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ABSTRACT

The principles of variational transition state theory and multidimensional semiclassical tunneling approximations are discussed, and recent

tests and applications are summarized.

RESUME

Les principes de la théorie variationnelle du complexe activé et les approximations semi-classiques de I'effet tunnel a plusieurs dimensions
sont discutés. On présente également des vérifications et des applications de ces méthodes.

1. Introduction

The calculation of chemical reaction rates by quan-
tum mechanics involves several difficulties. In the first
place, we must calculate the potential energy surface,
for which high-order configuration interaction in a space
defined by a very extended basis set may be important
for significant quantitative features ('*). Secondly, the
internuclear motion problem for a chemical reaction
involves rearrangement scattering theory (‘), which
involves special difficulties associated with imposing
asymptotic boundary conditions in two or more nonor-
thogonal coordinate systems. Third, chemical reaction
rates involve a thermal average over reactive events
occurring at many total energies and out of many initial
states. Fourth, the thermal reaction rate is very sensitive
to the threshold energy region, and this region is
especially difficult to treat accurately. Transition state
theory is an approximate dynamical method that has
many convenient features for overcoming these difficul-
ties. With regard to the first difficulty, transition state
theory has the advantage that it requires knowledge of
only a localized portion of the potential energy surface.
Secondly, transition state theory does not require the
imposition of boundary conditions on continuum wave
functions at all; it reduces the reaction rate to a
quasiequilibrium calculation involving molecular parti-
tion functions. Third, transition state theory may be
formulated to yield thermally averaged reaction rates
directly, and in fact it takes its simplest form when this
is done. Even more important may be a fourth advan-
tage, namely that the fundamental assumption of transi-
tion state theory is best justified in the threshold region,
at least in classical mechanics.

In recent years our research group has made a
systematic effort to study the validity of transition state
theory (°). We have found that the conventional theory
is sometimes remarkably accurate, but in many other
cases it leads to large errors. Fortunately we have found
that a much more reliable theory that has many of the
advantages of conventional transition state theory can
also be formulated, and it can be applied to practical
problems with an effort that is much closer to that

required for conventional transition state theory than to
that required for full quantal dynamics calculations. This
lecture provides an overview of the new theory and
summarizes tests of the theory published since our 1984
review (*¥). The two most important features in the
improved approach to transition state theory are the
variational determination of the transition state (*°) and
the incorporation of tunneling contributions by multidi-
mensional semiclassical approximations ('*").

Before proceeding to the main line of development
it is useful to point out that many people have contri-
buted to improving the theory. The seminal contribu-
tions of Eyring and Wigner to the formulation of conven-
tional transition state theory are well known, and hun-
dreds of later contributions that lead to improved
understanding could be cited easily. For the work to be
discussed in this lecture though, it is especially relevant
to mention a few key contributions that provided an
invaluable background for the approach discussed here.
One important idea discussed below is the variational
optimization of transition states, and in this regard one
can single out the very stimulating way in which Keck
and Anderson formulated classical variational transition
state theory as a basis for the sampling of phase in
trajectory calculations (7). Another central idea is
vibrational adiabaticity, many of whose detailed conse-
quences for chemical dynamics were first elucidated by
Marcus (). The stimulating attempts by Miller (*') and
Pechukas (?) to devise a useful quantum mechanical
version of transition state theory provided useful clues
to the limitations of more approximate ways to incorpo-
rate quantal effects in transition state theory. A key
element in the ability to successfully incorporate such
effects has been the development of reasonably accu-
rate ways to accound for multidimensional effects in
semiclassical tunneling calculations, and some key
advances in this regard were made by Marcus, Coltrin
and Babamov ("'"). The extension of reaction path
concepts to polyatomic systems has been facilitated by
the systematic formulation of a general reaction-path
Hamiltonian by Miller, Handy and Adams (*). Our own
work (**) on variational transition state theory and
semiclassical tunneling approximations for chemical
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2. Theory

