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In this contribution, we summarize the procedures we currently use
to solve close coupling equations for electron-atom, electron-molecule,
and atom-molecule collisions, and we discuss some of our relevant past
experiences in applying various numerical approaches to close coupling
calculations. To facilitate comparison of these methods we also present
some timing information which we gathered for this workshop. The numerical
methods we compare here are the Numerov met:hod,l-11 the piecewise analytic

12-16

method of Gordon with linear reference potential, the integral equations

algorithm of Sams and Kouri,17~23 and the R matrix propagation method of

. 24-29

Light and Walker with piecewise constant reference potential.

In section II we introduce all four methods and discuss in detail

. . 8 . , 29
our implementation of the Numerov and R matrix propagation” ~ methods.
In section III we discuss applications of all four methods to elastic
and vibrationally and rotationally inelastic electron scattering by N2
using anisotropic model potentials. Section IV gives applications to
electronically inalastic electroun scattering by H. Sections V and VI

discuss vibrationally and rotationally inelastic atom-diatom scattering,

respectively.
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A. Introduction. For this workshop we have compiled some comments

on our experiences with close coupling calculations of electron-molecule,
electron-atom, and atom-molecule scattering. In this section we provide
a detailed description ~f our implementation of the Numerov and R matrix
propagation methods. We also briefly introduce the codes which we used

to apply the piecewise analytic method and the Sams-Kouri method, and we

comment on our timing studies and on our use of adiabatic basis functiouns.

B, Numerov method. We have found the Numerov method te be convenient

and reliable for many problems. Since the method is easy to apply, the
computer program is relatively transparent and easy to modify and simple
checks of convergence with respect to numerical parameters can be made.
The Numerov method is a hybrid finite difference method applicéble
to any set of second-order linear differential equations containing no
first derivatives. It is a sixth-order method, i.e., if h denotes the

stepsize and £(r) denotes the exact sclution of

2
‘_i._..f_gr_) = D(r) f(r)
2
dr
h6 6f
then the leading term in the truncation error per step is 240 .6 x
dr r=r
* . . . 4,30 4
where r 1is some (generally unknown) point in the interval. Blatt

has suggested that the Numerov method is "the method of choice for the
integration of (1) because it is the highest-order method which is at the
same time a three-point method.” However, thé cumulative error in the
Numerov method is of order ha, which is the same order as the Runge-Kutta

method which has an h5 truncation error per step.3l’32

(1)




-223-

Lester33 has pointed out a minor.disadvantage of the Numerov
method, namely it requires different algorithms for doubling and halving .
the stepsize, respectively. For this reason, Lester chose the deVogelaere
method,34 which is a variable stepsiée method and requires only a single
algorithm for changing the stepsize. Allison5 compared the regular Numerov,
iterative Numercv, and deVogelaere methods for a test case36 involving rota-
tional excitation in an atom-rigid-rotator collision, and he found the iter-—
ative Numerov method to be the fastest for a given precision. His tests
are significant in that they were run on the same computer using computer
codes written by the same author thereby eliminating two of the major varia-
bles usually existing in such comparisons. He also compared his Numerov
program to Gordon's program35 using the piecewise analytic method for the
same test case, and he found for calculations of similar precision that the
execution times were comparable for problems having as many as nine channels.
Our program is based mainly on the work of Allison.s Further development of
the method has been carried out by Johnson who calls the resulting algorithm
the renormalized Numerov.method.34 As compared to the original matrix Numerov
methed, Johnson makes two transformations. The first eliminates one matrix
multiplication and is identical to a transformation used by Allison. The
method obtained after this transformation is called the regular Numerov
method. Johnson's second tranformation is to define a ratio matrix

(Y

o+l ¥; is the notation used below). This does not change the amount of

computation per step, but it does eliminate the need for stablizing trans-
formations. As discussed below, our program uses stablizing transformations
but our experience has been that these have not required a great amount of

computational effort. 1In the following general review of the numerical
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techniques, we use Allison's equations wherever possible, but we change
the notation somewhat to conform more closely with the notation used else-
where in this report.

The set of N coupled second order differential equations to be solved

are
:
—5 £(@) - D(x) £(x) = 0 (2)
dr
with
g, (%, +1)
- - {,2 R St SR 2
D () = - |k 3 835 T (u/hHv, . () (3)

L T
We use the convention that A denotes a matrix with elements Aij' (The

columns of A are denoted A.) Equation (2) is solved subject to the boundary

conditions

£(0) = 0 | (%)

and

E(r) v S(r)P + C(x)Q (5)

r>®

where, for the case of all channels asymptotically open,

~3

* , - '1/ .
Sij(r) o ki aij 51n(kir 2lin) (6)
T
and
- ey
Cij(r) r:m ki 6ijcos(kir 'éliﬂ) (7>

A subblock B of the reactance matrix is then given a537

R =t (8)

This method of asymptotic analysis is easily generalized to the case where

some channels are closed.
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It is interesting to note that g(rx is not unique, i.e., for any non-
singular matrix G, f(r)g satisfies the eqs. (2), (4), and (5) if f(x) does.

However, R is given in terms of the f(r)G solution as

1-1 -1

P o= QP 9

R= Q@) = o6

. . . -1 . .
and is the same as for the f£(r) solution. Since P is required, the columns

of f(r) must be linearly independent. Furthermore, any set of N linearly
independent linear combinations of the colummns of f(r) is an equally vglid
set of solution vectors satisfying (2), (4), and (5).

We use the notation X = g(rn) where x is any matrix and o is a grid

point, and we let the stepsize between grid points be h = rn+l - T At

a given point, the approximate solution fn+ to (2) is calculated from D(r)

1

evaluated at the equally spaced points 1 . and T respectively,

n+l -1
and from f and f as
~n ~n-1
2 2
h—— = - }_g 2 — — _}L
(T - 330010y = QL F 0D E - (X -50 pE (10)
Let
2
I
Pt (b
and
YT = O+ ELDE L (12)
; Then (10) may be rewritten as
1
: ¥n+1 - 2¥n - 121jngn - gn—-l (13)
i
!
; with
: _ -1
fen T EHEL) Y ()
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We refer to (13) and (14) together as the "regular” Numerov method.

In an attempt to speed up the calculation of (I + F )--1 Allison pro-

ntl

posed the following iterative method of calculating §n+ Let d(r) and

1"
A(r) be defined to have elements given by
JHORR NORN (15)
and
9 N
Aij(r) = —(h"/12) E Vik(r) fkj(r) (16)
k=1
k#i
s0
F(r) £(r) = d(x) £(r) - &(x) an
Putting (17) at T into (13) yields
¥n+1 = 2¥n + 12(én - c~1ngn) - gn-—l (18)

and putting (17) at -

+1 into (12) and solving for §n+1 yields formally

_ -1
gn+1 - (I + §n+l) [?n+l + én+]] (19)

Since d(r) is a diagonal matrix the evaluation of (I + dn+ ig trivial.

l)—

But A on the right-side of (19) depends on £

A 41 f 41 S° Allison proposed using

Gauss—-Seidel iteration38 to converge (19) at the current grid point before

using (18) for the next grid point, i.e.,

T . o= 1lim T

(20)
~ntl - ~n+l

for T(r) = E(r) or Q(r).
The Gauss-Seidel iteration procedure is a method for finding the solution

x to the system of linear algebraic equations
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Ax = b (21)

where A, x, and b are N x N matrices. TFirst one makes the replacement

A=Y-U-L (22)
where W is a diagonal matrix, U is a strictly ‘upper triangular matrix, and
L is a strictly lower triangular matrix. Putting (22) into (21) and re-
arranging yields

x = W W L+ Wb (23)
This motivates the Gauss-Seidel iteration procedure for solving (21);

§(m+l) - W—1~§(m) + W—l¥§(m+l) + g_lk (24)

Varga has shown38a that (24) will converge if and only if A is a positive

s . . . 8 . . - .
definite matrix. One way of 1nsur1ng3 b that A is a positive definite matrix

is for it to be strictly diagonally dominant, i.e.,

N

[Aii| > 3 IAij] , i=1,2,...,N (25)
j=1
j#l

If the option to try Gauss-Seidel iteration is chosen for a given step, our
program checks (25) and uses the regular Numerov instead if it is not satisfied.

Comparing (12) with (21) and (19) with (23) shows that A =1+ F L1’
X = f b=%Y Recalling (16) and

nt+l? ~nt+l? W=TI+4d ., and (U+L)x=2

~ntl “a+l”

putting these assignments into (24) yields the following Gauss-Seidel jteration

procedure

(m+l) _ -1 (Iﬂ) 26
k1 )ij SR CHRD PPy B R CANED P (§n+1) L (26)
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(m) - (m+1)) (m)
(”“ﬂ) W' L 3 1)1k (£n+1 K kz W +l)1k(§n+l) kil D

k<i >1
Allison doesn't describe what to use for f( ) in (27). We let

0
£+ i (28)

Then using (27) the first row of A( )

to calculate the first row of §(+i

can be calculated and put into (26)

which together with (28) can be used in
(m)

()
(27) to calculate the second row of A o+l and so on, i.e., row k of An+l
(m ) (mt1) and row k of f(m+l)

only requires f o+l +1

and the first (k-1) rows of £

(m)

requires only row k of 4 ol

Provided (1+ En+l) is positive definite,

equations (28), (26), and (27) are used in the above manner until

N N
1 (m+1) (m)) 2 |%
= L 2
x|t (&ﬂ i (n+l < EPS (29)
i=1 j=1 .
where EPS is an input variable. Then putting £ = ¢ (@) into (16), &
’ ~nt+l “nt+l > ~ntl

is evaluated and Y(r) is evaluated at the next grid point using (18). Ve
refer to the above procedure‘as the "iterative" Humerov method.

The program has three options regarding the use of the regular and
iterative Numerov methods. In the first mode of operation, only the regular
Numerov method will be used. In the second, the regular Numerov method is
used until an r value is reached at which the iterative Numerov method be-
comes faster. The time comparison between the two methods is made after
the first integration step and every KCKth step until the iterative Numerov
method becomes faster. KCK is an input variable. 1In the third mode only
the iterative Numerov method should be used. If the matrix (I + €n+1) does

not satisfy (25) for some r, the regular Numerov method is used for that r
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independent of the choice of mode. For modes two and three the progrém

has an input variable NCONV. WNCONV is the maximum number of Gauss—Seidel
iterations made at a mesh point. If convergence is not achieved in NCONV
iterations, the regular Numerov method is used to find f(r) at that mesh
point. 1f convergence is not reached in NCONV iterations but the time

used is less than used by the regular Numerov method the program automatically
increases NCONV. Usually we set EPS = 10—4 and NCONV = 200. As stressed

by Allison,5 the efficiency of the iterative Numerov method is largely
dependent on one's ability to vary the value of the convergence criterion,
consistent with obtaining the desired accuracy. Allison used a convergence
criterion he called ¢ and found that ¢ = 10-2 was sufficient for his calcu-
lations. Since we use the reasonably safe value EPS = 10_4 for our conver-
gence criterion, we need not check so carefully for comnvergence with respect
to EPS, but our efficiency is not optimized. To obtain the best possible
timings one should vary EPS to obtain the wvalue just sufficient for the
desired precision.

