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predicted by Gillespie’s VSEPR mode140 which requires 
d-orbital participation. 
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with these and other concepts is clearly needed. Nev- 
ertheless, it has been demonstrated in measured or 
calculated atomic stopping powers that the hierarchy 
double bond > ring structure > single bond holds for 
C, 0, and S with maximum differences N 28%,17%, 
and 570,  respectively. It is proposed that stopping 
power measurements may serve as a useful supplement 
to existing spectroscopic techniques currently used by 
chemists to  determine bond order. For example, 
stopping powers can be used34 to assign a resonance 
hybrid structure39 consisting of one S-0 double bond 
and one S-0 single bond for SOz and a single coordinate 
covalent bond for the third oxygen atom in dimethyl 
sulfite, in contradistinction to double-bonded structures 
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The two most accurate practical methods for calcu- 
lating the rate constants for thermally activated bi- 
molecular reactions in the gas phase are trajectory 
 calculation^^-^ and transition-state theory. In conven- 
tional formulations the transition state is a surface in 
configuration space that divides reactants from prod- 
ucts and passes through the saddle point of the poten- 
tial-energy s ~ r f a c e . ~ - ~ ~  In order to improve on this 
treatment, we have been studying the effects on the 
computed rate constants of using generalized transition 
states. Generalized transition states are surfaces in 
phase space dividing reactants from products but not 
necessarily passing through a saddle point. Instead we 
determine the position of the dividing surface using a 
variational ~r i te r ion . l l -~~ This general procedure is 
called variational transition-state theory. We have re- 
cently completed several appl ica t ion~~~-’~  and a pre- 
liminary review2 for collinear reactions and several ap- 
p l i ~ a t i o n s ~ ~ , ~ ~ J ~ ~ ~  to three-dimensional reactions. In this 
Account we provide a general introduction to this work 
and survey some of the results. 

I t  is customary to derive transition-state theory by 
postulating a quasiequilibrium between transition-state 
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species and reactanh4-10 Although this is valid, the 
conditions for validity of transition-state theory become 
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Figure 1. Strings across a Ping-Pong table or trajectories across 
a phase-space dividing surface. The trajectories are numbered, 
and the forward crossings of the dividing surface are lettered. 

clearer when it is formulated dynamically. In this 
language and stated classically, the fundamental as- 
sumption of transition-state theory is that the net rate 
of forward reaction at  equilibrium equals the equilib- 
rium flux in the product direction through the transi- 
tion state, where the transition state is a surface in 
phase space dividing reactants from products.31 A 
consequence of the fundamental assumption is that 
classical transition-state theory with unit transmission 
coefficient agrees with exact classical dynamics if and 
only if all trajectories through the transition-state di- 
viding surface cross it only once.32 This may be il- 
lustrated by a strings-across-the-Ping-Pong-table dia- 
gram,33i34 such as Figure l, The strings respresent 
trajectories in a system at  equilibrium. The left side, 
middle, and right side of the table represent the reac- 
tants, the transition-state dividing surface, and prod- 
ucts. In Figure 1 there are six forward-crossing tra- 
jectories at  equilibrium at  the dividing surface, and 
transition-state theory counts all of them as contrib- 
uting to the net one-way reactive flux. Notice, however, 
that the net one-way flux is only two trajectories in the 
example shown. Using this analogy it is easy to see that 
the errors in classical transition-state theory may be 
classified as (i) nonreactive trajectories which cross the 
dividing surface toward products and then recross to- 
ward reactants, e.g., trajectory 2, (ii) trajectories which 
originate in the product region, cross the dividing sur- 
face, but are ultimately nonreactive, e.g., trajectory 5,  
and (iii) reactive trajectories which cross the dividing 
surface more than once, e.g., trajectories 3 and 6 (tra- 
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jectory 3 contributes two forward-crossing trajectories 
at the dividing surface but only one net forward-reactive 
one; trajectory 6 contributes one forward-crossing tra- 
jectory at the dividing surface but contributes nothing 
to the forward reaction). This example clearly illus- 
trates that the breakdown of transition-state theory is 
due entirely to recrossing effects. If the transition state 
were truly located at  a bottleneck to which trajectories, 
having left, never returned, transition-state theory 
would give exact equilibrium rate constants in a clas- 
sical world. The illustration also makes clear an im- 
portant corollary of the fundamental theorem: If tra- 
jectories do recross the transition-state dividing surface, 
classical transition-state theory with unit transmission 
coefficient overestimates the classical equilibrium rate. 

Conventionally one locates the transition-state di- 
viding surface so that it passes through the saddle point, 
which is the highest energy point on the minimum en- 
ergy path (MEP) from reactants to products. It is clear 
that one can define generalized transition states at other 
locations and calculate the one-way equilibrium flux in 
the product direction through any of them. If one al- 
lows unconstrained variations of the dividing surface 
in phase space, one can calculate the exact classical 
equilibrium rate constant this way. If, however, one 
constrains the dividing surface to be a function of a t  
most the coordinates and the total energy (and for 
three-dimensional reactions perhaps also the total an- 
gular momentum), one obtains an upper bound, which 
may sometimes be exact. This procedure is called 
classical variational transition-state theory. 

