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Charge polarization effects (due to polarization of the target
charge distribution by the incident electron) are important for
low and intermediate-energy electron scattering (these energy
ranges corresponds to roughly E ZIpP and IP< E <10 IP, where E
is the impact energy and IP is the target ionization potential).
There are two approaches to the inclusion of such polarization
effects in electron scattering. In the many-body approach, the
scattering wavefunction for the whole system (incident electron plus
target) is represented explicitly by basis functions or products of '
basis functions and numerically determined radial functions. Alge-
braic variational methods? and R matrix3 methods are some particu-
larly powerful variants of this approach. In this approach charge
polarization effects enter by configuration mixing. Because of this
and because polarization effects are of long range, basis sets are
required to be large and the scattering wavefunction must be repre-
sented over a big region. To avoid the associated computational
problems, most electron-molecule scattering calculations using basis
functions have been restricted to the single-configuration level,
i.e., the static-exchange approximation, in which polarization
effects are neglected. The second approach to including polariza-
tion effects is the use of effective potentials, also called optical
potentials or model potentials. In this approach, electronically
elastic scattering is reduced from a many-body configuration-mixing
problem to single-particle scattering from an effective potential.
It is too difficult to calculate the exact optical potential
for electron-molecule scattering, so one must use approximations.
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152 D.G. TRUHLAR ET AL.

One model in use is to assume that the effective potential is the

sum of a static potential, an exchange potential, and a polarization
potential. The static potential may be calculated straightforwardly
from accurate®=8 or simple6r9'10 target wavefunctions. The exchange
potential may be taken as the nonlocal continuum-Hartree-Fock exchange
potentialll™l7 or as a local (but energy-dependent) approximate
exchange poterltial.8'17"22 These are now well tested against non-
local exchange;l7r20'22'29 they lead to great computational simpli-
fications yet they have been shown to be capable of good accuracy at
intermediate energy and even, in some fortuitous cases or with
tuning,17 at low energy. Their success at intermediate energy makes
an effective potential approach particularly appealing in that energy
range. The biggest source of difficulty is the treatment of charge
polarization. 1In this report we discuss our recent work on the
polarization potential for electronically and vibrationally elastic
electron-molecule scattering.

For electron scattering by linear molecules, it has been popular
to use the following semiempirical functional form to represent the
polarization potential V (r,R):8:16,17,19,20,30~34

- a_ (R) a,(R) A
VP(r,R) -0 - 24 P2(r-R) C(r)
2r 2r

where

c(x) = [1— exp —(r/rc>n:l (2)

r is a vector from the center of mass of molecule to the scattering
electron, n is an integer (whose value is 6 for all cases discussed
in this paper), and r_ is a parameter whose value is detgrmined semi-
empirically. We have assumed a diatomic target so that R is the
internuclear vector of the molecule and a (R) and a.(R) are the
isotropic and anisotropic components of tge static electric dipole
polarizability tensor for internuclear distance R. The main justi-
fication for this polarization potential is that the terms in
brackets in equation (1) are known to provide the correct large-r
form of the exact optical potential for E less than the lowest
electronic excitation threshold,3°+36 put eventually at small r
these terms blow up so it must overestimate the exact optical
potential. But there are several difficulties with this form of
the polarization potential: (i) There is no justification for

C(r) £ 1; in fact the bracketed part of equation (1) probably
underestimates the exact optical potential at medium r where the
quadrupole polarizability should be included. (ii) There is no
justification for C(r) being independent of E; in fact nonadiabatic
effects (the inability of the targetAelectrons to respond agiabati-
cally to the scattering electron at r due to the fact that dr/dt

is not infinitesimal in a scattering event) decrease the target
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response at high E. So C(r) should be a decreasing function of E at
least at some r and at high E. (iii) There is no justification for
C(r) being independent of R and r-R. These assumptions are made for
simplicity. (iv) There is no justification for neglecting other
terms in the expansion

ViER) = ] VR PR (3)
A=0

at small r, although these other terms do decrease more rapidly than
r4 at large r. Despite these difficulties, equations (1) and (2)
do seem to represent the dominant physical effect of the scattering
electron's interaction with the induced dipole, and these equations
have been used successfully by various workers at low energy. One
can argue that C(r) need not be too sensitive to E at low energy and
small r because nonadiabatic effects should be a function mainly of
the local kinetic energy which can be approximated (to zero order in
the polarization potential) as

_~ SE_\.&
Tloc(r,R) =E -V (r,R) (4)

where VSE(r,R) is a local (possibly energy-dependent) approximation
of the static-exchange potential. At small r, V (r,R) has a large
negative value, so T (r,R) is not too sensitive to E at small r
at low E. Intermedia%g energy calculations have now been
performed37r38 which partly test whether this argument can be
extended to cover the intermediate-energy range by using rc values
determined empirically at low energy. Some of the results37 are
shown in Figure 1.

