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We discuss the calculation s f  quantum-mechanical amplitudes for reactive 
scattering based on the Fock scheme for coupling arrangement channels 
and expansion of the coupled amplitude densities' in terms of square- 
integrable ( g2)  basis functions. First, we provide a derivation of the coupled 
equations for the amplitude densities from the Fock-scheme integrodiff eren- 
tial equations for wavefunction components. Then we discuss the solution 
of these equations by 2' techniques. The methods are applied to calculate 
the thresholds and tunnelling probabilities for the reactions 0 + 
H2(u = 0 , l )  -+ OH+ H and H + O H ( v  = 0 , l )  --* O +  H2, where v denotes the 
vibrational quantum number. The results, which represent accurate quanta1 
dynamics for a given potential-energy surface, are used to test the predictions 
of variational transition-state theory for threshold energies and the least- 
action semiclassical method for tunnelling probabilities. 

1. Introduction 

The calculation of quantum-mechanical transition amplitudes for reactive collision 
processes is a subject of great fundamental interest,' but progress has been slow owing 
to the difficulty of formulating the general problem in a way that is both numerically 
convenient and rapidly convergent. From the point of view of modern molecular 
quantum mechanics, the solution of the problem by a variational expansion in a 
square-integrable basis defined in coordinates related linearly to Cartesians has many 
advantages. These include ease of integral evaluation, vectorization' and the eventual 
possibility of using highly optimized basis sets. The simplest way to build basis sets 
that efficiently span the critical intermediate-coupling regions for reactive collisions is 
to use separate, non-orthogonal sets of direct product bases representing each reactant 
and product's translational, vibrational and rotational degrees of freedom. In principle, 
linear combinations of two or more such bases could be over~omplete,~ but there are 
several possible ways to couple the various reactant and product arrangements that 
converge to unique, well defined a n ~ w e r s . ~  We,576 as well as Kuruoglu and Levin,',' 
have found that one of these, the Fock coupling scheme, leads to particularly fast 
convergence. We have proposed therefore that the equations of the Fock coupling 
scheme be solved by 2* expansion of the wavefunction or amplitude-density components 
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corresponding to the various arrangements, and we have had good success with this 
approach. 57679*10 In the present article we present another derivation of the Fock scheme 
coupled equations plus some results for the reaction 0 + H2 c* OH + H in section 3.  

One of the primary motivations for obtaining converged quantal transition prob- 
abilities for prototype systems is to use them as benchmarks against which to test more 
approximate dynamical techniques. This is carried out in the present paper by using 
the accurate results to test variational transition state theory predictions of reaction 
thresholds and least-action semiclassical calculations of tunnelling probabilities. 

In keeping with the goal of treating the quantal dynamics accurately for a prototype 
system, the present study treats O+  H2 as an electronically adiabatic reaction of dis- 
tinguishable particles governed by a single potential-energy surface given by a convenient 
(though realistic) analytic function. 

2. Derivation of Coupled Integrodifferential Equations for the Amplitude Density 
Components 

In ref. (6) we presented a derivation of the coupled integral equations for reactive- 
scattering arrangement components of the amplitude density by starting with the 
Lippmann-Schwinger integral equation for the wavefunction. In this section we provide 
an alternate derivation of our amplitude density integral equations by starting with the 
Fock-type integrodiff erential equations for translational wavefunctions commonly used 
in treatments of electron-atom or electron-molecule scattering. 11,12 This same approach 
has also been used by MillerI3 for atom-diatom reactive scattering. The integrodiff eren- 
tial equations may be derived by the application of the Kohn variational principle to a 
coupled-channel trial wavefunction for the Schrodinger equation. In some cases, 
intrinsically 2"-type functions have also been included in the trial wavefun~t ion , '~- '~  
but we shall not include them in our discussion. In fact we shall introduce 2Z2 functions 
only later, in section 3, by expanding the translational coordinate dependences of the 
amplitude densities. 