Next we consider the method used to change the stepsize h. BlattA has
suggested a method for applications to single differential equations for
determining when h can be doubled or should be halved. A generalization
of his error criterion to coupled differential equations has been included
in our program. The criterion we use for the variable-stepsize runs used
to gather timing information for the present report is to require h be small

enough that
REPS(r) < 644§ (30)

where § is an input variable and the estimated relative error per step is
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REPS(r) = 7 2(“—2— |p,.(])°
r) = 7. lZ'niX 11 (31)

In practice we double the stepsize if REPS(rn) < § and we half it if
REPS(rn) > 648. There is also a provision for restricting the maximum
stepsize h and the stepsize is not doubled if h exceeds %h . Although
max max
(31) is based on Blatt's error analysis, an essentially equivalent result
can be obtained by the following argument. To obtain reasonable accuracy
one would expect to require a certain number of steps per deBroglie wave-
length, i.e.,

h 26" min ), (32)
i 1L

where Ai is the deBroglie wavelength in channel i and §' is the reciprocal
of the number of steps per deBroglie wavelength. Using (3) and a correspond-

ing criterion for locally closed channels we rewrite (32) as

1
2

< '
h £ (const.)$ (mgx lDii|) (33)

For comparison we use (31) to rewrite (30) as
: L4 NeP
h £ (const.') §(max lDiil) * T (34)
i

The effect of (33) is the same as the effect of (34), but the constant has

a different name.

Because the stepsize is not changed with § < REPS(r) < 646, and because
the stepsize is only changed by factors of 2, the actual stepsize used at
a given r depends on the initial stepsize hO as well as on r. The program
can also operate in a fixed-stepsize mode, or used fixed stepsizes at small

r and variable stepsizes at large r.
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Doubling the stepsize is straightforward. It merely requires using

the values of f(r) and D(r) at r and r instead of r, and rn_l and using

n-2

2h instead of h in (10) to calculate £ instead of £
~nt ~nt

2 1°

However, when the stepsize should be halved, g(r) has not been calcu-
lated at-a half step back and, until it is, the integration cannot proceed

using half the current stepsize h. The methodé used to calculate f(r) at

- h v 21
T r 2 from h, fn, Qn’ gn-l’ and Pn—l is as follows. Let h 2 i.e.,

. = T
half the current stepsize, let T 41" To-1 + 2h LY + h, i.e., the old

rn becomes the new rn+1 and the old fn and Qn become the new §n+l and Qn+1,

respectively, and the new r_ = r 1 + h' = r'. Using this new grid, £(r') =

f can be found from (10) and Qn = D(r') as

~

2 2 A
_ 10,2 -1 |_ 1" _n' ‘
£, = (T +3h7 D) E]i 12 2 YT - 13 Dn—l)gn—lJ (35)

after which the intepration can proceed as before but with h' replacing
h in all equations.

Now we consider the procedure for starting the propagation of the
solution vectors. If the elements of Y(r) have no singularities of order
two or higher at the origin, then for small r the solutions of (2) that

satisfy (4) are given by

i+l

(36)

fi (r) ~ c,.r

>0 1

3
Since, as explained in the previous subsection, we need merely obtain any
linearly independent set of N solutions of the coupled equations we may

let cij =c.,.§ For electron-molecule and electron-atom scattering the

iiij°

program calculates the initial grid point Ty by solving
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rﬁmi“+l = UTEST (37)

where UTEST is a small number, usually 10—12 atomic units, which is an input
variable of the program, and

£ . = min {R:.}b.]
- 1 1:

min 'y 1 (38

For atom-molecule scattering we set T, to a value sufficiently small so that
all channels are strongly closed. In either case the results should be
invariant to decreasing UTEST or Y- Since the Numerov method is a 3-point
method, it requires g(r) at rO and rl = r0 + ho to get started. As discussed
above, the calculation of a subblock of the reactance matrix requires that
the column vectors of the solution matrix be linearly independent. Therefore

the program starts the solution with a linearly independent set of column

vectors as

£ = (39)

and

£, =1 (40)

Starting the solution with a set of linearly independent column vectors
does not insure that the computed solution vectors will remain linearly
independent until (5) is valid. TFor example, if the local kinetic energy
in the ith channel [which is proportional to -Dii(r)] is negative, the ith
row of g(r) will grow exponentially as the integration proceeds and the
linear independence of the column vectors will be lost. If this problem

occurs one must perform stabilizing transformations, i.e., one must periodi-

cally replace the columns of g(r) by linear combinations of the columns
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to insure linear independence is not lost. There is of course more than

one way to do this. Riley's method,39 consisting of periodic reorthogonal-
ization of the columns of f(r), is particularly easy to apply and was chosen
for our program. An alternative method has been presented by Gordon.12
Riley's method consists of defining a transformed solution gt(r) in terms

of the solution f(r) as
£f = £ £ k=n,n-1,n2,...,0 (41)

with gt(r) repiacing f(r) in all equations using £(r). The transformation

is applied only when at least one of the Dii(r) is positive. The number

of integration steps taken between successive applications of (41) in such

regions is set by an input parameter, NLINDP, of the program. If NLINDP

is set too large, the subblock @J of the reactance matrix calculated in

the asymptotic region is not symmetric. For a typical case, we find it

sufficient to reorthogonalize at every 20th step for which the local kinetic

energy in any channel is negative. Riley's method of stablization may also

be used as part of a procedure for eliminating closed channels at large r

so that the number of channels propagated may be reduced to those‘that aré

open asymptotically.lh
As mentioned above, the solution to (2) is matched in the asymptotic

region using (5) to a linear combination of matching functions §(r) and

C(r). The program uses either of two sets of matching functions as des-

cribed next.

If the elements of V(r) all go to zero at large r faster than r—z,

then beyond some large value r' of r the quantity zzr_z will dominate V(x)
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to such an extent that V(r) can be dropped from (3). This'reduces (2) to
the N2 uncoupled second order differentiay_equations

42 ai(ni—+1) | 5
;;5 fij (r) - —-~—:~§~— fij(r) + K fij (r) = 0 (42)

with 1 =1 <N, 1353 <N, and r > r'. The solution to (42) is just a linear

combination of regular and irregular Ricatti-Bessel functions jg (kir) and

X

n2 (kir), respectively, for i = 1,2,...,N, where the Ricatti-Bessel functions
i

are defined in terms of spherical Bessel functions of the first kind and

second kind40 by

J (¥ = x3,(x) (43)

nﬁ(x) = xn@(x) (44)

(Reference 40 uses yn(z) in denoting the spherical Bessel function of the

second kind.) TFor large rAl

kirjﬁi(kir) N sin(kir - L. | (45)

Pt
and

- - i
kirnz-(kir) A cos(kir 2213) (46)
i Yo

Comparing (6) and (7) with (45) 'and (46) yields

, .
- 1,2 :
and
1z
C.. = -k, "5, . 48
ij (r) i 043 ;1£i(kir) - (48)

as one set of matching functions.

STy

AL S i AR el
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. ' -2 =3
However, if some elements of V(r) go to zero at large r as r , r ~,

or r = (as is the case for electron-molecule scattering with realistic
effective potentials), then the r' for which (42) is valid is generally

very large and the use of (47) and (48) requires numerical integration of

(2) over a very large region which is expensive. Therefore, Burke and

Schey42 and Burke, McVicar, and Smith43 (BMS) have derived asymptotic solut-

tions to (2) computed from the long-range part of the potential and a computer

program for using the BMS sclutions as matching functions has been described

in detail by Norcross.44 For open channels, the matching functions are

written in terms of asymptotic series as

- .
8350 = K 7lay () sin g, (x) + By (x) cos ¢, ()]
and
1
_ _ .
Cij(r) = ki [aij(r) cos ¢i(r) Bij(r) sin ¢i(r)]
where
¢i(r) = kir - 35£iv
and
i p p
(s = % .
i (r) oo Y51 T

for y = o or B where Pi is determined as described below and
o,. = §,. and 89. =0
1]

The remaining coefficients Yij are determined by the following procedure.
The function V(r) in (2) and (3) is replaced by its.long range form
M

V,.(r) ~n r cg?)r—m—l
13 > m=1 1

(49)

(50)

(51)

(53)

(54)

TR e B
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and substituting the §(r) of (49) or the g(r) of (50) into’ (2) for f(r)

yields recursion relations among the coefficients of like powers of r—l.

The recursion relations have two different forms, ome for when ki =k,

and the other for when ki # kj' The latter form depends on (ki - k;)—1

and becomes numerically umstable as ki approaches k? so0 a test is made

using the input parameter ny to decide which form to use. Only if

Iki - k?l > nlki is the latter form used. As compared to Norcross' ver-

sion44 we made one additional change in the recursion relation for the case
‘'of degenerate energies, i.e., if Ikz - kjl < nlki we approximated both ki
and kj by their arithmetic mean rather than replacing them both by ki as

Norcross did. From these relations the remaining values of Yz can be cal-

]

culated. It is well known that the best approximation which can be obtained
from an asymptotic series is obtained by summing up to the smallest term

and retaining half that term. In this spirit we replace (52) by

Pi .
I y?.r P %y??r Py (55)

Y..(x) =
ij p=0 13 ij

(This is another change from the procedure used by Norcross.) The value
of Pi is determined for each channel i = 1,2,...,N using the input para-

meter 1t as follows. For a given p and i, the maximum absolute value of

of 7P
1]

called r(i,p). This is done for each p > 1 in increasing order of p until

or ng r P is set equal to 1t and solved for r. The solution is

p = p' where p' is the smallest p for which r(i,p+l) > r(i,p) or until p is
the maximum value Pmax allowed by the program. If the former, then Pi is
set equal to p' and r(i,Pi) is the minimum value of r for which (52) may be

used with the smallest term being less than or equal to 7 for the ith channel.
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(It is interesting to note that Norcross44 always uses Pi Z 4 in his
program.)

. - - < I
If r{(d,p) < r(i,p-1l) for all p = Pmax then Pi is set equal to Pmax

and r(i,Pi) is set to the value of r for which the maximum absolute value

14

of ag?ax r_PmaX or Bi@a‘ r Fmax is equal to 10 .
An estimate of where (5) with (49) and (50) becomes valid is then made

as the maximum of the r(i,Pi) values for the various channels i and the

value of r for which (54) is valid.