Thermal equilibrium at a given temperature T cor- 
responds to a canonical ensemble. It is useful to con- 
sider a canonical ensemble as a Boltzmann distribution 
of microcanonical ensembles, each of which corresponds 
to a given total energy E. Similarly the equilibrium rate 
constant k ( T )  may be written as an average over mi- 
crocanonical rate constants k (E) :  

k (T )  = [aR(T)]-l J m  dE exp(-E/kT) 4R(E) k(E) 
(1) 

where aR(T) and $R(E) are the reactants' partition 
function per unit volume and density of states per unit 
energy and volume, respectively. Notice that 

aR(T) = Irn dE exp(-E/kT) cbR(E) (2) 

Equations 1 and 2 illustrate that the thermal rate 
constant is a properly weighted average of the micro- 
canonical one. The conventional transition state theory 
results for k ( T )  and k(E) are 

0 

0 

and 

(3) 

(4) 

where Q*(T) is the transition-state partition function, 
AV is the potential energy at  the saddle point, and 
W(E) is the number of energetically available internal 
states of the transition state. Classically the number 
of states is a volume in phase space in units of one 
power of h for each degree of freedom, and classical 
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partition functions are phase space integrals. We have 
taken the zeroes of energy for Q*(T) and for QR(T) and 
E as the saddle point energy and the bottom of the 
reactant potential well, respectively. 

We define the reaction coordinate s as the distance 
along the MEP from the saddle point. Thus s = -m for 
reactants and s = +m for products. For each s we define 
a generalized transition state perpendicular to the MEP 
and intersecting it at that s. Then generalized transi- 
tion-state theory (GT) rate constants are given as 

and 

where the phase-space integrals QGT(T,s) and WT(E, s )  
are defined analogously to Q*(T) and W(E) but for the 
dividing surface at s, and AV(s) is the classical potential 
energy along the minimum energy reaction path. AV(s) 
is called the classical potential-energy barrier because 
zero-point effects are not included in it. 

We distinguish three levels of variational transition- 
state theory (VTST): canonical variational theory 
(CVT),17 improved canonical variational theory (ICV- 
T),18 and microcanonical variational theory (pVT).17 In 
pVT we find a best dividing surface for each E to 
minimize f lT (E , s )  and hence kGT(E,s). The resulting 
microcanonical rate constant kFw(E) is substituted into 
(l), which is integrated numerically to yield a thermal 
rate constant that is called kpw(T). In ICVT we choose 
the dividing surface location to be at the microcanonical 
variational transition state for energies below the pVT 
threshold; this makes kICVT(E) zero a t  these energies. 
Then for each T we choose a single best compromise 
dividing surface to minimize the contribution of all 
higher energies to the thermal rate constant a t  that 
temperature. The result is called kICVT( T). In CVT we 
do not separate out the contributions from below 
threshold, but rather for each T we choose one single 
best compromise dividing surface which directly min- 
imizes IzGT(T,s) for that temperature. The result is 
called hCVT(T). 

The CVT may be given another interpretation by 
using the quasithermodynamic representation of tran- 
sition-state theory. For the conventional theory this 
involves rewriting (3) as 

k* (T)  = Y K O e - A G * ~ o ( T ) / R T  (7) 

where KO is the reciprocal of the standard-state con- 
centration and AG*?O is the free energy of activation in 
the standard state. The generalization is 

where (5) and (8) together define a generalized free 
energy of activation curve AGGT,O( T,s). This formula- 
tion shows that minimization of kGT( T,s) is equivalent 
to maximization of AGGTso( T,s); thus the CVT may also 
be called the method of free-energy curves. For dis- 
cussion purposes we may associate QGT(T,s)/+R( T )  in 
(5) with “entropic” effects and exp[-AV(s)/RT] with 
“energetic”  effect^.^^^^^ Then we see that conventional 

Table I 
Ratios of Generalized Transition-State Theory 

Rate Constants to Exact Classical Dynamical Ones 
a t  300 K (Upper Entry) and 2400 K (Lower Entry) 

for Several Collinear Reactions 
reactiona * CVT ICVT uVT 

H t H, 1.0 1.0 1.0 1.0 
1.5 1.5 1.3 1.2 

C l t  HD 1.1 1.1 1.1 1.0 
5.0 2.8 2.7 2.5 

2.0 1.8 1.8 1.8 
F t H, 1.0 1.0 1.0 1.0 

Br t H, 1.1 1.1 1.1 1.1 
4.2 3.9 3.9 3.7 

I +  H, 1.7 1.0 1.0 1.0 
2.1 1.0 1.0 1.0 

H + C1, 1.0 1.0 1.0 1.0 
1.3 1.3 1.3 1.1 

5’C t H5’Cb 4.3 2.0 1.4 1.3 
11.4 2.0 1.9 1.7 

a For information about potential-energy surfaces, see 
Three-body model of C,H, + H-C,H, - ref 1 7  and 18. 

C,H,-H t C,H,. 

transition-state theory chooses the dividing surface 
solely on the basis of energetic considerations while the 
CVT uses a free-energy criterion which involves a com- 
promise of energetic and entropic effects. 

So far we have not given the exact definition of the 
minimum-energy path. The minimum-energy path may 
be defined by joining the path of steepest descent from 
the saddle point to reactants to that from the saddle 
point to products. This definition yields a different 
path through configuration space for different choices 
of coordinate system. It has been suggested by several 
~ ~ r k e r s ~ ~ y ~ ~ ~ ~  that the way to resolve this ambiguity is 
to use a coordinate system that diagonalizes the internal 
kinetic energy as a quadratic form in momenta with the 
same reduced mass for every direction. This reduces 
the motion to that of a frictionless mass point governed 
by the potential energy as a function of these coordi- 
nates. The path of steepest descents in this coordinate 
system corresponds to the trajectory of a damped sys- 
tem whose motion is continuously stopped and allowed 
to restart under the influence of the potential-energy 
hypersurface, i.e., to a locally zero-kinetic-energy tra- 
jectory. This is the definition we use. 
Classical Collinear Reactions 