We use the same notation as in ref. (6). In particular, the arrangements are labelled 
by a, where a = 1,  2 or 3 denotes A+  BC, B+  AC and C+AB, respectively. We scale 
all coordinates to a reduced mass of 

and we denote the mass-scaled Jacobi coordinate in arrangement a by r, for the diatom 
and R, for relative motion of the atom and the diatom. 

Each channel is labelled by a and a collective quantum number n = { v,,jn, l , } ,  where 
v, is a vibrational quantum number associated with r,, j ,  is a rotational quantumFumber 
associated with ?, and 1, is an orbital quantum number associated with R,. The 
wavefunction, iy.*f"', is labelled by the initial values a, and ni of a and n, and it is 
expanded as 

, = I  ,=tii, 

where iia = { 1, N ,  + 1, N ,  + N2+ l}, 5, = { N , ,  N ,  + N2, Nc} ,  +,,, is a channel basis func- 
tion and F : ~ I  is a translational radial wavefunction. Note that each channel has a 
unique n, so the arrangement index is merely informational, and it need not be specified 
as an index for summations or for components of vectors and matrices. 

In each arrangement we partition the Hamiltonian as 

H = H;+ v,"+ v: (3)  
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where 
H:= lim H 

R ,  +co 
(4) 

and 
ZU 

v,"= C I+cxn)V,"n(+anl*  ( 5 )  
n=t i ,  

Note that Ht is the asymptotic Hamiltonian, including all the kinetic-energy terms, V," 
is the distortion potential, V:n is a single-channel distortion potential defined for 
convenience and to accelerate convergence, and V z  is a coupling potential without 
which all rearrangement scattering amplitudes would be zero. The channel wavenumber 
kavj is defined by 

where 
k t u j  = ( 2 ~ /  f i 2 ) ( ~  - E a v j )  (6) 

With this partitioning of the Hamiltonian, the integrodiff erential equations of ref. 
(13) may be written as 

Then, if (ry: and ('x are, respectively, the regular and irregular solutions of the 
homogeneous analogue of eqn (1 l ) ,  the standard solution for the Green's function is 

where j ,  and nl are spherical Bessel and Neumann functions and where OK: is the 
tangent of the distorted-wave phase shift. Then the formal solution of eqn (8) is 
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We then introduce the radial amplitude density, defined as 

CZ;"O(R,) =I (.T,,,.,,+ 'V,,, ,~,,~)F~?~!' 
n'  

so that the reactance matrix may be written 

Kn,n, = &,,,OKP;: + Y { n , n ,  

where 

Then using the fact that 

and eqn ( 1  l ) ,  we find 

where the effect of 9,.,,,,,, acting on ~ , U ; " ~ J  is defined as 

Now the amplitude density l : $ o  is expanded in translational basis functions as 

where the (real) basis functions A 
of the translational basis functions are given by 

are not necessarily orthogonal. The overlap integrals 

dR,A *," ( R ,  ) A  ",1( Re). (23) 

Substituting the expansion of eqn (22) into eqn (20), multiplying by A 2  and integrating 
over Re# gives 

i orm, = 

(24) 1 O",",.a:;2, = b:;2+ 1 Canmn~n'm.a, .n.m, Q O %  

m' n 'm'  

where 
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and 

(26) 

Thus, when t~f"' is expanded in translational basis functions, 9 u n a , , ~ ~ f " ' ( R u )  leads to 
overlap-type integrals. 

In summary, comparing eqn (24) with eqn (18) we see that the kinetic-energy 
(derivative) operators occurring in the non-local operator Fun, vanish when acting 
on the inhomogeneity and yield simple overlap integrals when acting on the Green's 
function terms. 

Eqn (24) can now be solved for the expansion coefficients aE;2. In terms of these 
coefficients, eqn (17) for the coupling component of the reactance matrix is given by 

xnfn> = -2/*z a a  atntm n l  Jli m a ,  (r'f:;(R,,) A Ref). (27) h2  m 

The full reactance matrix, with elements given by eqn (16), is related to the full scattering 
matrix and to state-to-state transition probabilities in the usual way." l9 

3. Application 

As an illustration of the method just described, we present an application to the reaction 
O ( 3 P )  + H2 + OH+ H. In particular, we report total reaction probabilities with total 
angular momentum ( J )  equal to zero in the threshold regions for the v = 0 and u = 1 
reactant vibrational levels. The potential-energy surface used in these calculations is a 
modified version" of the LEPS-type" surface of Johnson and Winter." 