The above method can also be generalized to include closed charmels.44
The choice between matching to Ricatti-Bessel functions or BMS functions

is controlled by an input variable MMAX. Assuming one has reached an r

for which the asymptotic form (5) is valid, the program matches f(r) to

either matching functions (47) and (48) or (49) and (50) at two grid points

r and r . After rearranging terms, this yields

nt+l

-1 _ -1
(gn+l - §n+1§n gn)9 - gn+l §n+1§n fn (56)

which 1s solved for the approximate Q, called Qn’ and two approximate P

matrices, called gn and ?n+1’ are then found using

- o1 - =
P =5, (gk ngn) k = n,n+1l - (57)

If

norm(P - P ) < STEST (58)

n+l

where STEST is an input variable and the norm of a matrix is defined as

1 N N
norm A = ﬁ-( r I ‘Aij

1%y
N i=1 j=1

)6
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then R is calculated from gn and Qn as

(60)

In deriving (60) we use the fact45 that R = R-.

C. R matrix propagation method. The version of the R matrix pro-

25,26,28,29

pagation method we use 1is our own adaptation to inelastic scat-
tering problems of the method Light and Walker24 developed for reactive
scattering problems. The R matrix propagation method has also been adapted
to inelastic scattering problems by Stechel EE.Ei"27 but their procedures
differ from ours in several respects.

In the R matrix propagation method the range of the translation co-
ordinate r is subdivided into many sectors. In sector (i) the total wave
function W(;,r) is expanded in a "primitive"” basis of N orthonormal functions
Xn(;), here assumed to be the same in every sector, and a set of N close
coupling equations in the primitive representation is derived for each of
the 2N linearly independent translational wave functions f(r). We use
the cdnvention that A denotes a column vector with component Ai and A denotes
a matrix each of whose columns is an A. These equations have the form (2).
An "adiabatic" basis for sector (i) is found by diagonalizing Qéi), the
interaction matrix at the center of sector (i). The wave function is ex-
panded in P of the adiabatic~basis functions Zéi)cz), and a set of P close
coupling equations in the adiabatic representation is obtained for each of
the 2P linearly independent translational wave functions g‘i)(r). The basis

i) = (1)

n (z) are related by a transformation matrix T .

functions Xn(;} and 2

?(i)

Similarly, is used to relate the translational wave functions fn(r)

and gil)(r) to each other. The adiabatic-representation translational

Wi
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wave functions and their derivatives are propagated through sector (i) by a

(1)

propagation matrix E (E). Then the requirement that Y(;,r) and ?'(;,r),
where an apostrophe denotes a derivative; be continuous at the boundary be-
tween sectors (i) and (i+l) is used to obtain sector matching conditionms.
To express the continuity between the wave function in the adiabatic repre-

sentation in sector (i) and the wave function in the adiabatic representation

(1)

in sector (i+l), the transformation matrix T is used to transform from the

adiabatic representation to the primitive representation in sector (i), and

(i+1) T

the matrix T is used to transform from the primitive representation in

sector (i+l) to the adiabatic representation in sector (i+l). The combined
effects of these two steps is expressed in terms of a transformation matrix

T(1,i+1) which relates the adiabatic representation in sector (i) to that in

sector (i+l). The propagator B(1+l) is then used to propagate the adiabatic-

(

representation translational wave functions g_l+l)(r) and their derivatives

through sector (i+l), I(i+l,i+2) is used to transform to the adiabatic repre-
sentation in sector (i+2), and so forth. 1In this way the translational wave
functions and their derivatives could be propagated from the strong-interac-
tion region through each sector and across sector boundaries. Rather than

propagate the wave function and its derivative though, we propagate theglobal

() e D] and gD (D1 of 20

, Which relates the matrices L

R matrix R
linearly independent wave functions at the left side of the first sector and

at the right side of sector (i) to their derivatives at these locations. 1In

(1) (1-1)

each sector this global R matrix R and the sector

(1)

is computed from R
R matrix r = ’, which relates the adiabatic-basis translational wave

functions at the right sides of sectors (i-1) and (i) to their derivatives

at these locations. 1In turn the sector R matrix is obtained from the
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transformation matrix I(i—l,i) and the propagator E(i) In this way we pro-
pagate the global R matrix from sector to sector until we obtain the global R
matrix in the last sector. This relates the matrix of limearly independent
physical wave functions in the strong-interaction or small-r region and
in the large-r asymptotic region to the matrix of their derivatives. Small-
r and large-r boundary conditions on the wave functicns and their derivatives
are then imposed in such a way that the reactance matrix B can be obtained
in terms of known quantities.

The sector—-by-sector propagation is essentially the same as in reference
(1)

24. The 2P x 2P sector propagator P is defined by

() _ ?(i)géi) (61)

where each column of the 2P x 2P matrix g(l)(r) is defined by

g
(ry = | ' (62)

where g(l)

{(r) is one of the 2P linearly independent P-component solution
vectors. Here and in the following equations subscripts R, L, and C de—

note quantities evaluated at the right-hand and left-hand sector boundaries

and the center of the sector, respectively, e.g., g{l) = g(l)[rél)]. The

matrix g(l) is partitioned into four P x P submatrices
p(D pE)
(i) ~1 ~2

(i) (1)
P )
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p(1) (1)

is computed by diagonalizing PC apd assuming that the eigenvalues

. R 24 . .
of D are independent of r within a sector. This assumption would be true

if the interaction potential were constant throughout the sector. The sector

(1) (i-1) (1)
R R

evaluated at the right-hand side of sectors (i-1) and (i) to their derivatives.

R matrix r is the matrix which relates the wave functions g and g

It is defined by

(1) (1)
w _ [ =2
A RSN (e
%3 £4
where
(i-1) (i) y (1~1)
g r g
R } 2 &R (65)
) o ||y
The equations for the sector R matrices are
i R
e = 1L P e Ta-Ln ™ (66)
. -1
gél) = T(i—l,i)ggl) (67)
W _ WA
ry = Pq T(i-1,1) (68)
. S
(=gl gD (69)

The global R matrix g(l) spanning the configuration space from the first

sector to sector (i) is defined by
LS
(1) f

R = (70)
) (i) (1)
KI}j} 134 .
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¢b (D)
g
gL. = "L (71)
Eél) ‘Eé(l)

g(i)

is propagated from the first sector to the asymptotic region in which
the scattering matrix elements and other physically interesting quantites

‘are calculated.

A real symmetric global R matrix R(l) insures a symmetric reactance

matrix and hence a unitary scattering matrix. If g(l_l) and g(l) are sym-
metric matrices, then B(l) is symmetric. But
(1) _ ) (-1
Ry = 2p R (72)
D L@ ™ a3
T2 ~3 ~3
@ _ w1l m
34 - 23 24 (74)
L . . . (1) . .
so that R is symmetric. The sector R matrix r is symmetric 1if the

transformation matrix T(i—l,i) is orthogonal. The transformation matrix
is orthogonal if and only if the number P of propagated adiabatic chaniiels
equals the number N of primitive basis functions. Thus the scattering

matrix is automatically unitary if and only if P = N.29 It has been sug-

24,27 (1) the matrix I(i—l,i)_l

gested that in order to insure a symmetric R
be replaced by I(i—l,i)T. This also may afford computational advantages.
When P = N, this is not an approximation. However, for contracted basis
sets, i.e., when P < N, I(i—l,i) is not orthogonal. For contracted bases

replacing '{(i—l,i)“1 by T(i—l,i)T in each sector changes the results unless

of course the calculations are converged with respect to P and N. For
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unconverged calculations we generally obtained more accurate answers by

using the inverse and symmetrizing the reactance matrix than by using the

transpose. For this reason we have used the inverse for our final production

runs; however, the choice in general isrstill somewhat ambiguous. Both

choices should converge to the correct limit as P and N are increased.

Since, when P # N, using the inverse does not automatically produce a

symmetric reactance matrix and hemnce a unitary scattering matrix, we sym-

metrized our reactance matrix by taking an arithmetic mean with its transpose.
We obtain the reactance matrix B from the global R matrix equation

by imposing asymptotic scattering boundary conditions on the adiabatic

wave functions in the following way. The P x 2P solution matrix g(c)(r)

in the adiabatic representation in sector (c) consists of 2P linearly inde-

pendent vectors of order P. Because the solutlons are linearly independent,

the P x P matrix @(c)(r), each column of which is a scattering vector, i.e.,

one of P linearly independent linear combinations of the former set of

vectors which satisfies correct small-r and large-r boundary conditions,

satisfies the global R matrix equations for sector (c). Using (71), one

can show that

(C) Y (1)
) L
(75)

(e) ¢ (€)
8‘4 —?R

where ?éi)(r) is the m-th component of the n-th scattering vector and

(1

L (c) consist of the P linearly independent

the P X P matrices ? R

and ¢
scattering vectors evaluated at the left side of the first sector and
() §(), ang 1(

2
are the P x P submatrices of the 2P x 2P global R matrix B(c)

the right side of sector (c), respectively. E{c), R

which spans
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the configuration space from the left side of the first sector to the

right side of sector (c). To obtain R we substitute scattering boundary

conditions for @él) and ¢éc) and their derivatives into (75).
To use (75) to extract the reactance matrix we first require expres-

sions for @él) and ?i(l). Since only P of the 2P linearly independent

solutions g(l)(r) satisfy physical boundary conditions in the strong
interaction region, we include in our analysis of (75) only the P
functions which provide physical solutions in the small-r region.

For channels which are closed at r = rél) we use the following expo-

nential functions for the wave funections

(?I(Jl))mn = dmn €xp [le(rél))lrél;-I m closed (76)
(‘1’1:(1) = dmnlmm(rél))‘exp[Kméﬁl))‘rél) (77)

where Km(l'£1)> is the local wave number in the m—-th channel calculated at

ril) and the coefficients dnn are unknowns. All chamnels with nonzero

1

orbital angular momentum are closed at the origin. For channels which are
open in the small-r region the boundary conditions on the wave functions

can be written

(?]El))mn © ®m sin |‘<m‘(r£l))lr£1)] m open (78)
Q?]:(l))mn = emnl Km(r]il))‘cos [IKm (rél))lr‘[(ll)] (79)

where the coefficients emn are not known. To facilitate the calculatiomns

we cast (76)-(77) and (78)-(79) in the same form, so that for both open

and closed channels the boundary conditions we use at r = rﬁl) are

AR,
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(1)
o = ¢ (80
' (1) (1)
o x ¢ (81)

where / ]
iKm(r£1>)|cos 1Km(r£1))|r£1) /sin e (=) 2P| m open
x(l)(E) =6

mn mn (82)
IKHl(;él))l n closed

and the coefficients Cmn are unknowns.