The textbook view of conventional transition state
theory is focussed on a quasiequilibrium between
activated complexes and reactants. Thus an atom trans-
fer is considered to proceed in two steps as follows

A+ BC=ABC* — AB + C (1)

Here A, B and C are atoms or groups of atoms, and
ABC™ is an activated complex or transition state. (The
two words are synonyms). The transition state theory
rate constant at temperature T is written as

kM= xmE e m el

where K* (T} is the equilibrium constant for the bimole-
cular first step in {1), and kT/h (where k is the Boltz-
mann constant and his Planck’s constant) is a coliection
of kinematic constants associated with the unimolecular
second step. The activated complex is not a real bound
species, but rather a mathematical construct defined in
terms of the properties of a saddle point, which is the
highest energy point on the minimum energy path from
reactants to products. One degree of vibration of the
saddle point species, that directed along the reaction
coordinate, is unbound and hence is removed from
consideration in calculating K* (T}. The factor « (T} in
eq. (1) is called the transmission coeificient. Usually it is
set equal to unity, but in principle it contains our best
attempt to correct for any known inadewuacies in the
theory. For example, since transition state theory does
not include tunneling, ¥ (T) can be used to correct the
theory for tunneling contributions. We will consider
tunneling below, but temporarily we set  (T) = 1.

The equilibrium constant in (1), even though it invol-
ves a mathematically defined species that is missing
one degree of freedom, can be related to a standard-
state free energy change. AG*?(T), by a well known
thermodynamic relation, yielding

k(1) = «(T) ihl K exp [— AG** (T)/RT]  (3)
where K® is the reciprocal of the standard state concen-
tration and R is the gas constant. Because of the
mathernatical character of ABC*, we are not dealing
with a true equilibrium and hence we call K* (T) a
quasiequilibrium constant, and eq. {3) is called the
quasithermodynamic formulation of transition state
theory. AG*? (T) is called the standard-state free energy
of activation {or the standard-state Gibbs activation
energy according to the IUPAC recommendations on
nomenciature). The free energy change in eq. (3} can be
evaluated by statistical mechanics yielding

+T) = kTQ (1) -v*me
kM = k(0 7 Gt @ (9
where Q™ (T) is the transition state partition function
(still missing one degree of freedom). ®" is the reactant
partition function per unit volume, and V* is the classi-
cal barrier height, i.e., the potential energy at the saddle
point minus that for equilibrium reactants.

The above equations may be given a simple dynami-
cal interpretation, as follows. In a classical mechanical
world the rate constant calculated by eqs. (2)-(4) equals
the equilibrium one-way flux through a phase space
hypersurface that passes through the saddle point and
is perpendicular to the omitted degree of freedom of the
transition state, i.e, to the reaction coordinate. The
phase space hypersurface will be called the transition
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Fig. 1. — Sch ic view of repr tve trajectories in a canonical-

. ensemble. R denotes reactants’ side of the transition-state dividing

surface {DS), and P denotes products'side.

state dividing surface, or, for short, the transition state.
At equilibrium the forward and reverse fluxes through
any surface that divides reactants from products are the
same, so we associate eqs. (2)-(4) with the equilibrium
flux through the dividing surface in the direction from
reactants to products. We now make the fundamental
assumption of classical transition state theory, namely
that trajectories passing through the transition state
dividing surface originated from equilibrated reactants
without having previously reached this surface and will
proceed to products that relax without returning to it.
With this assumption, the local equilibrium flux through
the transition state in the product direction equals the
net rate of reaction in a system with equilibrated
reactants and no products. This is called the local-
equilibrium rate constant. Deviations of phenomenolo-
gical, i.e.,, measured, rate constants from local-equili-
brium ones are believed small for gas-phase bimolecular
reactions (*%); in fact most experimental measurements
of gas-phase bimolecular rate constants are carried out
in the very early stages of reaction {i.e., with no products
present) and in a large excess of inert gas that fixes the
temperature.