The basis set used for the expansion is the outer product of an Arth~rs-Dalgarno'~ 
rotational-orbital basis, an asymptotic vibrational eigenfunction basis expressed in terms 
of harmonic oscillator functions and a set of equally spaced G a u ~ s i a n s ~ ~  distributed 
along the translational coordinate in each arrangement channel. The various basis-set 
and quadrature parameters for which we illustrate convergence are listed in table 1 .  
The notation is as follows: NTOt(v) is the number of rotational states included in 
vibrational manifold v. The Gaussian basis overlap parameter c24 appears in the sixth 
row. The next four rows list the location, R I l G ) ,  of the centre of the first Gaussian basis 
function, the distance A(G) between basis functions, the location Rbflc, of the final 
Gaussian basis function, and the number N( G) of the basis functions used to span this 
space. The next three rows list the finite-difference parameters used in solving for the 
distorted wave; R,,,, is the location of the first finite difference point, A(F) the spacing 
of the points, and the final point. The distorted wave solutions are sometimes 
obtained on a finer grid than ihat on which the translational quadrature is performed, 
and the following two rows give the translational quadrature grid spacing A( R )  and the 
total translational quadrature order NQR. The next row lists N Q A ,  the order of the 
angular quadrature. The following four rows specify the vibrational quadrature. N:: 
gives the total order of the extended trapezoidal rule used for the vibrational quadrature 
used in exchange matrix elements that are off-diagonal in arrangement channel. The 
values r< and r ,  are the minimum and maximum values of the vibrational coordinate 
included in the trapezoidal quadrature. The value N:: is the order of the modified 
Gauss-Hermite quadrature used for the '3'" matrix elements diagonal in arrangement. 

Table 2 presents some total distinguishable-atom reaction probabilities for 0 + 
H,( u, j = 0) + OH + H for initial reactant vibrational states 2, = 0 and u = 1 summed over 
the two identical final arrangement channels. The probabilities >10 ' for the u = 0 
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initial state appear to be converged to 4% or better with respect to small changes in the 
basis set and quadrature parameters. Runs numbered 2 and 4 show deviations of ca. 
7% at the total energies of 13 and 15 kcal mol-’, but we discount these because the 
radial quadrature order N Q A  in run 4 is minimal for the width of the Gaussian basis 
used in that run. The probabilities > lop5 for the v = 1 initial state appear converged 
to ca. 10% or better (if, again, we discount run number 4, they appear to be converged 
to ca. 6% or better), and those probabilities < lop5 appear to be converged to ca. 14%. 
The unitarity condition of the scattering matrix is well satisfied; all columns of the 
scattering matrix for the reported runs satisfy unitarity to better than 1 %  except for run 
number 3 at total energy 24 kcal mol-’; the results for this run shows a maximum 
deviation of 1.5% . 

4. Variational Transition-state Theory with Semiclassical Tunnelling 

Approximate methods for calculating threshold energies and tunnelling probabilities for 
chemical reactions are of great interest for applications to larger (polyatomic) reactants. 
In the present case the accurate quantum-mechanical reaction probabilities provide a 
rare opportunity (previous work is summarized elsewhere2’) to test these methods for 
realistic reactions in three dimensions. This includes probabilities for reaction from the 
first excited vibrational state as well as those for reaction from the ground vibrational 
state at energies near threshold. In the present article we test the predictions of quantized 
variational transition-state theory (VTST)’‘-’* for selected-vibrational-state threshold 
energies and of the least-action (LA) semiclassical approximation” for tunnelling 
probabilities. 