To test the power of the variational methods and to 
study the quantitative importance of classical recrossing 
effects we compared17J8 classical generalized-transi- 
tion-state-theory calculations for nine collinear systems 
to classical trajectory calculations. Ratios of the ap- 
proximate rate constants to the exact classical dynam- 
ical ones for several of these systems are shown in Table 
I. At energies just sufficient for a trajectory to cross 
the saddle point, conventional classical transition-state 
theory is exact. In fact it is usually accurate enough at  
low energy that the error is the 300-K classical rate 
constant is usually 10% or less. As the temperature is 
increased, the error in conventional transition-state 
theory becomes large, typically a factor of 1.5 at  1000 
K and a factor of 2 at  2400 K. In some cases the error 

(35) D. G. Truhlar and A. Kuppermann, J. Am. Chem. SOC., 93,1840 

(36) K. Fukui, J .  Phys. Chem., 74,4161 (1970); K. Fukui, S. Kato, and 

(37) H. F. Schafer 111, Chem. Brit . ,  11, 227 (1975). 

(1970). 

H. Fujimoto, J. Am. Chem. SOC., 97, 1 (1975). 
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Figure 2. Trajectories and potential-energy contours (solid 
curves) for C1+ HD. The abscissa is the distance from C1 to the 
center of mass of HD and the ordinate is the HD internuclear 
distance scaled to the same reduced mass. The straight line in 
the corner region is the conventional transition-state dividing 
surface for a total energy of 12.67 kcal/mol(5.00 kcal/mol above 
the saddle point). The dashed trajectory is a nonreactive C1+ 
HD collision, the dotted trajectory is a nonreactive C1H + D 
collision, and the dash-dot trajectory is reactive. 

is much larger; e.g., a hydrogen atom being transferred 
between two similar, heavy radicals may hop back and 
forth several times, causing a severe breakdown of the 
no-recrossing assumption for a symmetric dividing 
surface. Table I shows that considerable improvement 
can be obtained by optimizing the location of the di- 
viding surface using the variational bound property. 

Figure 2 is an illustration of some simple trajectories 
that recross the conventional transition-state dividing 
surface. Three collinear trajectories for C1 + HD are 
shown, two of which recross the conventional transition 
state. These trajectories, and the results for this system 
in Table I, were computed by using the realistic (GSW) 
potential-energy surface of Stern et al.,38 and the tra- 
jectories are shown superposed on a contour map of that 
surface. For C1 + HD conventional transition-state 
theory overestimates the exact classical dynamical re- 
sult by a factor of 1.99 at 1000 K. At this temperature 
the classical canonical variational transition state is 
located 0 . 1 5 ~ ~  past the saddle point (in coordinates 
scaled to the reduced mass for C1+ HD), and the CVT 
reduces the error to a factor of 1.71. The ICVT and 
pVT further reduce the error at  this temperature to 
factors of 1.51 and 1.35, respectively. In general the 
differences between CVT, ICVT, and pVT are much 
smaller for quantized systems because of zero-point 
energy. 

Some earlier s t u d i e ~ ~ ~ v ~ ~  suggested that the high-en- 
ergy breakdown of conventional classical transition- 
state theory might be less severe in three dimensions 
than in one. Thus Chapman et al.39 found such a result 
for H + H2. Comparison of the three-dimensional re- 
sults of Koeppl and Karplusa for a model system to our 
collinear ones17 for the same system shows about the 
same deviation at  4.5 kcal/mol above the classical 
barrier but less deviation in three dimensions than in 

(38) M. J. Stern, A. Persky, and F. Klein, J. Chem. Phys., 58, 5697 

(39) S. Chapman, S. M. Hornstein, and W. H. Miller, J. Am. Chem. 

(40) G. W. Koeppl and M. Karplus, J .  Chern. Phys., 55,4667 (1971). 

(1973). 

Soc., 97, 892 (1975). 

one dimension at  10 kcal/mol above the barrier. 
However we have found several other systems for which 
conventional transition-state theory appears to break 
down more severly at  high temperature in three di- 
mensions than in one dimension. Typically, as in H + 
C12,22 this occurs where the chief variational effect is to 
tighten the bending vibration that is created when the 
generalized activated complex is formed. 

Quantal Collinear Reactions 
Quantum mechanical effects cannot be ignored for 

real chemical reactions. The most important effects are 
quantized energy levels and barrier penetration. If one 
attempts to translate the fundamental assumption of 
transition-state theory into quantum mechanics, the 
result is ambiguous because the fundamental assump- 
tion of transition-state theory involves simultaneous 
specification of momentum and position along the re- 
action ~ o o r d i n a t e . ~ ~  The usual method of quantizing 
classical transition-state theory is to replace all classical 
partition functions for bound degrees of freedom of 
reactants and transition states by quantum mechanical 
partition functions computed from quantized energy 
le~els;~-lO we adopt this same scheme for generalized 
transition-state theory. Quantizing the partition 
functions still leaves the reaction-coordinate motion 
classical, and thus it neglects tunneling. We attempt 
to include such barrier penetration effects in a multi- 
plicative transmission coefficient. A difficulty with 
these methods of including quantal effects on bound 
degrees of freedom and the reaction coordinate is that 
they do not adequately account for the nonseparability 
of the reaction coordinate from the other degrees of 
freedom.42 