What if trajectories recross the transition state
dividing surface ? Then the calculated rate constant is
too large. This can be seen most clearly by a diagram.
Consider Figure 1. This shows a schematic representa-
tion of four trajectories, and we consider an ensemble
of eight trajectories consisting of these four and their
time reverses. For discussion sake suppose that these
trajectories constitute a canonical ensemble at the
temperature of interest. Neglecting nonequivalent
weighting factors for the various trajectories (again, only
for discussion purposes; these weights are correctly
included in actual calculations), the local flux through
the transition state toward products is eight {one each
from A, B, and C, two from D, and one each from the
time reversed versions of B, C, and D) whereas the net
reactive flux in the forward direction is two {A and D).
Ciearly the local flux toward products is always greater -
than or equal to the net reaction rate. It is also easy to
see that if all trajectories crossed the transition state
only once, transition state theory would be exact (in a
classical world), e.g., if the canonical ensemble consis-
ted only of A and its time reverse, both the actual rate
and the transition state approximation to the rate would
be one.

The above argument leads to a fundamental theo-
rem : Classical transition state theory with a unit trans-
mission coefficiant agrees with exact classical dynamics
if and only if all trajectories through the dividing surface
cross it only once. We also have corollary 1 — if
trajectories do recross the transition state, classical
transition state theory with unit transmission coefficient
overestimates the classical equilibrium rate — and
corollary 2 — the best transition state dividing surface
can be found variationally. In other words, since classi-
cal transition state theory for any choice of transition
state dividing surface provides a strict bound on the
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classical local-equilibrium rate constant, the choice of
dividing surface that gives the minimum rate constant
is the best. We have implicitly assumed here that
transition state rate constants can be calculated even
for transition states that are not located at saddle
points. This is called generalized transition state theory
or GTST.

To caiculate GTST rate constants practically we
define a reaction coordinate s that measures distance
along the minimum energy path (MEP). We put the
origin (s = 0) at the saddle point and define the positive
progress direction as that leading from reactants to
products (i.e., we put reactants at s = — o and pro-
ducts at s = + o). Ateach point, labelied by s, along
the reaction path we define a generalized transition
state as a coordinate space hypersurface, locally flat
and perpendicular to the reaction path but curved
elsewhere if necessary to ensure that it divides reac-
tants from products. The free energy change in passing
from reactants to such a generalized transition state is
computed strictly analogously to AG**? (T) and is called
AG®™ (T,s) where, to make the superscript less cumber-
some, GTST is shortened to GT. By corollary 2 the best
estimate of the rate constant is

kCVT — H kT (] GT.0

(T) = min Y K" exp [- AG™ (T,s)/RT] (5)
where CVT denotes canonical variational transition-
state-theory. In practice, in order to treat the threshold
as accurately as possible, we use a dividing surface that
depends on total energy as well as coordinates; this
introduces a (generally small) correction into the above
scheme and results in a rate constant called k'™ (T),
where | denotes improved (***).

So far we have discussed the reaction using classical
mechanics. Classically the partition functions used to
evaluate AG®™ (T) are phase space integrals. To intro-
duce quantum effects we first replace these phase
space integrals by quantal partition functions, i.e., sums
of Boltzmann factors for discrete states. Since the
reaction coordinate is missing in the generalized transi-
tion state, it remains classical at this stage. We quantize
it by introducing a ground-state transmission coefficient
K (T). This is defined by :

KE(T) = Kgsarma (T (T) (6)

where k'“"° (T) is what k"7 (T) reduces to if only the
ground state is included in the internal partition func-
tions, and Kgama (T) is our best estimate of the true
ground-state rate constant. We estimate kg (T) by
semiclassical methods that are consistent with ICVT in
that they reduce « (T) to unity in the high-temperature
limit, where reaction-coordinate motion is effectively
classical. Since « (T) differs from unity only at lower
temperatures it is reasonable to base it on the ground
state.