At large r the close coupling equation becomes

2
d” @ 2 (c) -
{d—r?_ [X 7 (r)] } g, (ry =0 (83)

where [g(c)(r)]2 is a diagonal matrix, the elements of which at the center

r = (c)

. . . X c

= Iq of sector (c) are the eigenvalues of the interaction matrix Qé ).
For the discussion of the large-r boundary conditions we find it useful

to introduce the following notation. We define the asymptotic interaction

. a
matrix D by

1im D(x) = Qa

r—e

(84)

. 2 :
We denote the diagonal matrix of the eigenvalues of Qa by [ga] , where the
square of the diagonal matrix of the asymptotic channel wave numbers is
given by

k12 = -2 (85)

Once the real potential has vanished and the r dependence of D(r) is dominated
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by the centrifugal potential, the eigenvalues of the interaction matrix in
sector (c¢) are given by

2 p (2 +1)k°
a m-m

(r )] “Am ¥ 7 (86)
2pr

[A(C)

In the large-r region P0 of the P channels are open, and the channels
are ordered in such a way that channel m corresponds to an open channel
for 1 £ m < PO and to a closed channel for P0 <m 2 P, In the large-r
asymptotic region the boundary c¢onditions for closed-channel wave functions
are expressed as linear combinations of exponentially increasing and
decreasing functions

(C) (¢) (c) () 0
= + -

ER' . 6mn1)exp IkmerV a - exp Ikmer P <m< P (87)
~

fé(cﬂmn =68 b [kmlexpﬁkmlrécz‘] (C) | [e:\p[ |k Ir(c)J (88)

where b is an unknown coefficient of the exponentially increasing component
. 0 .
of the P - P~ closed-channel wave functions.
For the large-r boundary conditions on the open-channel wave functions

in sector (c) we use

(c) _ . (c) () (¢) 0
[?R ]mn - 6mnjlm(m TR ) T fmn Vtyvm(ker ) l<mg? (89)

y (c) - ) CC) (c) 0
[?R }mn - [mn L ( ) m(ker )] LEms P (90)

where the Ricatti-Bessel functions are defined in terms of spherical Bessel

A

i

functions by (43) and (44). The elements of the reactance matrix are related

(e) ¢
mn

to the open-channel amplitudes a

Rl
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R = [k [Fal®) [y |73

mn m mn n

The large-r boundary conditions on the adiabatic wave functions can

be written concisely in matrix notation as
C c
NOMNG)

() _ ple) _ gle) (@)

~.R -~
where
: (c)
Iy Gﬁnrﬂ
G
exp (l km ‘ rI(l c)>
(C{)
- k r
L ( m R
AR
e (-1 1)
‘ . (C)
G;flg) = /)(kmj Rm(k’“ "R /j
mn
Ukm[exp(lk lr(c))
' (c)
k VL L T
H(c) _ 5 m R
mn
(]k [exp( [k ]r(cp
(1
A = §
mn mn
L.
and
R = (k7017 290y 007

A
IA

1A
A

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)
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where the superscript 00 is used to denote the P0 X P0 submatrix which links
open channels to open channels.

Substituting (80), (81), (92), and (93) into (75) yields

- B A 7
() (e) (1)
¢ R Ry x* ¢
= (100)

MOFEO RO OGO O NGO

~ ol - 3 ~4 2 = ~ =

- - I ]
Solving for the P x P matrix g(c) gives

a;l(c) - ['E(C) + M(C)B(C)]—l [I}(C) + rg(c)g(c)]é (101)
where

I B R e e (102)

(c)

Therefore, the matrix a from which we calculate R is independent of C,

the matrix of coefficients giving the appropriate linear combirnations of
(1 (c)00 ()

functions at r = rL .  Further a which

» the only portion of a
we nsed to obtaln R. is independent of the last P -~ PO columns of-é and
consequently is independent of b, the coefficient of the exponentially

increasing component of the closed-channel wave functions in sector (c).

In the computer code b is set equal to zero and Béﬁ) and Géi) are set equal

to zero for PO <m 2 P.

When all channels are closed in the small-r region one finds29
1) ~
R %0 (103)
and
ggl) 20 (104)
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if sector (1) is located deep enough into the classically forbidden region.

In such a case R( 1) and ggl) remain small in all subsequent sectors and in -
particular
RS 2 g (105)
and
RS ¥ g (106)
..3 ~
In such a case (102) becomes

‘Consequently the determination of the reactance matrix from (99) and (101)

(c) (C)
2

, and B(c)_ Furthermore the propagation

is independent of gil-l), gél—l), and g§1_1). Thus when

becomes independent of R
equation2 for R( 1
all channels are closed at small r we propagate only géi) to save computer
time.

Although the asymptotic analysis just presented allows for the inclusion
of chammels which are closed for large r, the presence of strongly closed
channels in the asymptotic analysis sometimes gives rise to numerical dif-
ficulties. To eliminate these, the program has two options which can be
used to simplify the asymptotic analysis. One option is used to eliminate
closed channels from the propagation at large r. We have shown that if all
elements of the last row and column, corresponding to the most strongly
closed channel of géi) are small, the last channel is uncoupled from the
remaining channgls and may be dropped from propagation without degrading

2
the accuracy of the results. ) Ve have implemented this option in the

following way. 1In the large-r region, if the number P of channels propagated
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in sector (i) is greater than the number of. open channels, the program

checks whether

1(=57),)

‘(%éi))Pi‘

In these equations, channel P is the most strongly closed propagated channel,

A

EPSRED i=1,2,...,P (108)

and

1A

EPSRED 1,2,...,P (109)

o8
1]

and EPSRED is an input variable. If this criterion is satisfied, channel

P is dropped from propagation and only the remaining P -1 channels are
propagated in sector (itl). As we have implemented this option, at most

one channel is dropped from propagation in any sector. We have also im-
plemented a second method to avoid numerical difficulties associated with
including in the asymptotic analysis channels which are strongly closed

for large r. In this method we eliminate those closed channels from the
asymptotic analysis even if they have been included in the propagation.

The option as we have coded it in our programs is appropriate when the
asymptotic analysis is based on only the 54 part of the global R matrix.

The procedure we use for deciding whether a closed channel can be eliminated
from the asymptotic analysis is the following. 1In the large-r region,

if the number of channels propagated is greater than the number P0 of
channels open asymptotically; the program compares the cff-diagonal elements
of gii) for channel P, the most strongly closed propagated chamnel, to

EPSDR, an input variable. If

'(3£i):kp| < EPSDR f=1,2,...,(-1) (110)
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and
I(ﬁ(i)) | < EPSDR i=1,2 (p-1) (111)
4 Ipi' = P

then the number of chamnels P' to be included in the asymptotic analysis

is set to P' = P-1. This procedure is repeated for subsequent closed

channels until an element for gii) for some closed channel fails the test
of (110) and (111) or until all closad channels have been eliminated and
P! = PO.
The stepsize h(l) for sector (1) is defined by
(1) _ (1) (1) 112
h = xp rL ( )
1 @

We set s h , and h(z) by input variables, and we check that they are

sufficiently small that the calculations are converged with respect to then.

If one or more chamnels is open at the origin, then ril)

should be close to
zero, The determination of the stepsizes for subsequent sectors is crucial
to the efficiency of the method. A reasonable stepsize criterion can be
obtainad for 1 > 2 by requiring that the cffect of the lowest-order neg-
lected term in the propagator46 be small. We simplified this argument

to make it computationally more convenient and arrived at the following

algorithm which is used by the code for'i 2 2:

s ’ (1) 21 -1/6
{E(i)l I;l(dD..) /
m . dr
A

pOFD) s (113)

max
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where hmax is an input variable, m is the largest value of P to be used

in a given run, and the derivative is estimated by a backward difference.
The error—control parameter is determined as follows. The range of r is
divided into three subranges in each of which e<i) is constant, i.e.,
independent of (i). The values of s(i) for a.given run are set by input
variables, EPSA, EPSB, and EPSC. The calculations must be tested for con-~
vergence with respect to decreasing all three values. For most applications
it has been sufficient to set all values of e(i) equal to each other.

One of the advantages of the piecewise analytic method and the R matrix
propagation method is that if calculations are required at several energies
with the same potential, calculations at the second and subsequent energy
can be performed more rapidly by saving certain information generated in
the first calculation. We have not made much use of this feature for
electron-molecule scattering because we use energy-dependent potentials
to include exchange effects (see, e.g., references 10, 11, and 25 and
references therein). However, even for this type of problem, this feature
might be useful at higher energies or for large orbital angular momenta
where exchange effects can sometimes be neglected. For atom-molecule scat-
tering this feature is very useful, and the dramatic reduction in execution
time of R matrix propagétion calculations for subsequent energies as compared
with the calculation at the first energy is discussed in section V.

Because we are interested in making close coupling calculations more
efficient, we also want to demonstrate the success we have had in reducing
the size of the close coupling calculations by using adiabatié basis functions

in the context of R matrix propagation calculations. We have found for
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electron-molecule and atom-molecule scattering calculations that we could
generally obtain similar or better accuracy with an adiabatic basis of tﬁe
same oY even significantly smaller propagation dimemsion P than with a con-
ventional N=P basis. As discussed above we construct a P-function adiabatic
basis for sector (i) by diagqnalizing the N x N interaction matrix at the
center of sector (i) and taking its P lowest-energy eigenfunctions.

D. Piecewise analytic method. The piecewise analytic method of Gordon
12,13

is described elsewhere. We have used two different programs for cal-
culations with this method. One was obtained originally from Quantum
Chemistry Program Exchang235 (QCPE) and was modified in various ways by

two of us (M.A.B. and D.G.T.). The second program was written by Wagner.lb

E. Integral equations algorithm. For our calculations using the

integral equations algorithm we used the computer code of Morrison, Lane, and
Collins, which is described in detail by them.zo-22 The integral equations
method was first presented by Sams and Kouri.17 The applications presented
here have used a trapezoidal rule quadrature scheme. An important feature
of the integral-equations formalism for electron scattering problems is

the recent development of an efficient means of including non~local Hartree-
Fock exchange operators without increasing the size of the solution matrix
over the local-potential case.47 This feature will not be explored here
since the examples presented for electron-molecule scattering involve loecal,
energy~dependent potentials. Another important feature is the truncation
procédure by which the number of coupled channels is decreased at a "trunca-

tion radius"; this can yield substantial savings of computer time, 21222548
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F. Timing comparisons. It is very difficult to make precise timing

comparisons for several reasons. The most obvious reason is that one metﬁod
may be programmed more efficiently than another, or a given compiler may
produce more efficient code for one method than another. Another diffi-
culty is that one seldom completely optimizes all the numerical parameters
for a given application. It is usually more efficient for production runs
to set some or all numerical parameters at safe values which produce more
accurate results than are really required for parts of the calculation or
even for the final cross sections. A related problem is the efficiency of
utility codes, e.g., our R matrix propagation code uses the EISPACK sub-
program RSP for matrix diagonalization and University of Minnesota codes
for solution of sets of linear equations. Another problem, less signi-
ficant than those mentioned above, is that the computer time even for an
identical run may vary 1l0%Z or more depending on the time of day and overall
computer load. A question which has no unique answer but depends on the
application is how to define accuracy or precision. For the present report
we have made special runs designed to approximately determine the minimum
computing time required to achieve a given precision for some test cases.
By precision we refer to all accuracy criteria except convergence with
respect to N and P, i.e., we mean accuracy of the numerical solution for
given basis-set sizes. [Recall that N is the order of the close coupling
equation (2) and P is the number of channels propagated; for all ﬁhe methods
considered here except R matrix propagation, P = N.] Bearing in mind the
above caveats, one should not attempt to draw conclusions based on the fine

details of the computer times presented in this report. Some overall trends
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and general magnitudes are however meaningful and interesting. All com-
puter times given in this report are execution times, excluding compilatiocn.
All source codes, except for the University of Minnesota linear equation
solver used in both our Numerov and R matrix propagation codes, were written
in FORTRAN. For purposes of rough comparison to calculations performed

on other computers, Table 1 gives approximate conversion factors.
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I1II. Electron-molecule scatterin%
LY Y VANV VW WV WV W W VW W U W W VW W VW eV Pa Va V¥

We have applied all four methods introduced in section IT to electron

scattering by N We consider two classes of problems: (A) vibrational-

9
rotational close coupling and (B) rotational close coupling with the rigid

rotator approximation.