To calculate QGT(T,s) for (5) we must calculate energy 
levels cint(a,s) for the bound degrees of freedom with 
quantum numbers a as functions of the reaction coor- 
dinate s. We obtain cint(a,s) by fixing s and applying 
standard techniques to the bound degrees of freedom: 
we calculate stretching energies using Morse approxi- 
mations, and for three-dimensional reactions we calcu- 
late rotational energies by the rigid-rotator approxi- 
mation and bending energies by a harmonic-plus- 
quartic43 approximation. Since s is fixed, the other 
degrees of freedom are being treated adiabatically with 
respect to reaction-coordinate motion. The resulting 
cint(a,s) may also be used to calculate rotationally and 
vibrationally adiabatic potential curves 

Va(a,s) = AV(s)  + Eint(a,s)  (9 )  
which may be plotted as adiabatic rotational-vibra- 
tional correlation diagrams. These potential curves are 
the effective potentials for reaction-coordinate motion 
under the assumption that not only the electronic de- 
grees of freedom adjust adiabatically to motion along 
s [this is the Born-Oppenheimer approximation leading 
to the appearance of the adiabatic electronic energy in 
AV(s ) ]  but also all other degrees of freedom adjust 
adiabatically, Le., preserve their quantum numbers. 

Adiabatic potential curves may also be used to cal- 
culate rate constants by the adiabatic theory of reac- 
t iow4 In this theory one calculates state-selected rate 

(41) W. H. Miller, J .  Chern. Phys., 61, 1823 (1974). 
(42) W. H. Miller, Acc. Chem. Res., 9, 306 (1976). 
(43) D. G. Truhlar, J.  Mol. Spectrosc., 38, 415 (1971); B. C. Garrett 

and D. G. Truhlar, J. Phys. Chem., 83, 1915 (1979). 
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constants for each set a of quantum numbers by making 
the adiabatic approximation. With this approximation, 
for classical reaction-coordinate motion, if a system 
initially in state a has enough total energy to surmount 
the maximum of Va(a,s) as a function of s, it reacts; if 
not, it does not. The thermal rate constant is the ap- 
propriate thermal average of the state-selected rate 
constants. Even in the classical limit for all degrees of 
freedom, this does not involve specification of a unique 
dividing surface in phase space; thus the adiabatic 
theory of reactions is not strictly a generalized transi- 
tion-state theory. However, we have shown that, as long 
as the reaction-coordinate motion is treated classically, 
the adiabatic theory of reactions is 100% equivalent to 
microcanonical variational transition-state theory.17 
Thus we call it adiabatic transition-state theory (ATST 
or simply A). 

The adiabatic derivation of pVT is very useful for 
consistently incorporating quantum mechanical effects 
on the reaction coordinate in generalized transition- 
state theory. Thermal rate constants are usually dom- 
inated by low-energy threshold regions where the adi- 
abatic approximation is most valid and quantal effects 
are largest. The calculation of quantal reaction prob- 
abilities requires a state-to-state language, and the 
equivalence of pVT and ATST shows that the adiabatic 
approximation provides the consistent conversion of 
transition-state theory to state-to-state language. Since 
quantum effects are most important a t  low temperature 
where the ground state (denoted a = G )  eventually 
becomes the dominant one, we have improved the 
treatment of the threshold region by including an 
adiabatic ground-state transmission coefficient in our 
calculations.21 We have developed consistent proce- 
dures for doing this for all three versions of variational 
transition-state theory and for conventional transi- 
tion-state theory. We use quantized internal energies 
for the whole calculation (here and in all that follows), 
but first we perform calculations in which the reac- 
tion-coordinate motion is still being treated classically. 
The resulting thermal rate constants are called k’(T), 
kCW( T) ,  kIcvT( T) ,  and k”( T).  The ground-state rate 
constant computed with ATST and this same mixture 
of quantized and classical parts is called kA(a = G,T). 
If however, the one-dimensional motion governed by the 
ground-state adiabatic barrier Va(a = s,T)  is computed 
quantum mechanically we call the ATST ground-state 
rate constant kVA(a = G,T). We define the adiabatic 
ground-state transmission coefficient as 

kVA(a = G,T) 
kA(a  = G,T) 

,VAG(T) = 

At low enough temperature, both k!-’w(T) and kICw(T) 
tend to hA(a = G,T). Thus K ~ ~ ~ ( T )  also becomes an 
appropriate quantal correction for kpw(T) and kICvT(T). 
We define corrected rate constants by 

k r V T I V A G (  r) = ~ P V T (  T ) x V A G (  T )  (11) 

k I C V T / V A G ( T )  = k I C V T ( n K V A G ( T )  (12) 

and 

At low temperature, kP*IvAG(T) and kICVTIVAG( T )  both 
tend to kVA(a = G,T). If more than one rotational- 

(44) D. G. Truhlar, J .  Chem. Phys. 53, 2041 (1970). 

vibrational state makes an important contribution to 
the rate a t  temperatures where tunneling is still im- 
portant, then this method of including quantal effects 
on reaction-coordinate motion assumes that the im- 
portant rotational-vibrational states all have similar 
transmission coefficients. As the temperature is raised 
and more states contribute, tunneling becomes less im- 
portant, K’~’(T) -+ 1, and it no longer matters that the 
transmission coefficient is based on the ground state. 
Unlike kpvT(T) and kICVT(T), both kCVT(T) and k*(7‘) 
may have contributions from energies below the ATST 
threshold. Thus the consistent formulation of trans- 
mission coefficients for CVT and conventional transi- 
tion-state theory is more c o m p l i ~ a t e d . ~ ~ ! ~ ~  