As just mentioned, we estimate k&... (T) semiclassi-
cally. In one dimension the semiclassical wave function
is given by exp (/S/h) where S is an action integral given
by

s= ["2ule - Vi o

7
where x is the coordinate, V (x) is the potential, and E is
the energy. In tunneling regions the action integral is
imaginary and the wave function decays exponentially.
For a many-body system the one-dimensional action
integral becomes an integral along a path through a
multidimensional space. Since the tunneling probability
is proportional to |y|? on the other side of the barrier,
the dominant contribution to the tunneling comes from
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Fig. 2. — Minimum energy path (solid) and typical tunneling path
(dotted) for A + BC— AB + C: (a) vs. R (A—B) and R (B—C), (b) vs.
two mass-scaled cartesian coordinates for a typical case of B heavier
than A and C, (c} same as b for central atom much lighter than A and C.

a tunneling path along which the imaginary action
integral is a minimum. In the semiclassical limit the
tunneling probability is simply exp (— 2|S|/h) where S
is the imaginary action integral for the dominant tunne-
ling path. In order to analyze the integral in the simplest
possible terms we scale the coordinates so that  is the
same in all directions {so that (2 )" in the multidimen-
sional analog of (7) may be pulled out of the integral);
this simply requires multiplying the cartesian coordina-
tes of each atom by the square root of its mass. In the
new coordinate system the minimization of the imagi-
nary action integral involves a compromise between
paths with small barriers and short tunneling lengths.

At this point we must consider the curvature of the
MEP. Figure 2a, which is schematic, shows a typical plot
of the MEP and also of a possible tudneling path. Both
paths are shown as functions of the bond coordinates.
Parts b and ¢ show the same paths in mass-scaled
coordinates for transfer of a heavy atom (part b) and a
light atom (part c). In general, even for polyatomic A, B,
and C, the angle, in the multidimensional mass-scaled
coordinate system, between the reactant portion of the
MEP and the product portion is given by

172
B = arctan (m‘“’—cm") (8)
mame
where my is the mass of X. This is called the skew angle.
As discussed above the optimum tunneling path results
from a compromise between a short path and a low
barrier. As the tunneling path deviates more and more
from the MEP, the potential energy (barrier) tends to
increase. For heavy B the optimum path, i.e., the one
with the minimum imaginary S, usually involves only a
little corner cutting, whereas for light B, because of the
small skew angle and large resulting reaction-path
curvature, a small increase in the potential resuits in a
more significant path-shortering factor, and corner
cutting may be severe. We have developed approxima-
tions to calculate S by one-dimensional quadratures
along multidimensional tunneling paths for the smali-
curvature [“small-curvature semiclassical adiabatic
ground-state”’ transmission coefficient, «°°**° (T)] and
large-curvature [“large-curvature ground-state’ trans-
mission coefficient, k'“®(T)] limits and also for the
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general case 12, 15, 16. In the latter case we consider a
one-parameter sequence of tunneling paths between
the MEP and the ‘straight-across path” (which
connects the two translational turning points by a
straight line through the mass-scaled cartesian system),
and we find the least-(imaginary)-action one numeri-
cally. This yields the “least-action ground state’ trans-
mission coefficient, k*°(T}). The LCG and the LAG
approximations also include contributions from paths
with termini farther out than the translational turning
points for the given energy.
The final rate constant is written

leVT/G (T) - KG (T) kICVT (T) (9)

We have alsc extended these methods to predict rate
constants for state-selected vibrationally excited reac-
tants (M0Me%e)

3. Testing

It was of course not clear without testing that the
predictions of this method would be accurate. Since
comparisons to experiment involve uncertainties due to
the generally unknown potential energy surface we
tested the theory extensively against accurate quantal
calculations by performing ICVT/G calculations for the
same potential energy surface as used for the quantal
study. Unfortunately many of the quantal studies are for
reduced dimensionality (collinear collisions), but the few
available three-dimensional quantal studies led to a
similar conclusion as the one-dimensional tests, namely
the ICVT/G predictions are remarkably accurate, typi-
cally within a factor of two or better, often much
better (°).