The quantity shown in Figure 1 is the electronically and vibra-
tionally elastic differential cross section, i.e., the sum of the
differential cross section for elastic scattering and rotational
excitation. We plot this quantity so we can compare to the experi-
mental results,32 %3 for which rotational excitation is not resolved.
The calculated results in Figure 1 are converged close coupling
calculations for given approximations to the effective potential.
The convergence tests are detailed elsewhere.3’ For Figure 1 we
used the INDOXI/1ls approximation6 for the static potential and
the electronic density, the semiclassical exchange approx:i.mation,z-L+
and the semiempirical polarization potential of equations (1) and
(2). The parameter r_ is given the value of (2.308 ao) determined
by Buckley and Burke,cf6 who used a more accurate static potential
and wavefunction and nonlocal exchange and semiempirically adjusted
r. to the resonance at 2.4 ev. For comparison, Figure 1 also shows
the results obtained with r = , i.e., no polarization potential.
(The effect of a more attractive polarization potential will be
considered below.) If the experimental uncertainty is estimated
as the difference between the various experimental results shown,
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Fig. 1. The vibrationally elastic differential cross section for

electron-N, at impact energies of 30 and 50 eV. The cal-
culations (from reference 37) involved scattering basis set
number IX and are for a fixed internuclear distance (R=R.).
For the calculations represented by the dashed line we used
the INDOXI/ls method for the static potential and target den-
sity and the semiclassical exchange approximation. For the
calculations represented by the solid line we also added the
Buckley~Burke semiempirical polarization potential. This
static-exchange~polarization potential will be called poten-
tial i. The various symbols represent the various experi-
mental results. O represents the experimental results of
Srivastava, Chutjian and Trajmar (reference 42) which were
obtained as ratios to the differential cross sections for He.
They have been placed on an absolute scale for this figure
by using the preliminary results of Register, Trajmar, and
Srivastava (Trajmar, private communication) for He. O
represents the absolute measurements of DuBois and Rudd
(reference 43). X and 0, respectively, represent the
relative measurements of Shyn, Stolarski, and Carignan
(reference 40) and Finn and Doering (reference 41), norma-
lized to the results of potential i at 30° and 30 ev.

The measurements of Kuchitsu and Kambara are not included
since their measurement was primarily designed for higher
energies and their results at 50 eV may be less accurate
than their higher-energy ones (Kuchitsu, private communi-
cation).
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then both choices of r. agree with experiment within experimental
uncertainty for 8 = 30° eV although agreement is worse near 90°

‘at 50 eV. However, polarization is clearly necessary at small 6;
neglecting it severely underestimates the differential cross section
there. We have obtained a similar level of accuracy for electron
scattering by CO, at 20 eV38using a polarization potential of the
form of equations (1) and (2) with the value of r, determined by
Morrison, Lane, and Collins,8 who used the Hara free-electron-gas
approximation for exchange and adjusted r, to the resonance at

3.8 eV.

Despite the empirical success of equations (1) and (2) and
their usefulness for qualitatively correct calculations of the
cross sections, the difficulties with their theoretical foundation
are unsatisfactory, and we require a theoretically more justified
model to further our understanding of the physics, to increase our
predictive capability, and to treat vibrational excitation and
resolved rotational excitation more reliably.