There are two more considerations involved in kVA(a 
= G,T). First of all, the transmission probabilities for 
scattering by the vibrationally adiabatic barrier should 
be calculated quantum mechanically. Although 
straightforward methods exist, it is more conventient 
to use semiclassical methods, such as a uniform WKB 
method. We have systematically tested such semi- 
classical calculations against fully quantum mechanical 
 calculation^.^^-^^,^^ Although quantitative differences 
exist, the semiclassical methods are usually adequate. 
When tunneling is calculated semiclassically, we replace 
the acronym VAG by SAG. The next consideration is 
the choice of tunneling path. The adiabatic approxi- 
mation reduces the problem of motion in many di- 
mensions on a potential-energy hypersurface to motion 
in one dimension on an effective potential Va(a,[). The 
coordinate [ is determined by specifying a particular 
path through the multidimensional space. For instance, 
if the system follows the MEP, then [ is just the reac- 
tion coordinate s. Streamlines of the accurate quantum 
mechanical wavefunction for collinear H + H2 at  tun- 
neling energies show that the tunneling flux does not 
follow the MEP; rather the hydrogen-atom transfer 
occurs when the end atoms are farther apart than at  the 
saddle point.46 This corresponds to “cutting the 
corner” in a plot like Figure 2. This is the opposite of 
a bobsled effect, but Marcus has shown by analytical 
mechanics that when the kinetic energy is negative (as 
it is for tunneling), the bobsled effect is also negative47 
(i.e., the motion is directed to the concave rather than 
the convex side of the MEP). In fact, according to 
classical S matrix theory tunneling can be described by 
classical mechanics with imaginary or complex-valued 
time increments, coordinates, and momenta.48 
Therefore the best tunneling path is obtained by ana- 
lytic continuation of the classical mechanical principle 
of least action. By examining a sequence of constrained 
and parameterized paths for collinear H + H2 with this 
variational principle, Marcus and Coltrin found that the 
path of outer classical turning points is a better tun- 
neling path than the MEP.49 (The path of outer 
classical turning points roughly parallels the MEP in 
a plot like Figure 2, but it is displaced to the concave 
side.) We have calculated transmission coefficients for 
the collinear path of outer classical turning points 
(which we call the Marcus-Coltrin path or MCP) as well 

(45) B. C. Garrett and D. G. Truhlar, J.  Phys. Chem., 83,2921 (1979). 
(46) A. Kuppermann, J. T. Adams, and D. G. Truhlar, Abstr. Pup. Int. 

Conf. Phys. Electron. At. Collisions, 8th, 149 (1973). 
(47) R. A. Marcus, J.  Chem. Phys., 45, 4493 (1966); 49, 2617 (1968). 
(48) W. H. Miller, Acc. Chem. Res., 4, 161 (1971); W. H. Miller, Adu. 

Chem. Phys., 25, 69 (1974); 30, 77 (1975). 
(49) R. A. Marcus and M. E. Coltrin, J.  Chem. Phys., 67,2609 (1977). 
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as the MEP for several reactions, and we find that the 
MCP is much s ~ p e r i o r . ~ ~ - ~ ~ ~ ~ ~  The resulting transmis- 
sion coefficients are called K ~ ~ ~ ~ ~ ~ (  7') for quantal 
calculations and KMCPSAG( 7') for semiclassical calcula- 
tions. 

The transmission coefficients defined here account 
for quantal effects on reaction-coordinate motion. They 
are greater than unity when the effect of tunneling is 
important. Sometimes they are less than unity because 
of nonclassical reflection in collisions with enough en- 
ergy to surmount the barrier classically. 

An important consequence of the ad hoc nature of the 
classical-to-quantal correspondence in transition-state 
theory is that the rigorous bound on the classical 
equilibrium rate constant is lost in the real quantum 
mechanical world. Thus one of our first questions is: 
can one still obtain better results for real quantum 
mechanical systems by variationally locating the tran- 
sition-state dividing surface to minimize the calculated 
rate constant? One way to study this question is by 
comparing variational transition-state theory calcula- 
tions for collinear reactions on realistic potential-energy 
surfaces to rate constants calculated for these same 
collinear reactions with the same potential-energy 
surfaces by accurate quantal scattering theory.14-24 The 
restriction to collinear reactions at  this stage is neces- 
sitated by the fact that accurate quantum scattering 
calculations are generally unavailable for three-dimen- 
sional reactions. The reason one wishes to study the 
validity of transition-state theory by comparing its 
predictions to the results of accurate quantal scattering 
theory rather than to experiment is that this provides 
a direct test of the dynamical assumptions for a given 
potential-energy surface. On the other hand, compar- 
ison to experiment is complicated by the uncertainties 
in the potential-energy surface, which may either com- 
pound or partially cancel the inaccuracies in the dy- 
namical treatment. Of course, if we succeed in ob- 
taining a treatment which produces trustworthy results 
for theoretical systems with known potential-energy 
surfaces, then we hope we can ultimately use that 
treatment to interpret experiments and thereby extract 
reliable information from them about unknown poten- 
tial-energy surfaces. 

In testing the approximate theories against accurate 
quantal dynamics we are interested in knowing not just 
their relative accuracy but also their absolute accuracy. 
The classical tests of conventional and variational 
transition-state theory do not provide quantitative 
guides here because the typical contributions to classical 
reaction rates at  temperature T come from energies up 
to a few kT above the barrier height. For most of the 
cases in Table I the accurate quantum mechanical rate 
is very small at  such energies because of zero-point 
effects a t  the dividing surface. 

In Table I1 we tabulate some ratios of approximate 
collinear rate constants20~21*23~24 to accurate quantal 
ones20~23~24~50~51 for given potential-energy s u r f a ~ e s . ~ * ~ ~ ~ ~ @  

(50) D. G. Truhlar and A. Kuppermann, J.  Chem. Phys., 56, 2232 
(1972). 