Since our last review (*) we have continued to test
the methods in several new studies.

In the first (**) we showed that the accuracy is
improved for both thermal and state-selected rates if
anharmonic corrections to stretching vibrations are
computed by the WKB method rather than by the Morse
model used for earlier studies.

In another test (**) we considered a collinear reaction
for which k' (T) differs greatly from conventional
transition state theory but tunneling is negligible. Over
a range of a factor of ten in temperature, 100-1 000 K,
the errors in conventional transition state theory varied
from 1.7 x 10 to 19, whereas those in ICVT varied from
0.77 to 1.42. Even at 40 K, where conventional transition
state theory overestimated the exact result by over ten
orders of magnitude, ICVT remained accurate within a
factor of 3. This is a very important test case because
it shows the validity of the ICVT dynamical bottlenecks
even for a case with very large reaction-path curvature
where the dividing surface must also be very curved.

We also considered an H-atom transfer that is
dominated = by tunneling, namely collinear
Cl + HBr—HCI + Br on a model high-barrier (11
kcal/mol) potential energy surface (**). This is an interes-
ting case because for temperatures below 400 K the
reaction is dominated by tunneling into a vibrationally
excited state of HCl. We found that the accuracy of the
ICVT/LAG method for this reaction is very good. It leads
to errors of a factor of 1.55 or less for the 200-1 000 K
temperature range, and the error increases to a factor
of 1.88 at 2400 K.

Very recently it has been possible to greatly extend
the number of comparisons of our approximate me-
thods to accurate quantal studies for three-dimensionat
reactions, and we have reported several new such tests,

bringing the total number of three-dimensional tests to
nine (*°). The only temperature for which comparisons
are possible for all nine cases is 300 K. At this tempe-
rature the average discrepancy between the ICVT/LAG
resuits and the accurate quantal ones is only 12%.
Furthermore in only one case is the discrepancy large
than 26 %.

Two additional sets of tests have been performed for
rate constants of state-selected vibrationally excited
molecules by comparison of our approximate results to
accurate quantal calculations for a collinear reactions.
The first set was performed for the reactions of H, D,
and T with vibrationally excited F, (*%). The ICVT/LAG
results agree with the accurate quantal ones within 10 %
or better for ali three reactions for the whole tempera-
ture range examined, 300-1 260 K. The second set of
tests involved the reaction of 0 with vibrationally excited
H, and the backward reaction of H with vibrationally
excited OH on three quite different potential energy
surfaces {™). In this case we proposed a new model in
which reaction is assumed to be vibrationally adiabatic
only over the partial reaction path (PRP) up to the first
occurrence in praceeding from reactants to products of
an appreciable local maximum in the reaction-path
curvature. The average errors in both the forward and
backward PRP-ICVT/LA rate constants were less than a
factor of two.

4. Applications

We have performed several additional applications to
three-dimensional hydrogen atom transfer reactions
since the review of Ref. bg. These include the reactions
F+Hy, Dy and HD (®®**) and OH + H, (™),
Ct + H,, both for thermal kinetic isotope effects {*') and
for state-selected vibrationally excited H, (*); H + H,
and D + H,, again both thermal rate constants (*) and
those for state-selected vibrationally excited H, (%9**);
and O + H,, HD, and D, for thermal rate constants
{B"***) and for state-selected vibrationally excited H,
{*™). We aiso made applications Mu + F, (™), Cl, (***),
and Br; (*) and to hydride transfer in nicotinamide
adenine dinucleotide analogs {*).

Two newer areas of application are to surface
diffusion and reactions of polyatomics. In the former we
reported calculations for diffusion of H, D, and T on the
{100) face of Cu (®**) For reactions of polyatomics
we have reported a preliminary study of CH, + H;, -
CH4 + H (M)_ )

Several of the above applications were discussed at
the symposium.
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