In quantized VTST, we begin by defining a reaction path, here taken as the minimum- 
energy path (MEP), and we compute quantized energy levels for the degrees of freedom 
orthogonal to this path. The threshold energies for classical reaction-coordinate motion 
for a system with a state-selected stretching vibration are given by the maxima of the 
state-selected vibrationally adiabatic potential curves defined by2h727.30,3’ 

where s denotes the reaction coordinate (signed distance along the reaction path), 
V,,,(s) is the Born-Oppenheimer potential along the MEP, tzStr( v, s) is the quantized 
eigenenergy of the vibrational mode that correlates adiabatically to the selected stretch, 
v is the vibrational quantum number of this stretch and EEthe,(S) is the ground-state, 
zero-angular-momentum zero-point energy of all the other bound modes. In the present 
case, since the MEP is collinear, &her(S) is the zero-point of the doubly degenerate 
bending mode. [The adiabatic potential curve of eqn (28) is a familiar quantity, also 
appearing in statistical adiabatic models, the adiabatic theory of reactions and the 
statistical adiabatic channel m ~ d e l . ~ ~ - ~ ’  Brief reviews of other applications of adiabatic- 
ity to selected vibrational modes are given e l ~ e w h e r e . ~ ~ ~ ~ ~ ~ ~ ~ ]  The potential curves 
VMEP(s), Vt( v = 0,  s )  and Vz( v = 1,  s )  defined by eqn (28) for the reactions examined 
here are presented in fig. 2. 

The least-action tunnelling approximation is consistent with quantized VTST in that 
it assumes that the classical turning points for tunnelling are given by the locations at 
which the total energy E equals the vibrationally adiabatic potential curves of eqn (28). 
However, it also allows for tunnelling to occur prior to the system reaching this turning 
point. For systems with small reaction-path curvature the most successful semiclassical 
tunnelling approximations are based upon a reaction-path Hamiltonian in curvilinear 
coordinates including s and the coordinates orthogonal to it. In these coordinates the 
potential takes a simple expression, but the kinetic energy is complicated by the presence 
of terms proportional to the curvature of the reaction path. The semiclassical adiabatic 
methods which are most successful force the tunnelling to occur along specified paths 



J. Z. H. Zhang et al. 379 

through the interaction region which 'cut the corner' to shorten the length of the 
tunnelling In these methods the multidimensional scattering problem may be 
reduced45 to the much simpler problem of tunnelling through a one-dimensional effective 
potential given by eqn (28) with an s-dependent effective mass. The curvilinear coordin- 
ates involved in these methods are not useful and the adiabatic approximation breaks 
down in regions along the reaction path which have large curvature. This type of 
behaviour occurs in systems in which the angle between the reaction path in the reactant 
and product channel (in mass-scaled coordinates) is small. For systems with small skew 
angles the tunnelling has been treated successfully by models which assume that tunnel- 
ling occurs along the most direct paths (straight lines) connecting the reactant and 
product  region^.^^-^' In such models the tunnelling method is still based upon the 
reaction path Hamiltonian in those regions for which the reaction-path curvature is not 
too severe and the curvilinear coordinates are still useful. In classically allowed regions, 
the adiabatic approximation is used to define the caustics parallel to the reaction 
coordinates which define the termini of the tunnelling paths. Tunnelling is promoted 
by motion in the vibrational coordinate and, for a given total energy, can begin at many 
locations along a caustic in the asymptotic reactant region up to the turning point in 
the vibrationally adiabatic potential curve. 

The least-action tunnelling method29 unifies the large-curvature and small-curvature 
adiabatic tunnelling methods to provide a more general method which is applicable to 
reactions with small-to-large curvature of the reaction path and which is expected to 
be most accurate for systems such as 0 + H2 which have intermediate curvature. In this 
method the optimum tunnelling path is chosen from a set of parametrized paths by 
requiring it to be the one that accumulates the least imaginary action along the tunnellin 
path. The least-action method is also capable of treating non-adiabatic t~nnelling~'?~'  
in which the final vibrational state is not the same as the initial one. This is especially 
important for reactions which are very exoergic, allowing population of several final 
vibrational states, and for reactions from excited initial states which can proceed to the 
ground state of products. These vibrationally non-adiabatic processes become more 
important for reactions with regions of large reaction-path curvatures. 