We suggest a different model for the polarization potential
which does not have difficulties (i) to (iv) detailed above. In
this model™"

FED = vFERD o[EVEE R ] (5)

where V ad® > Y, R) is the adiabatic polarization potential and

[E VSE(r Rﬂ is a nonadiabaticity function. The dual role of the
function C(r) in equation (1) is accomplished by two separate
functions in equation (5). The adibatic polarization potential has
the asymptotic form

A A

a (R) o, (R)
o 2 P, (X R) (6)

adp > >
v (rl ) g - 4 4

Y- 2r 2r

but it includes effects of higher multipoles at middle-range r and
the breakdown of the multipole expansion at small r. When expanded
in Legendre polynomials

v E R = V3P (z,R) B, (£+R) ™
0 A A

e~ 8

A

it includes nonzero contributions from all A except odd A for homo-
nuclear molecules for which odd A terms in vF (r R) are also zero.
The nonadiabaticity function g can mimic the energy dependence of
VP(?,K) in a realistic way, and the rgdgct in equation (5) should
be able to mimic the dependence of V' (r,R) on R and r*R in a
realistic way.
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The first step in creating a model potential of the form of
equation (5) is the calculation of realistic adiabatic polarization
potentials for electron-molecule scattering. The adiabatic polari-
zation potential _can be calculated analytically for electron-hydrogen
atom scattering -~ but otherwise requires a numerical calculation.
The only results available for molecules for a long time were for
H2.46-4 We have now made calculations emphasizing the small-r
range for H2,48 N2,44'48'49 and c0:44 and Morrison and Hay50 have
made a preliminary report of calculations for N, and Co, emphasizing
r 2 5 a,. These calculations are all self-consistent-field (SCF)
single-configuration molecular orbital (SCF MO) calculations. The
SCF MO's, n-electron wavefunction Wo, and total electronic energy
Eq g;e calcglated»for the usual fixed nuclei electronic Hamiltonian
Ho(f1,.../» Tn,Rp,Rp) for an n-electron target with nuclei of
charges Zp and Zg at Rp and Rg. Then the test-charge-added
Hamiltonian is defined by

> > > > o > > > > n ___jii___
H(r1,...,Tn,Rp,Rp,¥) = Ho(rl,...,rn,RA,RB)+ Z |? _ ;l
i=1 i
Z Z
“EE RS T ®
A T r RB— bo

and new SCF MO's, a new n-electron wavefunction w+, and n-electron
energy EF are calculated. The static potential V (¥*R) and polar-
ization potential are then found from

S > = _
v’ (x,R) = <WO|HI‘¥0> <‘P0|HOI‘{’O>
=<\yo|H[nyO>- E, (9)
v (T,R) =< v lulv> -<v |l >

Ey - < \y0|H|w0>

= By - B, - v° (Z,78) (10)

0
The SCF MO calculations in our group have been carried out at three
different levels of accuracy: the INDO and INDOXI semiempirical
molecular orbital schemes employing a minimum basis set of Slater-
type functions have been applied to N, and CO and ab initio calcu-
lations employing extended basis sets of Gaussian-type functions
have been carried out for Hy and N,. For the calculations discussed
here R equals Re'

Our ab initio calculations for H, used a Gaussian basis set with
6 s functions and 4 p functions on each nucleus. The s-function
exponential parameters are those of Huzinaga's 5 s set5l plus 0.03,
and the exponential parameters of the p functions are the four smal-
lest in the s set. The two tightest s functions on each nucleus
are contracted; all other functions are uncontracted. The
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Fig. 2. Adiabatic polarization potentials and static-plus-adiabatic-
polarization potentials for collinear (0°) and perpendicular-
bisector (90°) approaches of electrons to Hy. vP is the
polarization potential and vSP is the sum of the static and
polarization potentials. The solid lines are present results
and the dashed lines are the adiabatic polarization poten=-

tials of Lane and Henry.

polarization potentials for collinear and perpendicular-bisector
approaches of the electron to H, are given in Figure 2 where they are
compared to the results of Lane and Henry (Lane and Henry did not
publish their adiabatic polarization potentials at small r). Con-
sidering the large differences in computational approach, the agree-
ment in the overlapping region is good.

The ab initio calculations for Ny use 9 s functions and 5 sets of
p functions centered on each N with exponential parameters & from
Huzinaga, 1 contracted to a [53] set by Dunning's rules,52 and aug-
mented by 4 s functions, 3 p sets, and 1 sd set. The additional s
functions consist of bond-centered functions with £ = 1.13 and 0.27
and nuclear-centered functions with £ = 0.065. The additional p sets
are all bond-centered and have exponents 0.68, 0.19, and 0.0515. The
sd set consists of 6 bond-centered functions [x2,y2,z2,xy xz, and yz
times exp (- r2)] with £ = 0.11. The parameters 1.13 and 0.68 are from
Vladimiroff>3 and are chosen to represent the bond region in the un-
perturbed target. The parameters 0.065 and 0.0515 are chosen from the
smallest parts of s and p &'s in the Huzinaga basis by extending the
sequence as a geometric series. The &'s 0.27 and 0.19 are then chosen
as geometric means of the larger and smaller ones. The 0.11 value for
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the sd set is chosen as Werner and Meyer's polarizability optimized
value for an N-centered function in NH;. We have found43 by perform-

ing calculations at larger r that bond-centered functions are very
useful for polarizability calculations.