A. Vibrational-rotational close coupling, The first method we attempted

to apply to electron-molecule scattering was the piecewise analytic method.
We used our modified version of the QCPE program. Although we had limited
success with this method, we found that it was inadequate to complete some
of the applications we attempted. These applications9 involved vibrational-
rotational close coupling calculations for electron scattering by N2 at
energies of 5-45 eV, Two difficulties we encountered were: (i) we were
unable to calculate accurate small transition probabilities, especially

those associated with vibrational transitions, with reasonable stepsizes;

(ii) for some problems the results were not converged even with impractically
6 a
0

sociate with the fact that the piecewise analytic solution used is correct

small stepsizes, e.g., 5 X% 107 The first difficulty we tentatively as-
for a diagonal linear reference potential, but although the transformation
method used diagonalizes the potential at the center of each sector, it does
not diagonalize the derivative of the potential. Thus the tfansformed poten-
tial through linear terms is not diagonal in a sector. This or some other as-
pect of the method causes it to be poorly suited for the accurate calculation
of small S matrix elements. In considering difficulty (ii), we note that the
success and efficiency of a SOphisticated variable~stepsize integrator is
highly dependent on the reliability of the stepsize algorithm. In the

present case, however, during the course of the solution, the predicted

ARy

R
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stepsize sometimes became exceedingly small, e.g., 10_12 a It was sug-—

0
gested to us that we just substitute a very small minimum stepsize, e.g.,
10"3 a5 and continue to propagate until the stepsize algorithm again
predicted stepsizes larger than the minimum. Since the piecewise analytic
method requires more expense per step than less sophisticated methods like
the Numerov method, its efficiency requires that the stepsizes be fairly

large. Nevertheless we tried the minimum stepsize procedure and were dis-—

appointed to find some applications where the results were not converged with

6

respect to minimum stepsize even at 5 X 10~ The difficulty of cal-

age
culating small vibrational transition amplitudes by the piecewise analytic
method has also been noted elsewhere.49

The second method we applied to electron-molecule vibrational-rotational

close coupling was the Numerov method.s’9

We found this method to be accurate
and reliable for all cases attempted, even those for which the piecewise

analytic method was unacceptable.

B. Rotational close coupling with the rigid rotator approximation.

We now consider the electron‘—N2 rotational close coupling problem studied

in reference 26. In that study the diatom is treated as a rigid rotator

with the equilibrium internuclear distance (2.068 ao), and the rotational
close coupling problem is formulated in the laboratory frame using the

total angular momentum representation of Arthurs and Dalgarno.50 Only

the ground electronic state is included explicitly, and effects of electronic-
charge-cloud polarization and of electron exchange are included by means

. . 10 . . . .
of an effective potential. The anisotropic electron-molecule interaction

potential is expanded as
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Vir,y) = I VA(r)PA(cosx) (114)
A

where x is the colatitude of the scattering electron with respect to the
internuclear axis. The individual terms Vl(r) are represented by spline
functions that have a cusp at one half the internuclear distance, i.e.,
at r = 1.034 ay Both our Numerov and our R matrix propagation codes have
special provisions for choice of stepsize in the vicinity of the cusp. For

- the Numerov calculations reported here we did not use this provision; we
just ignored the cusp. For the R matrix propagation calculations we shortened
the sector before the cusp to put a sector boundary at the cusp.

The calculations of reference 26 used the R matrix propagation scheme,
and we attempted to obtain three-significant-figure precision in the elastic
and inelastic transition probabilities. In a separate studylo we had found
that jmax = 6 was required for convergence of the J = 5, even—j partial
cross sections at 30 eV impact energy where j and J are rotational and
total angular momentum quantum numbers in the Arthurs-Dalgarno scheme.

A nonventional basis for this jmax and J consists of 15 channels. The

next smaller conventional basis (jmax = 4) and the SZ.—dominant5l basis both
contain 9 functions. In reference 26 we compared calculations with various
conventional, 2-dominant, and adiabatic bases. In Table 2 we give for com~
parison some representative results. These examples show the general result
that the 2-dominant basis provides significantly more accurate results for
elastic and inelastic scattering from the ground rotational state than the
conventional basis of the same dimension, but that a 9-~function adiabatic
basis (consisting of the 9 lowest energy eigenfunctions obtained by taking

linear combinations of the 15 total angular momentum eigenfunctions of the
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primitive basis in each sector) is considerably more accurate than either
of these. In fact, for transitions between excited rotational states even
a 6-function adiabatic basis provides better agreement with the converged
results than either of the two 9-function diabatic¢ bases.

For the N =15, P = 15 and N = 15, P = 9 cases we have used trace
statements to make a detailed study of how much computer time is spent in
each subprogram. We then related the computer time spent in each sub-~
program to the computer time spent on various parts of the calculation.

The results of this timing study are shown in Table 3. For the computer

runs upon which Table 3 is based, we used a single-energy, single-basis-

set version of our code which used no disk reads or writes during the cal-

culation. Dimensions for arrays in common blocks were set to éccomodate

a maximum of 15 channels and 3000 sectors. The field length required for

this to run was 101500 (base 8) words. We propagated only 34 and we used

the tranpose rather than the inverse of I. We set all e(i) = 0.07. Results

of the same accuracy can be obtained more efficiently by dividing the

propagation range into three or four intervals and optimizing e(i) separately

in each. This extra optimization was employed for some production runs

but not for the timing comparison reported here. We placed the center of

the first sector at 0.03 a, and used 5 x 10—6 a

The stepsize algorithm yields h(3) 4.4 x 10

250 steps to reach 1 a0 where h(i) = 0.014 ags 0
1 = 0.031 2y and 45 more steps to reach 4 34 where h(i) = 0.058 a

0 for the first two stepsizes.

4

ag- The 15/15 run required

50 more steps to reach 2 a

where h 0
The final asymptotic analysis was performed at 101.6 2, by which point the

stepsize had increased monotonically to 1.4 a The first 486 of the sectors

0

are located at r < 30 3y Multiplying the first three entries in Table 3
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by 486/572 gives an estimate of 65 sec for the execution time of a calcu~

lation which would quit at 30 a A similar correction to 30 g yields

0

47 sec for the 15/9 calculation. One should keep in mind that the time

required for the calculation of D is highly dependent on the complexity

of the interaction potential and the efficiency of the potential subprogram.
The most striking result in Table 3 is that most of the computer time

is involved in diagonalizing D. The propagation of the 34 matrix accounts

for only 32% of the time in the 15/15 run and only 13% of the time in the

15/9 run. Thus, increasing the efficiency of this step by even a factor

of two would result in savings of only 16% and 6% in the two TUuns,

respectively.

(1)

For the 15/15 case, decreasing e to 0.05 and moving the asymptotic

analysis to 120.8 a_. to check the accuracy required 867 sectors and 109.5

0
sec computer time. Most partial cross sections calculated in this run

agreed to tl in the third significant figure with those for the run described
above.

For comparison with these calculations we ran the Numerov code with the
same potential and a similar potential subprogram for the same impac; energy
and J = 5. We also used the same compi¥er (MNT) and the same computelr
(the CDC Cyber 74). Trial calculations showed that one can obtain about
three significant figures of precision by performing the asymptotic analysis
at 30 a, with Ricatti-Bessel functions. Similar accuracy can be obtained
at 10 a, using BMS functions, but with our computer program the overall
cost for the present case is greater with BMS functions because of the cost

of computing the BMS functions. The BAS functions are less expensive for

cases with a smaller number of channels. We made several runs designed




L
1

LAY

-261-

to discover the most efficient procedure for solving the 15~channel test

problem performing the asymptotic analysis at 30 a, using Ricatti-Bessel

0

functions. All these runs began the propagation at 10_6 a, withh =0.0005a0.

0 0

We used h0 for the first ten steps. First we used the regular Numerov

method with hmax = 0.064 2 and various § to determine the § required for
three significant figures of accuracy. This yielded & = 10-4 ag»
and a computer time of 33 sec. With the same numerical parameters the

iterative Numerov method with EPS = 10_4 required 48 sec. With the same

1

values of ho, o and §, we ran the option which tests the iterative
against the regular Numerov method every 25 steps. With EPS = 10_4, the
iterative Numerov method was found to be slower at all distances for this
test case; this rum also required 33 sec. In the runs just discussed the
maximum stepsize of 0.064 a, vas reached at r = 0.70 ay We removed the
maximum stepsize criterion and again searched for the § which yields about
three significant figures of accuracy. For most partial cross sections
this could be achieved with § = 10‘6 or 10_5. Using KCK = 25 and EPS =
10_4, these two calculations required 357 and 268 steps and 28 and 19 sec,
respectively. ‘These times may be compared with 65 sec for the R matrix
propagation code on the same compiler and same computer.

Then the Numerov calculation with RCK = 25 and § = 10—6 was rerun
with the FIN compiler with optimization levels OPT = 1 and OPT = 2; the
execution times decreased to 24 sec and 15 sec, respectively. Retaining
KCK = 25, § = 10_6, and OPT = 2, we increased EPS to 10_2; the regular
Numerov method was still faster at every check. For some other electron-

molecule scattering calculations we have found that the iterative Numerov

method is relatively more efficient at large r and large J.