(51) A. Persky and M. Baer, J .  Chem. Phys., 60, 113 (1974); M. Baer, 
U. Halavee, and A. Persky, J .  Chem. Phys., 61,5122 (1974); J. C. Gray, 
D. G. Truhlar, L. Clemens, J. W. Duff, F. M. Chapman, Jr., G. 0. Morrell, 
and E. F. Hayes, J. Chem. Phys., 69, 240 (1978). 

(52) B. Liu, J .  Chem. Phys., 58, 1925 (1973); B. Liu and P. Siegbahn, 
ibid., 68, 2457 (1978); D. G. Truhlar and C. J. Horowitz, ibid., 68, 2466 
(1978), 71, 1514E (1979). 

Table I1 
Ratios of Approximate Calculated Rate 

Constants to Accurate Quantum Mechanical 
Ones for Several Collinear Reactions 

method 300K 600K 1500K 

* * /w 
ICVT 
ICVTIMEPVAG 
ICVT/MCPSAG 
ICVT/MCPVAG 

* 
+ /w 
ICVT 
ICVTIMEPVAG 
ICVT/MCPSAG 
ICVT/MCPVAG 

* * /w 
ICVT 
ICVTIMEPVAG 
ICVT/MCPS AG 
ICVT/MCPVAG 

* * /w 
ICVT 
ICVTIMEPVAG 
ICVT/MCPS AG 
ICVTIMCPVAG 

* 
t: /w 
ICVT 
ICVT/MCPSAG 
ICVTIMCPVAG 

* 
+ /w 
ICVT 
ICVT/MCPSAG 

H + H, 
0.30 
0.92 
0.30 
0.31 
0.84 
0.88 

C1 + T, 
0.49 
0.85 
0.48 
0.69 
0.80 
0.99 

T +  HD 
0.37 
1.01 
0.22 
0.32 
0.46 
0.50 

I + H, 
12.1 
13.4 
1.09 
1.01 
1.09 
1.01 

F +  H, 
2.88 
3.24 
1.74 
1.81 
1.73 

D + F, 
0.84 
1.00 
0.82 
0.98 

0.70 
1.06 
0.69 
0.64 
0.86 
0.85 

0.85 
1.01 
0.76 
0.87 
0.86 
1.00 

0.72 
1.03 
0.53 
0.60 
0.64 
0.71 

3.66 
3.76 
1.05 
0.99 
1.05 
0.99 

2.98 
3.07 
2.31 
2.34 
2.28 

0.97 
1.02 
0.95 
0.99 

1.06 
1.15 
0.93 
0.88 
0.96 
0.95 

1.51 
1.55 
1.07 
1.12 
1.09 
1.18 

1.36 
1.45 
0.94 
0.97 
0.95 
1.02 

2.12 
2.13 
1.03 
1.00 
1.03 
1.00 

3.01 
3.03 
2.70 
2.73 
2.67 

1.04" 
1.05" 
1.01" 
1.02" 

" 1260 K. 
We have found that the ICVT, which is better justified 
than CVT, is easy enough to apply to have wide prac- 
tical use and it is often just as accurate as pVT. Thus 
ICVT is the only version of VTST included in Table 
11. (Anyway the pVT results agree with the ICVT ones 
to the number of figures shown in every case in Table 
11.) The symbols * and * / W  are used to denote con- 
ventional transition-state theory with classical reac- 
tion-coordinate motion"1° and with the leading quantal 
correction (of order ti2) on the reaction coordinate as 
determined by the method of Wigner.5s7J0 Another 
popular procedure is to base a transmission coefficient 
on quantal tunneling through the classical potential- 
energy barrier AV(s). Comparison of this barrier to the 
adiabatic ground-state curve VaG(s) [=AV(s) + cint(a = 
G,s)] shows that use of AV(s) as the effective barrier 
is equivalent to assuming conservation of rotational- 
vibrational energy as the system proceeds along the 
reaction coordinate. This is inconsistent with transi- 
tion-state theory,35 and so we do not present our 
tests19~20~29~50~54 of this prescription here. We note that 

(53) J. W. Duff and D. G. Truhlar, J.  Chem. Phys., 62, 2477 (1975); 
J. T. Muckerman, Theor. Chem. Adu. Perspect. 6, in press; N. Jonathan, 
S. Okuda, and D. Timlin, Mol. Phys. 24, 1143 (1975); 25, 4963 (1973). 
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Table 111 
Kinetic Isotope Effect h(C1 + HD)/h(Cl + DH) for 

Collinear Reaction with the Potential Surface of Ref 38 

300 K 450 K 

Table IV 
k’( T)/hICVT(T) for Three-Dimensional Reactions for 
Extended, Modified BEBO Potential-Energy Surfaces 

3 0 0 K  6 0 0 K  1 5 0 0 K  
accurate 0.68 0.69 * 1.59 1.38 
f IW 1.93 1.58 
ICVT 0.53 0.65 
ICVTiMEPVAG 0.77 0.85 
ICVT/MCPS AG 0.52 0.65 
ICVTJMCPVAG 0.60 0.74 

the derivation of the Wigner transmission coefficient 
assumes that quantal effects are well localized to the 
quadratic region around the saddle point; this is seldom 
satisfied in practice,15J9 but the method is consistent 
through order h2 and is sometimes fortuitously accurate 
even when the higher order terms are important. 

