
representation to the P-diabatic representation in which all first-derivative
coupling vanishes. Furthermore, using Eq. (B75) for 7 (i; i + 1) and assum-
ing that the electronic basis is complete, Eq. (B90) shows that

Usg(RE) = X3 iman) | 93X DD (B91)
The diabatic basis is given by
$%(x, R) = U(R)$*(x, R) (B92)

which follows from Eq. (A16) when ¢*(x, R) is real. Substituting Eq. (B91.
into Eq. (B92) yields

G9(x; 1) = 3 <X iman) | $30; D5 BR(X5 1) (B93)
If and only if the electronic basis is complete, this becomes

Bg(x; RE) = dy(x; R (B94)
Thus, if the electronic basis is complete, the diabatic basis becomes inde-
pendent of R, as has been noticed previously.

In this section we have considered two ways in which the R-matrix propaga-
tion method can be applied to multi-electronic-state scattering problems.
In the first version, Sections IV,A and IV,B, one identifies some diabatic basis
in which the derivative coupling terms are all assumed to vanish. This diabatic
basis may be a general nonorthogonal basis in section IV,B, but it is restricted
to be orthogonal in Section IV,A. Then one solves the scattering problem
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y transforming within each sector to the adiabatic basis obtained by di-
agonalizing the local electronic Hamiltonian in the chosen diabatic basis at
the center of the sector. This method allows for the use of physically motivated
approximations such as discussed in Sections II and III, e.g., the diatomics-
in-molecules method or the assumption that derivative coupling vanishes in
F-diabatic or single-configuration bases.

The second method, Section IV,C, is appropriate when the input informa-
tion consists of Born—-Oppenheimer adiabatic potentials and nonadiabatic
coupling matrices calculated in a Born-Oppenheimer adiabatic basis. Thus
this method is suitable for state-of-the-art ab initio calculations (although
this kind of input may also be obtained from more approximate calculations
when accurate ones are not available). The calculation is carried out using
the adiabatic basis at the center of each sector as a primitive basis throughout
the whole sector. The overlap matrix required to transform from the primi-
tive basis in one sector to the primitive basis in the next is expressed in terms
of the input nonadiabatic coupling information. After propagating to large
R, it is necessary to apply the correct scattering boundary conditions and this
can be done using the projection technique discussed in Section IIL.

It is useful to compare our approach to that proposed by Stechel et al.
(1979) (see also Light et al., 1979; Schmalz et al., 1979). They proposed a
propagation scheme using the coordinates R, r,, and rg in nonorthogonal
basis sets of functions centered at A and B. No derivative coupling is neglected,
and a special, more complicated R-matrix propagation step is proposed to
convert to R}, r, coordinates at large subsystem separations. The method
discussed in Sections IV,A and B involves the coordinates R and r, general

nonorthogonal basis sets, and the assumption that derivative coupling may
.be neglected in some diabatic basis. This method is suitable for model
calculations or for accurate calculations on systems with curve crossings
where the neglect of derivative coupling in a well-chosen diabatic basis set
need not be a serious error. The method of Section IV,C is appropriate for
cases where the ab initio calculations are available for the adiabatic potential
energy curves and nonadiabatic derivative coupling matrices. There is no
restriction on the kind of basis functions that can be used to obtain these.
No derivative coupling is neglected. Instead of a special R-matrix propaga-
tion step at large R, one may apply one of the methods of Section ILE or
ILG. :

Finally, we compare our approach to the method of Johnson and Levine
(1972). These workers also employ the expansion of Eq. (B1) and the di-
agonalization of Egs. (B6)-(B8). They propose that the wave function be
propagated similarly to Eqs. (B20)-(B23) and that Egs. (B24) and (B25) be
used to match at sector boundaries. They assume that the primitive basis is
orthogonal and that the matching procedure involves integrals similar to
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those in Eq. (B46). In the present work we have eliminated the need to call |

culate these integrals by writing the matching procedure in terms of the
standard derivative coupling matrices. In addition, the propagation of the
R matrix rather than the wave function has important advantages. An
important practical advantage is that it is stable even in the presence of
closed channels (Light and Walker, 1976). There are also important formal
advantages (Stechel et al., 1979; Light et al., 1979), e.g., the ability to develop
a propagation scheme that ensures conservation of particle flux even in a
nonorthogonal basis.

V. Summary

In Sections ILA-ILD and Section III we derived the coupled scattering
equations that describe electronically inelastic collisions in various repre-
sentations and coordinate systems; in Sections IV A, IV,B, and IV,C we
discussed numerical methods for the solution of these coupled equations;
and in Sections ILE and IL,G we discussed the calculation of scattering
amplitudes by imposing the correct scattering boundary conditions on the
solutions. Application of these ideas to various physical systems also involves
choosing an electronic basis and obtaining the matrix elements required as
input for the coupled equations. We have discussed some aspects of that part
of the theory briefly; a review of other aspects is given elsewhere (Browne,
1971).
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