The basis sets for the INDO/ls and INDOXI/ls calculations 4
involved 2 s functions and 1 p set on each nucleus, with exponential
parameters determined by Slater's rules.®® This is the standard
choice for INDO calculations.%®,37

The three calculations of the adiabatic polarization potential ;
and the static-plus-adiabatic-polarization potential for collinear §
and perpendicular-bisector approach of an electron to N, are shown }
in Figure 3. The INDO and INDOXI methods underestimate the spherical
average of the polarization potential but show a qualitatively
correct anisotropy. Further, the INDO and INDOXI methods lead to ;
an adiabatic polarization potential that is too weak near r = 0 but i
the error in the static potential partly compensates for this in
the INDO approximation.
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Fig. 3. Adiabatic polarization potentials (a) and static-plus-
adiabatic polarization potentials (b) for collinear (07)
and perpendicular-bisector (900) approaches of electrons
to N,. The solid line is the ab initio result, the :
long-dashed line is the INDO/ls result, and the dotted :
line is the INDOXI/ls result. ;
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INDO calculations for other angles of approach of the electron
to N, show that terms in equation (7) with A > 2 are _not completely
negligible. For exampé%, the INDO method yields Va (r = 1.2a ) =
-0.094 hartrees and V2 (r = 2.0 a,) = -0.024 hartrees. Two agdi—
tional ab initio calculations at tge latter distance show an effect
of the same order of magnitude for terms with A > 2. Anot?gﬁ inter-
esting qualitative feature of the results is the size of Vv (r) for
CO. In the INDO approximation the magnitude of this term exceeds
0.2 hartrees for r in the range 0.8 to 1.3 a,. 1In previous effective
potential calculations, terms in V (r) with 9 # 0,2 have almost
always been ignored (see, however, reference 20).

It is interesting to write

ngP(r) = - £, 1im (2rHv2%F (1) ' (11)
0
Yrro
and
Vzdp(r) = - £,() 1im(2r4)V;dP(r) (12)

b anasd

thereby defining £ _(r) and f_(r). If this is done, one finds that
fo(r) # fz(r) and ghat both % (r) and f_(r) may exceed unity. This
supports criticisms (i) and (iii) of the usual model.

To test the sensitivity of the vibrationally elastic differential
cross section to the form of the polarization potential we repeated
the electron—N2 scattering calculations at 30 eV with several
different static-exchange-polarization potentials.“g The polariza-
tion and static-plus-polarization parts of three of these are shown
in Figure 4 for the collinear and perpendicular-bisector geometries,
where they are compared to the potentials used for the calculations
in Figure 1. The corresponding vibrationally elastic differential
cross sections are shown in Figure 5. Potential i is the potential
used for Figure 1 and is repeated in Figures 4 and 5 for reference.
Potential iii is the INDOXI/ls static-exchange potential plus the
A = 0 and A = 2 components of the INDOXI adiabatic polarization
potential, with Vg(r) and Vg(r) modified for r greater than 5.9 a
and 5.0 a_, respectively, to have accurate asymptotic forms. Thus
the static-exchange parts of potentials i and iii differ only due
to the small effect of the polarization potential on the exchange
potential. The scattering predicted by the two potentials is very
similar except for 6 < 30 where potential iii underestimates the
scattering. This is attributable to the fact that the INDOXI method
underestimates a,. by a factor of 5.98. BAlthough potential iii is
adjusted for r > 5.9 it is still not attractive enough at medium r
and so it underestimates the forward scattering just as complete
neglect of polarization does. Potential vi is the same as potential
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iii except that Vg (r) is degger in the range 1.25 a_ to 5.9 a
The INDOXI calculation of VO (r) exhibits a minimum at r = 85
a_, where it equals —ao/[2(2 g for the accurate a SO we
arbitrarily replaced yadp (INDOX? (r) in the range 1.25°- 2.6 a, by
vadP(INDOXT) (y = 1,25 a5) and in the range 2.6 - 5.9 ay by
—ao/(2r ) with the accurate ag. This modification increases the
forward scattering sufficiently to yield good agreement with experi-
ment, as was obtained with the semiempirical potential i. Thus we
have achieved good agreement with experiment without any semi-
emplrlcal parameters by uglng a SmelS model in which V8(r) and
V2(r) are set equal to V0 ( and V2 (r) as calculated by the
INDOXI method except that VO (r) is joined smoothly from its
minimum to an accurate asymptotic form. Potential vii (for which
the results %re not shown in Figure 5) is the same as potential vi
except the V. (r) for A > 2 are set equal to the INDOXI adiabatic
calculated values without modification. This produces very little
effect on the gcatterlng. Thus although these higher-order aniso-
tropies of ve (r; are not always small, they seem to have only a
small effect on the vibrationally elastic differential cross
section.
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Figs. 4(a) and (b) Adiabatic polarization potentials (a) and
static-plus-adiabatic polarization potentlals (b) for
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of electrons to N.. The solid line is for potential i,
the short-dashed line is for potential iii, the long-
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for potential vi.
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Fig. 5. Vibrationally elastic differential cross section for