The reactions considered here are nearly thermoneutral and we treat all tunnelling 
of ground-state reagents as populating only the ground state of products. For the 
reactions 0 + H2( u = 1 )  -+ OH + H and OH( v = 1 )  + H -+ 0 + H2 vibrational non-adiaba- 
ticity may be important because of the moderate reaction-path curvature, and for these 
excited-state reactions we use the partial-reaction-path (PRP) adiabaticity approxima- 
t i ~ n , ~ '  which assumes that the reaction remains adiabatic until the region where the 
reaction-path curvature becomes appreciable and the probability of a non-adiabatic 
transition thus becomes likely. In applications, the reaction is assumed to remain strictly 
adiabatic up to a location s+, where a sudden non-adiabatic transition occurs to the 
ground state. The location s, is chosen near the first occurrence of an appreciable local 
maximum of the reaction-path curvature. For the 0 + H,( u = 1 )  - OH + H and OH( u = 
1 )  + H -+ 0 + H2 reactions these locations occur after the first maximum in the adiabatic 
potential (which is different for the forward and reverse reactions), and for the present 
applications the location of the sudden transition is chosen at the local minimum of the 
state-selected v = 1 adiabatic barrier on one side of the region of large reaction-path 
curvature and the O H + H  reaction is controlled by a (smaller) O-H-..H-like barrier 
on the other side. 

Tunnelling probabilities for a total energy E and stretching vibrational state u as 
calculated by the least-action method are denoted P'-"(E, u =0)  or PLAG(E) for the 
ground state and PLA(E, v = 1 )  for the excited states. Summing over all states of the 
bending modes for total angular momentum zero5' gives the least-action approximation 
to the J = 0 cumulative reaction probability Piu:( E ) ,  to be compared with the quantum- 
mechanical J = 0 cumulative reaction probability Piu=2(E), which is given by the sum 
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of all energetically allowed state-to-state reaction probabilities for a given initial vibra- 
tional level (i.e. summed over initial rotational quantum number and final rotational 
and vibrational quantum numbers). In the least-action calculations the contributions 
from excited states are approximated, analogous to the approximation used in the 
collinear exact quantum bend-corrected ground-state (CEQB/G) method," from the 
least-action ground-state tunnelling probabilities, yielding 

P,",",( E, u )  = PLA( E, u )  + C PLA{ E - qnt[ u, i, s = s%( u ) ]  + qnt[ u, i, s%( u ) ] ,  u }  (29) 

where s$( v )  is the location of the maximum of eqn (28), the sum is over excited J = 0 
bend states (thus i = 0 corresponds in the usual notation5* to 0", i = 1 to 2", i = 2 to 4" 
etc.) and qnt is the energy of the bound modes orthogonal to s. 

The calculational details are as described elsewhere. 27,29,53 Energy levels for the 
stretching vibrations are calculated using the actual stretching potential by the WKB 
appro~imation.~ '  Energy levels for the bending vibrations are calculated using a har- 
monic-quartic approximation to the bending potential with Taylor-series force con- 
s t a n t ~ . * ~  The energy levels of the harmonic-quartic potential are obtained using a 
perturbation-variation method.54 

For O+ H2 (but not OH + H) the results calculated by eqn (29) are multiplied by 
two because we consider the sum over the two possible OH + H product arrangements 
(OH + H' and OH'+ H).  

if" 

5. Comparisons and Discussion 

The cumulative probabilities for the reaction 0 + H2( u )  + OH + H for u = 0 and u = 1 
are shown in fig. 1. (The zero of energy for all figures is the 0 + H2 potential asymptote.) 
The solid curves are the semiclassical results of eqn (29), including the factor of two, 
and the symbols are the quantum-mechanical results summed over all states of OH + H' 
and OH'+ H. The left-hand curve represents the results for initial vibrational quantum 
number u = 0 in the threshold region and the right-hand curve those for u = 1 over the 
cumulative probability range of to lo-'. The accurate and semiclassical methods 
agree very well for u = 0 and reasonably well for v = 1. (The wavering about a smooth 
curve of the semiclassical probabilities above lo-' for u = 0 appears to result from the 
classical turning points being located in a region of high reaction-path curvature.) 

employed here is 12.5 kcal mol-', at 
which energy the cumulative probability is ca. lop3. Therefore, the energy range shown 
includes energies quite far above the saddle point energy as well as those deep into the 
tunnelling region. It is encouraging that the semiclassical method works so well in both 
energy regions. The accurate results in fig. 1 can also be used to test the distorted wave 
approximation, 20925,55 and this is done elsewhere.' 