547 steps,
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The dimensions in the Numerov program were set for 15 channels and the
field length required to execute was 114500 (octal) words. For 15-channel
calculations on the He-HF system comsidered below the field length required
is only 105700 (octal) words. The difference is accounted for by the large
number of spline coefficients in the electron—N2 interaction potential.

It is difficult to compare the computation times for the calculations
of reference 23 using the integral equations algorithm to those reported
here as obtained with the other programs. The integral equations algorithm
has been used for calculations in the body-frame formalism,21_23 whereas
the other calculations discussed in this section use the Arthurs-Dalgarno
formalism.50 The input for the integral equations program consists of the
VA(r) values on the integration mesh, whereas the input for the Numerov
and R matrix propagation programs consists of spline fits to the Vk(r).
This means that the stepsizes for the integral equations calculations
are input variables. For a typical run in reference 23, the stepsize

for the first twenty steps was 0.001 a,, followed by 298 steps with h =

0’

0.01 ays 152 steps with h = 0.1 a5 and 100 steps with h = 0.2 a,, for a

0’
total of 570 ending at 38.2 aye Table 4 shows typical computation times
for various numbers of channels. These calculations are for Zg symmetry
at E = 13.6 eV with Amax = 28. No truncation of the number of coupled
channels was employed, i.e., the truncation radius is infinite. Thus all
N channels were propagated at all distances as in the Numerov calculations
and the R matrix propagation calculations with P = N.

The potential used for the R matrix propagation and Numerov test cases

is called potential i in reference 10. The results presented above were
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presented at the NRCC WOtkshop in June, 1979. UWe have also submitted a
set of VA(r) for this potential to L. Thomas who prepared a potential sub-

program based on this potential for the Workshop participants as a test

case for further study.

BT e e T
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IV. Electron-atom scattering
ANV VAL A LANAN AN

Electron-hydrogen atom scattering provides an interesting test case
for close coupling codes.éla It is a prototype for electronically inelastic
electron-atom scattering in general, but it has the advantage that the
interaction potential matrix is known analytically. The interaction poten-

tial for electron-atom scattering is qualitatively different from the inter-

action potential for the other test problems considered in this report in
that it tends to -= at the origin. The same limit occurs for electron scat-
tering from molecules like CO3, which has a nucleus at the origin.52 For
comparison of computation times for electron-atom scattering we consider
a 2-channel problem: 1s-2s close coupling without exchange and with total
angular momentum zero.

To use the piecewise analytic method for electron-hydrogen atom scat-—
tering, we had to modify the QCPE program to allow for starting channels
which are open at the origin. For various 3- and 4-channel examples,

reasonably precise results could be obtained by starting at about 10—5

%0
and using a stepsize error criterion of 10"5 or 10“6. Using the FT3 compiler
and a CDC 6600 computer, precise results for the ls-2s s~wave test case
required about 1.6 sec. This corresponds to about 1.5 sec on the CDC
Cyber 74. 1In general it was difficult, as compared to using our Numerov
program, to test and obtain convergence with respect to the starting point
and the stepsize error criterion.

The R matrix propagation method, propagating 81’ 52, 33, and 34,

was applied to the test case and the numerical parameters were adjusted

so that the partial cross sections were precise to #1 in the third signi-

ficant figure. This yielded e(l) = 0.05. The calculation was well

B .
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converged at sector 166 at 17.5 a The stepsize became very large at

0
large r, and two more steps brought the calculation to the final sector
centered at 25.1 ay The computation time, using the MNF compiler and
the Cyber 74 computer, was 0.6 sec.

To compare the efficiency of the computer codes we applied the variable-
stepsize regular Numerov method with Ricatti-Bessel function boundary
conditions to the same problem, again using the MNF compiler and the
Cyber 74 computer. Asymptotic analysis was performed at 25 a, where it

was converged with respect to further propagation to 5 significant figures.

4

We used h = 5 x 10 for the first ten steps. Subsequent stepsizes

%0
were determined by increasing § in successive runs until we obtained only
three significant figures of precision in the partial cross sections.

This required § = 10_6 and a computation time of 0.42 sec. In this run
the stepsize doubled every step from the eleventh until it reached 0.128 ao.
It then increased to its final value, 0.256 a, at 0.52 ag- The calculation
required 116 steps. We repeated the cal~ulation using the option to check
every 1llth step whether the regular or iterative Numerov method is faster.
With EPS = 10—4, the iterative Numerov method became faster at r = 18.2 ag-
This whole calculation required 0.44 sec. The iterative Numerov method is
relatively more efficient for cases with centrifugal barriers.

To check the sensitivity to compiler we reran the most efficient of
the above calculations with a code compiled on the FTN compiler with opti-
mization levels OPT = 1 and 2. The computer time increased from 0.42 sec
to 0.44 and 0.43 sec, respectively.

A class of methods which has been widely applied to electron—-atom

scattering, and to a lesser extent to electron-molecule scattering, is




Loy

(L.

ST ]

-266-

the algebraic variational method and related -techniques involving expansion

of the translational wave function in a basis set.sg—'59

In these methods
the potential is generally represented in a basis set rather than as a
function of the radial coordinate. These methods can often be used to
solve the same problems as are attacked by close coupling codes like the
ones discussed here which rely on numerical integration of coupled dif-
ferential equations. However, they become relatively more efficient and
more useful when nonlocal exchange potentials are included.

Using our original algebraic wvariational program60 with the FUN com-
piler on the CDC 6600 computer, a typical run on the 2-channel test problem
of this section required 26 sec (equivalent to about_24 sec on the CDC
Cyber 74). This run involved 15 and 10 uncontracted basis functions for
the expansion of the translational wave functions in the 1ls and 2s channels
respectively. This time can be speeded up by using more efficient proce-

dures for evaluation of the integrals over basis functions. Unfortunately

a computer time is not available using our more efficient integrals
61,62

packages on this test problem. The computer time can alsc be decreased

by using contracted basis functions.63 !
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V. Vibrationally inelastic atom~diatom-scattering
MU VAVATAVAVLVAVAT AN NN

For atom-molecule scattering the interaction potential is independent.
of energy. When the R matrix propagation method is used to study systems
with energy-independent interaction potentials, great savings of cbmputer
time can be made since calculations with the same number N of primitive
basis functions can be carried out for several energies with the time-
consuming diagonalization of the interaction matrix D carried out only
once.24 The calculation at the first energy is called a reference-mode
calculation. 1In a reference mode calculation, D is calculated and dia-
gonalized in every sector, the eigenvalues are stored on the disk, and the
transformation matrix I is calculated and stored on the disk. If IPl is
to be used, it too is computed and stored on the disk. Calculations at
additional energies may be carried out in a propagation-mode. Additionally,
to test convergence with respect to P the propagation-mode can also be used
to run calculations at the same energy but with successively smaller values
of P.

We here report a detailed study of the timing requirements of the many-
energy, many-basis version of our R matrix propagation program for a test
problem. The test problem is collinear scattering of He by H, with a

2

harmonic oscillater potential for H2 and an exponential repulsive inter-

action potential. The Hamiltonian is the same as used in two published

studie564’65

and corresponds tom = 2/3 and a = 0.314 in the unitless
notation of reference 65. We considered total energies of &hw and 7.75 ho
and used harmonic oscillator eigenfunctions for the primitive basis. We

used the many-energy, many-basis version of our computer program to run

a series of nineteen calculations with various values of N and P in the
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range 7-15. By printing out the computation times in various subprograms
we were able to approximately distribute the computation times into four
categories: setup, calculation and diagonalization of D, propagation, and
asymptotic analysis. We then fit each category of computation time (in
sec) to an empirical function of N or P. The total computation time (in
sec) is called t, and the functions for the four categories are called s,

d, p, and a respectively. Tor a reference-mode calculation we obtained

£ 2 sy + d(N) + pl(P) + a (115)
where

s. = 0.5 (116)

1

4 ¥ 1.13 x 10°N° + 0.031K° (117)

pl(P) = 0.029P2 (118)
and

a<o0.5 (119)

For a propagation-mnode calculation we obtained

n,
X 120
t=s,+ pz(P) + a (120)
where
s, = 0.3 (121)
2
O ) 122
p,(P) = 0.021P° (1 + 0.008P) _ (122)

and a is as before. The functional forms in (117), (118), and (122) have
not been fit exactly; they are chosen strictly to provide a simple empirical

fit over the range of N and P examined. In principle other powers of N and

Sk
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P should appear. Using these functions we can generate the sample compu-
tation times in Table 5.

For the runs used to generate equations (115)-(122), we propagated
only 34 and we used the inverse of I. We also made runs in which we used
the transpose of I; for our program there was little difference in the
execution time as compared to using the inverse. We determined that
s(i) = (0.15 and rél) = 1.195 ay were just sufficient to get 2% accuracy
for all transition probabilities and 3-significant-figure accuracy for

those greater than 10_5. We found that placing the center of the last

sector at l’lgc)

2 6 a,, was sufficient to ensure that our results were con-
0

verged with respect to increasing the range of the propagation. To
achieve this convergence for all the runs and to use a fixed number of
sectors to simplify the interpretation of the computation times, we used

150 sectors for all the runs and propagated to 7-24 a depending on N and

G’
P; however, the stepsize becomes large at large r (for the last few steps
h(l) = h =32), and r = 6 a. is not reached earlier than the 142nd
max 0 0

sector. Typical values for the centers of the sectors and the stepsizes
are réi) = 1.40, 1.67, and 2.54 ab and h(i) = 0.0096, 010122, and 0.0261 a
for i = 25, 50, and 100, respectively.

Table 5 shows that, calculations at second and subsequent energies are
faster by factors of about 3-5 than calculations at thé initial energy.
These savings are also achieved when a series of P values is rumn to test
convergence.

In Tables 6 and 7 we give representative transition probabilities

P , = lva'lZ calculated for the simple model of vibrationally inelastic
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collinear atom-molecule scattering described above.29 For energies cor-
responding to tho and 8hw we see that an adiabatic basis of propagation
dimension P can give significantly more accurate results than a conven-
tional basis of the same dimension. TFor example, at E = ghw converged
results for all but tramsitions involving the highest open channel, v' = 7,
can be obtained with a 9-function conventional basis which includes har-
monic oscillator eigenfunctions corresponding to v = 0-8. 1In contrast

the transition probabilities obtained by calculations using the 8~function
conventional basis which includes only the open channels can have large
errors. E.g., as shown in Table 7, the N = 8, P = 8 calculations of P

25°
P46’ and P06 have errors of 127, 477, and more than a factor of two, re-
spectively. The N = 9, P = 8 adiabatic basis, however, gives all but 3
transition probabilities (P34, P57, and P67) to within 1%7. Thus we see
for this example, that when the results differ, adiabatic bases yield con-
siderably more accurate results than conventional bases of the same or
frequently even larger propagation dimension P, This is an important
result. To obtain the adiabatic basis extra effort must be expended to
diagonalize the N % N intevaction matrix Qéi) in each sector. However,

when the interaction potential is independent of energy, as it is for the

present problem, the adiabatic basis functions in each sector are also

independent of energy. Consequently, as we have seen above, significant E
computational savings can result from obtaining the adiabatic basis in a
reference-mode calculation and using it for several energies in propagation-
mode calculations.