electron scattering by N.,. The calculations (reference
49) involved scattering basis set number XIII and are

for a fixed internuclear distance (R = R ). The solid,
short-dashed, long-dashed, and dotted curves correspond
to potentials i, iii, iv, and vi as in Figure 4. O

represents the same experimental results as it represents
in Figure 1. At large angles the short-dashed curve (iii)
merges with the solid one (i).

Finally we consider the effect of making the polarization
potential stronger. Potential iv is like potential iii except that

P (INDOXI)

Vg(r) = 4.80 V (r) for r < 5.9 a, where the correction factor
P (INDOXI)

is Eﬂo/(2r4)]/v (r) evaluated at 5.9 a_ for the accurate
a.. For both pogentials V_(r) is joined smooth?y to the accurate
large-r limit for r > 5.9 a_.. Comparison of Figures 3 and 4 shows
that potentials iii and iv generally bracket the ab initio adiabatic
polarization potential. Figure 5 shows that this larger polariza-
tion potential seriously overestimates the sideways scattering.

Thus the vibrationally elastic differential cross section is sensi-
tive to making the polarization potential stronger. The error could
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be corrected by including a nonadiabaticity function. In fact, the
spherical average of the adiabatic polarization potential (either
the ab initio one or the modified ones iv or vi, all of which, when
spherically averaged, tend to the same asymptotic form) shows
relatively good agreement with the semiempirical polarization
potential for r greater than about 3 a, but it becomes deeper at
small r where nonadiabaticity effects may be large due to the deep
static potential. Thus the adiabatic polarization potentials
already provide a rough explanation of the shape of the semiempirical
polarization potentials. But the semiempirical ones involve the
spherical cutoff function C(r) which artificially constrains their
angle dependence. The nonadiabaticity argument may also explain why
the energy-independent potential of reference 1 is less accurate for
sideways scattering at 50 eV than 30 eV (see Figure 1); this may be
because nonadiabaticity decreases the true effective potential more
at 50 eV than 30 ev.

We hope that the use of adiabatic polarization potentials and
reasonable nonadiabaticity functions will lead to more realistic
effective potentials. Of course the potential in equation (5) does
have limitations. First, the exact optical potential is complex
(has a nonzero imaginary part) at energies above the first electronic
excitation threshold. It requires an additional model to estimate
the imaginary part of the effective potential. Second, an accurate
estimate of the nonadiabaticity function requires a dynamical calcu-
lation. For example, Kaldor and Klonover®? have estimated the
optical potential by using many-body perturbation theory in a
scattering calculation. This leads to a nonlocal approximation
to the optical potential. (The exact optical potential is also
nonlocal, and the energy dependence in the nonadiabaticity function
is an attempt to include this aspect.) In contrast to the SCF
approach to the adiabatic polarization potential discussed here,
the approach taken by Kaldor and Klonover requires third order terms
to include the full polarizability.59 Since their calculation of
an approximate optical potential is part of a basis-set scattering
calculation, it provides a suitable link between effective potential
methods and the basis-set configuration-mixing approaches mentioned
in the first paragraph.
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