The energy of the H2( u = 1, j = 0) state is 18.0 kcal mol-I. As can be seen from fig. 
1, the u = 1 reaction 'turns on' at ca. 19 kcal mol-' of total energy, corresponding to an 
initial relative translational energy of ca. 1 kcal mol-', showing clearly that the vibrational 
excitation energy is not entirely available for reaction. The semiquantitative correspon- 
dence of the accurate and semiclassical u = 1 results in fig. 2 means that the adiabatic 
approximation employed in the latter are apparently valid in this case, and they do 
provide a simple estimate of how much of the vibrational energy is available for reaction. 
To obtain a more quantitative measure of the validity of the adiabatic approximation 
we compare VTST and accurate threshold energies in table 3. 

Table 3 shows two VTST threshold energies for the u = 1 reactions. The first is the 
highest adiabatic potential encountered by the system prior to the region of high 
reaction-path curvature; this is labelled PRP (partial reaction path). The second is the 
highest adiabatic potential encountered at any point along the reaction path; this is 

The classical barrier height for the 
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Fig. 1. Logarithm of the cumulative reaction probability vs. total energy. The solid curves are 
the approximate cumulative reaction probabilities from eqn (29) for the forward reaction 0 + 
H2(v) -+ OH + H for u = 0 ( a )  and u = 1 ( b ) .  Crosses denote the accurate cumulative reaction 
probability for this reaction for u = 0 and u = 1. ( c )  The dashed curve is the approximate cumulative 
reaction probability from eqn (29) for the reverse reaction H + HO( u = 1) --+ 0 + HI. Circles denote 
the accurate cumulative reaction probability for this reaction. The cross and circle at 22 kcal mol-' 

are accidently coincident, and the cross for 23 kcal mol-' is off scale. 

labelled FRP (full reaction path). There is even more uncertainty regarding the value 
to list as the threshold for the quantal studies. For all the quantal thresholds in table 
3, we list the range of (interpolated) total energy at which the j = 0 reaction probability, 
summed over all final states, is a factor of 0.4 to 0.5 of that at a total energy of 
24 kcal mol-', which is the highest energy for which we have made accurate calculations. 
The reaction probabilities for 0 + H2( u, j = 0) and H + HO( u, j = 0) for u = 0 and 1 are 
shown in fig. 3. Comparison of the threshold energies listed in table 3 with fig. 3 shows 
that our definition of the threshold energy corresponds to the region in which the reaction 
probability is flattening out. The VTST and quantal thresholds for 0 + H2( u = 1) agree 
within 0.5-0.7 kcal mol- I .  

The cumulative probabilities for the reverse reaction, OH( u = 1) + H -+ 0 + H2, are 
also shown in fig. 1. (The v = 0 probabilities for the forward and backward reaction 
differ from each other only by an arrangement channel multiplicity factor of two, so 
the v = 0 reverse reaction does not provide an independent test and is not included.) 
For the v =  1 case the accurate and semiclassical probabilities for the reverse reaction 
differ by ca. one order of magnitude for total energies above ca. 20 kcal mol-' with the 
semiclassical method overestimating the reaction probability. Since the quantum results 
for this case appear to be converged with respect to numerical parameters to the same 
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Fig. 2. Values of the Born-Oppenheimer potential energy V,,, ( a )  and vibrationally adiabatic 
potential curves for u = 0 ( b )  and u = 1 (c)  defined by eqn (28) us. reaction coordinate s. The 

directions of the forward (f)  and reverse (r)  reactions are indicated by arrows. 