Table 5 shows that most of the computer time in a reference-mode cal-

culation is spent calculating and diagonalizing D. Since the interaction
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potential is very simple for this test dase, the diagonalization step is
the slow one. One idea for a method to reduce the time required to evaluate
the eigenvalues and eigenvectors of D is to calculate and diagonalize D
on a coarse grid, fit the eigenvalues and eigenvectors to spline functions,
and use the spline functioné for a prupagation-mode calculation on a finer
grid. One would have to converge the calculation with respect to the spline
grid as well as the propagation grid. We tried this for the case N = 8,
P = 8 with the unconverged coarse grid being about ten times coarser than
the propagation grid. We used the storage-efficient but computer—time
inefficient version of ourvspline subptograms. The computer time was
7.4 sec (compare 5.5 sec in Table 5). Since the spline version of the
program was not at all optimized, this test indicates that this kind of
idea deserves further consideration. Another possible way to speed up
the diagonalization step is to use an iterative method for the diagonal-
ization. The diagonalization at the previous step would be used to start
the iteration.

The piecewise analytic method has also been used for this test problem.
We used the program written by Wagnerl4 for this purpose. Compiling. this
on the MNF compiler and running it on the CDC 6600 computer required 9.1 sec
computer time (corresponding to about 8.4 sec on the Cyber 74) to obtain
slightly less than three-significant-figure accuracy for a basis with 8
channels; at the energy considered 5 channels were open, and no tramsition
probabilities were less than 10—4. The piecewise analytic method, like the
R matrix propagation method, has the advantage that additional calculations

at subsequent energies can be performed with reduced cost.
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vI. Rotationallxmlnelastic Atom-Diatom Scatterin
ALANANAANAAAA A A A ATV

We have applied three different methods to rotationally inelastic‘
. . 50
scattering of an atom by a rigid rotator using the Arthurs-Dalgarmo scheme

Consider first He-HF scattering with the interaction potential of Collins

20,28, 66

and Lane. For a test case we study scattering at total angular

momentum J = 12 and impact energy 0.05 eV using a conventional 10-~function
basis with jmax = 3. Using the R matrix propagation scheme (propagating

only BA) we found that propagating from 3.5_a0 to 20 ay was sufficient

to give 17 precision for the real and imaginary parts of all S matrix

-2 s . -
elements greater than 10 ° and three-significant-figure precision for

(i)

partial cross sections from the ground state. We used the same € for

every sector and increased it till we just retained this aecuracy. This

(1)

required ¢ = 0.3, and took 4.8 sec execution time for a program com-

piled on the MNF compiler and run on the Cyber 74 computer. Using the
same compiler and computer, we repeated the calculation with the regular

Numerov method, starting at 3.5 a, and applying Ricatti-Bessel function

0

boundary conditions at 24 a Using fixed stepsizes, we found that we

0
could satisfy the criteria given above with h = 0.064 ag This calculation
required 15 sec computer time. We repeated this calculation using the FIN
compiler with optimization level OPT = 2, and the execution time decreased
to 10 sec. We then tried the variable-stepsize algcrithm and obtained com-
parable accuracy for & = 7 x 10_8; in this run the stepsize increased to
0.064 a, at r = 4.50 a, and remained at this value; the execution time

was still 10 sec with the FIN compiler and optimization level OPT = 2.
Based on Allison's experience5 one would assume that the execution could

be improved by using the iterative Numerov method with a carefully chosen

value of EPS.
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One advantage of the R matrix propagation method for this problem is j

that, since the interaction potential is independent of energy, one can

perform calculations at additional energies at a re&uced cost. Farther,
by judicious use of contraction, i.e., P < N, one can often obtain good B
accuracy without propagating the full number of functions required in the i
primitive basis set.28 To illustrate this we give in Table 8 some repre-
sentative rotational excitation cross sections for E = 0.05 eV for J = 4 f

28-29 B

and 12. As shown here, we found that in all cases adiabatic bases of

propagation dimension P gave more accurate results than conventional cal-

culations of the same dimension except where accidental cancellation of

e
d
it
i

errors occurred. In Table 8 we see that a 10-function conventional basis

including channels with j = jmax= 3 gives converged results for both total

angular momenta. In contrast the next smaller conventional basis, the

L. - . . o . 4 4
6—-function j x - 2 basis, gives errors of 157 and 66% in oC 1 and 0552°

, o o s 12 12 - -
respectively, and 127 and 48% in 901 and Cos2” However, the N = 10, P = 6

adiabatic basis yields all four cross sections with an accuracy of 9%. In d
Table 9 we show that the significant increase in accuracy obtained when an
adiabatic basis is used instead of a conventional basis is not predicated
on a fortuitous cancellation of errors. For this example, the jmax =2 J
basis gives errors of almost a factor of 2 for each partial cross sectionm,
while the 6-function adiabatic basis yields all three partial cross sections
within 6%.

'1he piecewise analytic method has been widely used for atom-rigid-
rotator collisions, although even for this problem the difficulty of
obtaining very precise answers has been noted.5 We applied the piecewise

analytic method to the 16-channel problem of Johnson 53_31,67 Using the
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numerical parameters of the QCPE test data, the FUN compiler, and the CDC
6600 computer, we obtained less than three significant figures of precision
in 12 sec for a first-energy calculation. This corresponds to about 11 sec
on the CDC Cyber 74 computer. This problem required propagating from 0.73 2,
to 6.5 ag- For comparison, the R matrix propagation method for the le-HF
problem discussed above, with e(i) = 0.3 and propagating from 3.5 to 20.0 ay
required 10.3 and 8.4 sec computer time on the CDC Cyber 74 computer for

N =15, P =15 and N = 15, P = 10 problems, respectively, for first-energy

calculations.
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VII. Summagx
ANV

We have presented some details of our implementation of the Numerov
and R matrix propagation methods for inelastic close coupling calculations.
We have found that these methods are convenient and reliable for electron—
atom, electron-molecule, and atom-molecule collisions involving rotationally,
vibrationally, and electronically inelastic scattering where the close
coupling equations take the form of coupled differential equations. We
have shown that the computer time requirements of these two methods as
well as the piecewise analytic method and the integral equations method
are similar for a variety of inelastic close coupling calculations. The
ultimate choice among these methods should therefore often be based on
other considerations, such as ease of programming in the Numerov method
or of using adiabatic basis sets in the R matrix propagation method. Both
these methods have favorable properties for checking convergence with respect

to numerical parameters in calculations performed on a production basis.




-276-

VITI. Acknowledgements

We are gratefﬁl to Drs. John R. Rumble and Bruce C. Garrett for
help with this project. This work was supported in part by grant no.

CHE77-27415 from the National Science Foundation.

Wi




10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

-277-

B. Numerov, Publ. Observatoire Central Astrophys. Russ. 2, 188 (1933).

R. W. Hamming, Numérical Methods for Scientists and Engineers (McGraw-
Hill, New York, 1962), p. 215.

L. L. Barnes, N. F. Lane, and C. C. Lin, Phys. Rev. 137, A388 (1965).
J. M. Blatt, J. Comput. Phys. 1, 382 (1967).

A. C. Allison, Ph.D. thesis, University of Glasgow, Glasgow, Scotland,
1967; A. C. Allison, J. Comput. Phys. 6, 378 (1970).

N. F. Lane and S. Geltman, Phys. Rev. 160, 53 (1967).

R. J. W. Henry and E. S. Chang, Phys. Rev. A 5, 276 (1972).

M. A. Brandt, M.S. thesis, University of Minnesota, Minneapolis, 1975.
M. A, Brandt, D. G. Truhlar, and F. A. Van-Catledge, J. Chem. Phys.
64, 4957 (1976); D. G. Truhlar, M. A. Brandt, A. Chutjian, S. K.
Srivastava, and S. Trajmar, J. Chem. Phys. 65, 5335 (1976); D. G.
Truhlar, M. A. Brandt, A. Chutjian, S. K. Srivastava, and S. Trajmar,
J. Chem. Phys. 65, 2962 (1976).

K. Onda and D. G. Truhlar, J. Chem. Phys. 69, 1361 (1978), 70, 1681
(1979).

K. Onda and D. G. Truhlar, to be published.
R. G. Gordon, J. Chem. Phys. 51, 14 (1969).
R. G. Gordon, Methods Comput. Phys. 10, 81 71971).

A. F. Wagner and V. McKoy, J. Chem. Phys. 58, 2604 (1973), 58, 5561

(1973).

M. H. Alexander, J. Comput. Phys. 20, 248 (1976).
R, J. Gordon, J. Chem. Phys. 67, 5923 (1977).

W. N. Sams and D. J. Kouri, J. Chem. Phys. 51, 4809 (1969), 51, 4815
(1969).

R. A. White and E. F. Hayes, J. Chem. Phys. 57, 2895 (1972), Chem. Phys.

Lett. 14, 98 (1972).

J. T. Adams, R. L. Smith, and E. F. Hayes, J. Chem. Phys. 61, 2193
(1974).

L. A. Collins, Ph.D. Thesis, Rice University, Houston, Texas, 1975.

P VN

T

Aionipwin




21.

22.

23.
24.
25.
26.

27.

28.

29,

30.

31.

3z2.

33.

34.

35.

36.

37.

38.

39.

-278-

M. A. Morrison, Ph. D. thesis, Rice University, Houston, Texas, 1976.
M. A. Morrison, L. A. Collins, and N. F. Lane, Chem. Phys. Lett. 42,
356 (1976), M. A. Morrison, N. F. Lane, and L. A. Collins, Phys. Rev.
A 15, 2186 (1977). ’
J. R. Rumble and D. G. Truhlar, J. Chem. Phys. 70, 4101 (1979).

J. C. Light and R. B. Walker, J. Chem. Phys. 65, 4272 (1976).

D. G. Truhlar and N. A. Mullaney, J. Chem. Phys. 68, 1574 (1978).

N. A. Mullaney and D. G. Truhlar, Chem. Phys. Lett. 58, 512 (1978).

E. B. Stechel, R. B. Walker, and J. C. Light, J. Chem. Phys. 69, 3518
(1978).

N. A. Mullaney and D. G. Truhlar, Chem. Phys. 39, 91 (1979).

N. Mullaney Harvey,.Ph.D. thesis, University of Minmesota, Minneapolis,
1979.

J. W. Cooley, Math. Comp. 15, 363 (1961).

I. H. Sloan, J. Comp. Phys. 2, 414 (1968).

B. R. Johnson, J. Chem. Phys. 69, 4678 (1978).

W. A. Lester, Jr., J. Comput. Phys. 3, 322 (1968); W. A. Lester, Jr.,
University of Wisconsin Theoretical Chemistry Institute Technical

Report WIS-TCI-285, Madison, 1968.