The results of Table I1 are Iargely self-explanatory. 
We see that conventional transition-state theory is 
sometimes accurate, but in other cases it makes large 
underestimates or overestimates. The Wigner quantal 
correction is sometimes successful at correcting the 
low-temperature results but usually increases the error 
a t  high temperature. The high-temperature errors can 
be attributed to recrossing effects as seen in the purely 
classical systems, and variational transition-state theory 
generally provides considerable improvement for this 
aspect. When the low-temperature results are two 
small, the Marcus-Coltrin-path vibrationally adiabatic 
transmission coefficients usually provide considerable 
improvement, although in the worst case the underes- 
timate a t  300 K is still EL factor of 2 even for the best 
theory. In several cases, the best theory is accurate 
within 20% or better over a range of a factor of 5 in 
temperature. Notice the excellent agreement for D + 
Fz; results for H + F23 and H + ClZz2 are very similar. 

For the C1 + HD reaction we can compare several 
methods for calculating the intramolecular isotope ef- 
fect. Such a comparison is shown in Table 111. Con- 
ventional transition-state theory predicts the wrong 
direction for this isotope effect because at  low tem- 
perature the calculated rate for reaction with the H end 
of HD becomes much smaller when the generalized 
transition state is located variationally rather than at  
the saddle point, but this variational improvement does 
not occur for reaction with the D end. Thus the * / W  
rate for C1 + HD is a factor of 2.6 larger than the ac- 
curate rate a t  300 K. 

Overall the results in Tables 2 and 3 and ref. 19-24 
show that variational transition-state theory with 
Marcus-Coltrin-path vibrationally adiabatic transmis- 
sion coefficients is usually quite accurate over a wide 
temperature range. We conclude that these procedures 
provide systematic, general improvement as compared 
to conventional transition-state theory. 
Survey of Three-Dimensional Reactions 

In general we cannot compare our three-dimensional 
calculations to accurate quantal results for three-di- 
mensional reactions because the latter are not available. 
The one exception is H + H2, for which Schatz and 
Kuppermand5 have calculated accurate rate constants 

(54) D. G. Truhlar, A. Kuppermann, and J. T. Adams, J.  Chem. Phys., 

(55) G. C. Schatz and A. Kuppermann, J .  Chern. Phys., 65, 4668 
59, 395 (1973). 

(1976). 

IzC + H I T  
14C + H14C 
‘’C + D’*C 
C +  H, 
C t  D, 
I + HBr 
I + TBr 
I + ID 

24.7 
28.0 

3.79 
7.94 
2.98 
1.99 
1.94 
1.36 

6.12 3.63 
6.60 3.83 
2.34 2.16 
2.84 1.76 
1.80 1.54 
2.45 3.45 
2.42 3.42 
1.56 1.91 

for T 5 600 K for a potential-energy surface of Porter 
and K a r p l ~ s . ~ ~  Although these results have larger 
uncertainties than the accurate collinear calculations 
do (about 25% error in the rate constants for the as- 
sumed potential-energy surface vs. about 2% or less for 
collinear systems), we can still use them to test our 
theory. For 300-600 K, our ICVT/MCPVAG calcula- 
tions reproduce the Schatz-Kuppermann calculations 
within 23% or better.28 This made us confident enough 
to carry out calculations28~29 for H + H2, D + D2, H + 
D2, and D + H2 with an accurate potential-energy 
surface based on the ab initio calculations of Liu and 
Siegbahr~.~~ In general the results are in good agreement 
(within about 30%) with e ~ p e r i m e n t ~ ~ s ~ ~  and in fact 
might even be just as reliable as experiment or even 
more reliable. The use of the ICVT/MCPVAG theory 
allows a better understanding of the dynamics than 
does conventional transition-state theory. In particular, 
because the variational transition state is farther from 
the saddle point for D + H2 than H + Dz, variational 
optimization of the generalized transition state allows 
one to explain the observed trends without invoking 
“anomalous” tunneling corrections, as was previouslyw 
necessary. 

Unfortunately, H + H2 and isotopic analogues are the 
only reactions for which the potential-energy surface 
is known accurately enough for testing the theory 
against experiment. For all other systems, we believe 
that the uncertainties caused by the potential-energy 
surface would exceed the errors in the dynamical 
treatment. Thus, at this time one would like to use 
generalized transition-state theory (i) to estimate 
plausible potential-energy surfaces by adjusting their 
features so that dynamical predictions agree with ex- 
periment and (ii) to provide a guide for furture elec- 
tronic structure calculations as to which regions of 
plausible potential-energy surfaces are most important 
and should be studied more carefully. To begin working 
on these tasks, we considered a sequence of model po- 
tential-energy surfaces and made a survey of the dif- 
ferences between the predictions of conventional tran- 
sition-state theory and those of variational transition- 
state theory. To construct the model potential-energy 
surfaces, we modified and extended the bond-energy, 
bond-order (BEBO) m e t h ~ d ~ ~ ~ ~  so that it provides a 
consistent model for all the quantities needed for var- 

(56) R. N. Porter and M. Karplus, J .  Chem. Phys., 40, 1105 (1964). 
(57) W. R. Schulz and D. J .  LeRoy, J .  Chem. Phys., 42, 3869 (1965); 

D. J. LeRoy, B. A. Ridley, and K. A. Quickert, Disc. Faraday Soc., 44, 
92 (1968); K. A. Quickert and D. J. LeRoy, J .  Chem. Phys., 53, 1325 
(1971); 54,54443 (1971); D. N. Mitchell and D. J. LeRoy, J.  Chem. Phys., 
48,3449 (1973); G. Pratt and D. Rogers, J.  Chem. Soc., Faraday Trans. 
1, 72, 1589 (1976). 