Table 3. Threshold energies 

total energy threshold/ kcal mol-' 

reaction V'TST- PRP VTST-FRP quanta1 

17.0 16.8-17.6 O +  H2( u = 0) - 
0 + H 2 ( ~ = 1 )  22.9 22.9 22.2-22.4 

H + O H ( u = l )  21.6 22.9 22.0-22.3 
H + OH( u = 0) - 17.0 16.3-1 7.0 

extent as for the 0 + H2 reaction discussed in section 3, one interpretation of the difference 
of the two sets of v = 1 probabilities in fig. 1 is that the reverse v = 1 reaction is even 
more vibrationally adiabatic than is assumed in the semiclassical method. The disagree- 
ment between the methods can be interpreted as involving the location of s + ( ~  = l ) ,  
where the sudden non-adiabatic transition occurs, as discussed in section 4. If the 
reaction were assumed not to become appreciably non-adiabatic prior to reaching the 
0---H-H-like adiabatic maximum, which is higher than the 0-H---H-like maximum 
(see fig. 2), the VTST-plus-semiclassical-tunnelling results would all be smaller. Table 
3 shows that the first VTST adiabatic maximum for OH(v = 1 ) + H  is 1.3 kcal mol-' 
lower than the fully adiabatic maximum and the P,",",( v = 1) curve for the reverse reaction 
is accordingly shifted to the left in fig. 1 (the shift is less than 1.3 kcal rno1-l because 
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Fig. 3. Logarithm of the accurate reaction probability us. total energy for the forward (f) reaction 
O + H 2 ( u = 0 ,  j = O ) - O H + H  ( x )  and O + H , ( u = l , j = O ) - + O H + H  (*) and for the reverse ( r )  

reaction H + HO(u = 0, j = 0) --+ O +  H2 (0) and H +  HO( u = 1, j = 0) - O +  H2 (0). 

the forward curve involves a factor-of-2 arrangement degeneracy factor). However, the 
accurate quantal results in fig. 1 and 3 and the quantal threshold energy given in table 
3 show a much smaller shift, indicating that the higher adiabatic barrier controls the 
reaction in both directions. Thus the accurate quantal threshold is intermediate between 
the PRP and FRP predictions, which is similar to what was found for this reaction in 
the collinear world in ref. (50). 

The remaining rearrangement reaction for the system studied here is the exchange 
reaction H +OH' -+ H'O + H. On the surface used here,'() the classical barrier height 
for this process is 35.7 kcal mol- ' above the OH + H potential asymptote, corresponding 
to a total energy of 38.5 kcal mol- for the zero of energy used here (see footnote a of 
table 2). At the energies we have been examining the reaction probabilities for the 
exchange reaction are 4 to 10 orders of magnitude smaller than those for the 0 + H2 
reaction and its reverse. 

6. Conclusions 

The good convergence of the present accurate quantal-dynamical calculations is very 
encouraging, especially since the method has some particularly attractive computational 
aspects. First, it is very well suited to currently available large-memory vector computers. 
Secondly, it allows for several possible stages of refinement, including more rapidly 
convergent translational bases, multichannel distortion potentials, and the use of a 
variational functional." (Even without these refinements the method has already been 
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applied to the reaction HBr+ H + H,+ Br.56 which is more exothermic, and hence more 
difficult to converge, than either the forward or reverse reaction studied here.) 

The comparisons of VTST threshold energies and least-action semiclassical tunnelling 
probabilities to the present accurate dynamical results show excellent agreement for the 
ground vibrational state and for the O+  H2( v = 1) reaction; this confirms the expected 
utility of these methods based on previous tests for H + H2( v = 1)57 and D + H,( v = l).’ 
For OH( IJ = 1) + H the comparison of approximate and accurate reaction probabilities 
again indicates that the vibrationally adiabatic barriers do limit the reactive flux, but 
quantitative approximate calculations are less certain because the highest vibrationally 
adiabatic barrier occurs on the product side of the region of highest reaction-path 
curvature. 

This work was supported in part by the National Science Foundation and the Minnesota 
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