R. deVogelaere, J. Research Natl. Bur. Std. 54, 119 (1955);
R. deVogelaere, Z. Angew. Math. Phys. 8, 151 (1957).

R. G. Cordon, program entitled "Coupled Chamnel Scattering Matrices",
program no. 187 described in Quantum Chemistry Program Exchange Catalog
and Procedures, Vol. 10 (Indiana University Chemistry Department,

Bloomington, Indiana, 1974), p. 67.

W. A. Lester, Jr. and R. B. Bernstein, Chem. Phys. Lett. 1, 207 (1967),
erratum: 1, 347 (1967).

N. F. Mott and H. W. S. Massey, The Theory of Atomic Collisions, third
edition (Oxford University Press, London, 1965), pp. 388ff.

R. S. Varga, Matrix Iterative Analysis (Prentice-Hall, New Jersey, 1962),
p. 56; (a).p..78; (b) p. 23.

M. E. Riley and A. Kuppermann, Chem. Phys. Lett. 1, 537 (1968); M. E.
Riley, Ph.D. thesis, California Institute of Technology, Pasadena, 1968.



40.

41.

42.

43.

44,

45.

46.

47,

48.

49.

50.

5t.
52.
53.

54.

55.
56.
57.

58.

59.

-279-

Handbook of Mathematical Functions, ‘M. Abramowitz and I. A. Stegun,
eds. (U.S. Dept. of Commerce, Natl. Bur. Standards Appl. Math Series
55, Washington, D.C., 1964), p. 437.

K. Smith, The Calculation of Atomic Collision Processes (Wiley-
Interscience, New York, 1971), p. 15, (a) p. 96.

P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962).

P. G. Burke, D. D. McVicar, and K. Smith, Proc. Phys. Soc. (London)
83, 397 (1964).

D. W. Norcross, Comput. Phys. Commun. 1, 88 (1969). This program has
been revised in A. T. Chivers, Comput. Phys. Commun. 5, 416 (1973).

D. G. Truhlar, C. A. Mead, and M. A. Brandt, Advan. Chem. Phys. 33,
295 (1975).

J. C. Light, Methods. Comp. Phys. 10, 111 (1971).

L. A. Collins, W. D. Robb, and M. A. Morrison, J. Phys. B 11, L777
(1978). :

M. A. Morrison, in Electron- and Photon-Molecule Collisions, edited
by V. McKoy, T. N. Rescigno, and B. I. Schneider (Plenum, New York),
in press.

S. Green, J. Chem. Phys. 70, 4636 (1979).

A. M. Arthurs and A. Dalgarno, Proc. Roy. Soc., Lond., Ser. A 256,
540 (1960).

A. E. dePristo and M. H. Alexander, J. Chem. Phys. 63, 3552, 5327 (1975).
K. Onda and D. G. Truhlar, J. Phys. B 12, 233 (1979).
F. E. Harris and H. H. Michels, Methods. Comp. Phys. 10, 143 (1971).

D. G. Truhlar, J. Abdallah, Jr., and R. L. Smith, Advan. Chem. Phys.
25, 211 (1974).

P. G. Burke and W. D. Robb, Advan. At. Molec. Phys. 11, 143 (1975).
R. K. Nesbet, Advan. Quantum Chem. 9, 215 (1975).

J. Callaway, Phys. Reports 45, 89 (1973).

B. I. Schneider, in Electronic and Atomic Collisions, edited by G.

Watel (North Holland, Amsterdam, 1978), p. 259.

A. Fliflet and V. McKoy, Phys. Rev. A 18, 2107 (1978).




o

60.

61.

62.
63.
64.
65.
66.

67.

R.

R.

-280-

L. Smith and D. G. Truhlar, Phys. Lett. A 39, 35 (1972).

L. Smith and D. G. Truhlar, Comput. Phyé. Commun. 5, 80 (1973),

erratum: 8, 333 (1974).

B.

Abdallah, Jr. and D. G. Truhlar, Comput. Phys. Commun. 9, 327 (1975).
Abdallah, Jr. and D. G. Truhlar, J. Chem. Phys. 61, 30 (1976).

P. Clark and A. S. Dickinson, J. Phys. B 6, 164 (1973).

W. Duff and D. G. Truhlar, Chem. Phys. 9, 243 (1975).

A. Collins and N. F. Lane, Phys. Rev. A 14, 1358 (1976).

R. Johnson, D. Secrest, W. A. Lester, Jr., and R. B. Bernstein,

Chem. Phys. Lett. 1, 396 (1967).

s i T %‘sﬁ?‘:‘%i‘fm
e |




A
« .

-281-

Table 1. Approximate conversion factors for computer time

Computer Factor relative to CDC Cyber 74
CDC 6400 0.35%

CDC 6600 0.92

CDC 7600 ' 6.0

IBM 360/75 0.6

IBM 370/168 1.4

IBM 360/91 2.8

IBM 370/195 6.0

Univac 1108 0.4

4For example, to convert a computation time obtained with
the CDC 6400 computer to an expected computation time on
the CDC Cyber 74, multiply by 0.35.




Table 2.

(j,2) = (0,5) and from the second rotationally excited state®
of basis for e*Nz, J = 5 scattering at 30 eV.
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b

Sums of transition probabilities for transitions from the ground state

as a function

z
S
3
£

description of basis

conventional conventional

L-dominant adiabatic adiabatic
N/P 15/15 9/9 9/9 15/9 15/6
1]
3 % Posira
2.92(-3)° 3.16(-3) 2.70(-3)  2.97(-3)
5.36(=4) 2.39(~4) 4.40(=4)  5.63(-4)
6 1.99(-4) 1.42¢=4)  2.11(=4)
j' y.:l P23j'£'
4 2.66(-1) 1.04(-1) 2.28(-1)  2.48(-1)  2.47(-1)
1.07(-1) £.08(-2)  1.11(-1)  1.10(-1)

%These are dominated by transitions from (j,%) = (2,3) channel

bSee reference 26

®The number in parentheses denotes the power of ten by which the entry should be

multiplied.
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Table 3. Timing study using the R matrix propagation method
for two runs on the electron—N2 scattering problenm

of reference 26.

Function computation time (sec)a
N/P = 15° N/P = 15/9°
Calculation of D 9.1 v 8.8
Diagonalization of D 40.7 39.9
R matrix propagation 24.1 7.5
Asymptotic analysis 0.6 0.8
Miscellaneous 1.5 1.4
Total 76.0 58.5

computing time (as a percentage of 76.0 sec)

Calculation of D 12 12
Diagonalization of D 54 52
R matrix propagation 32 10
Asymptotic analysis 1

Miscellaneous

Total 100 77

L compiler, Cyber 74 computer.

b572 sectors

C561 sectors
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Table 4. Computation times (in sec) for body~frame

close coupling calculations on electron—N2

scattering using the integral equations

program.
N2 cnc 76007 Cyber 74¢
14 12.2 61
9 7.0 35
8 6.3 31.5
7 5.5 27.5

anumber of coupled channels

bNCAR FORTRAN compiler

Cconverted using Table 1
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Table 5. <Computation times (in sec) generated by equations

(113)~(120) for He + Hz.a

N P Reference mode Propagation mode

Calculation and diagonalization of D

14 14 9.2 0.0

11 9.2 0.0

8 9.2 0.0

11 11 5.3 0.0

8 7 5.3 0.0

] 8 2.6 0.0
Propagation

14 14 5.7 4.6

11 3.5 2.8

8 1.9 1.4

11 11 3.5 2.8

8 1.9 1.4

8 8 1.9 1.4

Total

14 14 15.9 5.4

11 13.7 3.6

8 : 12.1 2.2

11 11 9.8 3.6

8 7.2 2.2

8 8 5.5 2.2

MF compiler, Cyber 74 computer
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2
Table 6. Transition probabilities va, = ISVV,I for the model

He—H2 systema at E = hﬁw.b

description of basis v = 5 v =3 adiabatic
max . max

N/P 6/6 414 6/4
v v'

0 1 1.33¢-1)¢  1.30(-1) 1.33(-1)
0 2 2.04(-3) 1.65(-3) 2.04(-3)
0 3 4.97(-7) 4.56(-7) £.9(~7)
1 2 5.51(-1) 4.61(-2) 5.51(-1)
1 3 3.09(-5) 1.11(-5) 3.3(-5)
2 3 2.11(-3) 7.76(=5) 2.2(-3)

%The system is described in references 64 and 65

bThe results are from reference 29

“The number in parentheses denotes the power of ten by which
the entry should be multiplied
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Table 7. Transition probabilities R = ISVV.JZ for the model
He—H2 systema at E = 8Bw.b
description of basis v =8 v =7 adiabatic
max max

N/P 9/9 8/¢ 9/8

v v! ,

0 6 1.77(-6)%  4.03(-6)  1.77(-6)
1 4 7.33(-2) 6.98(-2) 7.33(-2)
1 6 3.31(-5) 5.15(-5) 3.32(-5)
2 5 2.58(-2) 2.26(-2) 2.58(~2)
4 6 1.90(-2) 1.11(-2) 1.90(-2)

3The system is described in references 64 and 65
bThe results are from reference 29

“The number in parentheses denotes the power of ten by which
the entry should be multiplied
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Table 8. Rotational excitation cross sections o
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Orfj

from the ground rotatiomal state for He-HF at E = 0.05 eV.a

' (ag) for transitions

description of basis jmax =4 jmax =3 jmax = 2 adiabatic
N/P 15/15 10/10 6/6 10/6
3 J=4
1 2.06(-1)?  2.03(-1)  2.36(-1)  2.25(-I)
9.75(-2)  9.57(=2)  1.62(=1)  9.55(~2)
3 2.70(-2)  2.86(-2)
i I =12
1 4.83(~1)  4.82(-1)  5.42(-1)  4.94(-1)
1.74¢-1)  1.75(-1)  2.58(-1)  1.59(-1)
3 3.38(-2)  3.56(-2)

. 85ce references 28 and 29

bThe number in parentheses denotes the power of ten by which the entry

should be multiplied
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Table 9. Partial cross sections o4

06s20," (ag) for He-HF for

J=4 and E = 0.05 ev.2

description of basis i = 4 h| =2 adiabatic
max max

N/P 15/15 6/6 10/6

2.'
2.88(—-2)b 4.82(-2) 2.72(~2)
4.57(-2) 4.26(-2) 2.49(-2)
4.30(-2) 7.07(-2) 4.34(-2)

aSee references 28 and 29

bThe number in parentheses denotes the power of ten by which
the entry should be multiplied
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