(58) A. A. Westenberg and N. deHaas, J .  Chern. Phys. 47,1393 (1967). 
(59) H. S. Johnston and C. A. Parr, J.  Am. Chem. Soc., 85,2544 (1963). 
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iational transition state  calculation^.^^*^^ 
Table IV shows some examples of the ratio k*(T) /  

kICvT( T)  where reaction-coordinate motion is treated 
classically but other degrees of freedom are quantized. 
This ratio must be greater than or equal to unity, and 
when it is large it indicates that recrossing effects are 
probably large at  the conventional transition state. The 
C + HC reaction, a three-body model of a hydrogen- 
atom transfer between methyl groups, has a symmetric 
saddle point and the primary factor responsible for 
relocating the transition state is the small symmetric 
stretch frequency at  the saddle point. We may un- 
derstand the smallness of this frequency from the fact 
that the hydrogen does not move in the symmetric 
stretch; thus the reduced mass is determined by the 
carbons. As we vary the generalized transition state, 
we increase the contribution of H motion and thus raise 
the frequency and local zero-point energy. (An alter- 
native but equivalent viewpoint is to scale all motions 
to the same reduced mass and visualize the system 
motion as a point mass governed by a potential-energy 
surface; in this picture, the small symmetric stretch 
frequency is a consequence of the small “skew Angle” 
when a light particle is transferred between two heavier 
ones.20i26) It turns out that, if the dividing surface is 
moved 0 . 0 6 ~ ~  or less (in a coordinate s y ~ t e m l ~ l ~ ~  scaled 
to the initial reduced mass), the zero-point energy in- 
creases more rapidly than the classical potential-energy 
decreases, Thus the variational dividing surface is lo- 
cated about 0 . 0 6 ~ ~  from the saddle point. (Since the 
system is symmetric, there are actually equivalent 
variational dividing surface locations at  this distance 
to either side of the saddle point.) Since the location 
of the variational dividing surface is determined by a 
zero-point effect, the error in conventional transition- 
state theory decreases with increasing temperature. 
Notice that although the predicted error in conventional 
transition-state theory is very large, it corresponds to 
an energy error of only 1.9 kcal/mol, i.e., exp(AE/kT) 
= 24.7 at  300 K for AE = 1.9 kcal/mol. In interpreting 
experiments with conventional transition-state theory, 
this kind of error could be compensated by misesti- 
mating the barrier height by about 2 kcal/mol. In this 
way conventional transition-state theory can lead to 
systematic misinterpretations of experimental data. For 
example, if one interprets the free energy of activation 
as due to a symmetric bottleneck with 2 kcal/mol fic- 
titious extra potential energy rather than an asymmetric 
bottleneck with 2 kcal/mol more zero point and po- 
tential energy than the symmetric geometry, one will 
make erroneous predictions about isotope effects, sub- 
stituent effects, solvent effects, the role of electron 
correlation, etc. 

A similar, but less dramatic, effect is operative for the 
C + H2 reaction and is illustrated in Table V. This 
table shows that the stretching frequency is 1344 cm-l 
higher at the canonical variational dividing surface than 
at  the saddle point. This corresponds to a zero-point 
increase of 1.9 kcal/mol, which easily overcomes a po- 
tential-energy decrease of 0.7 kcal/mol. A t  the varia- 
tional transition state the CH bond is 0.08 A longer and 
the HH bond is 0.08 A shorter than at  the saddle point. 

The last three rows of Table IV show cases with very 
asymmetric saddle points. One of these, I + ID, is also 
included in Table V. The dominant variational effect 

Table V 
Properties of CHH and IID Configurations for A + BC 

Reactions on Extended, Modified BEBO Surfaces 

C + H, 
H* 0.00 - 1.40 0.0 4390 0 
CVTDSf 0.40 2.51 1.65 13.93 3103 673 
saddle point 0.55 2.36 1.79 14.60 1759 662 
CH 1.00 2.06 3.90 2912 0 

I + ID 
ID 0.000 3.04 0.00 1641 0 
CVTDSf 0.989 5.05 5.25 37.93 215 41 
saddle point 0.998 5.05 6.04 38.25 216 27 
1 2  1.000 5.05 - 37.90 216 0 

a Bond order of new bond. Bond distances. Classi- 
cal potential energy. Frequency of bound stretching 
motion. e Frequency of bending motion. f Canonical 
variational dividing surface for 600 K. 

for I + ID is that the variational dividing surface is more 
symmetric than the saddle point because this leads to 
a higher bending fequency. I + HBr shows a similar 
effect: the bending frequency is only 83 cm-l a t  the 
saddle point but the bend tightens to 163 cm-’ at  the 
variational dividing surface for 600 K. This is a classical 
example of entropy vs. energy; the dynamical bottleneck 
is located at  a location where the angle of release of Br 
is very constrained. Since the bending degree of free- 
dom is a low-frequency mode, this kind of effect does 
not lead to errors in conventional transition-state theory 
as large as those that occur when the stretching degree 
of freedom dominates. However, when the bend dom- 
inates, the effect increases with temperature. 

We have also found many cases where conventional 
and variational transition-state theory agree better than 
the cases shown in Tables IV and V. For example, for 
36 H-atom transfers the median value of k*(T)/kCw(T) 
at 600 K was found to be 1.75.25 Examination of a large 
number of cases21~22~25-29 has given useful indications of 
when the predicted rate is greatly minimized by moving 
the dividing surface away from the saddle point and 
when it is not. 

The tests of conventional transition-state theory for 
kinetic isotope effects14-24p27-29 are very important since 
this theory “forms the basis of almost all our discussions 
of isotope effects in chemical reaction”.60 Table IV 
shows that the error in conventional transition-state 
theory is sometimes significantly different for one iso- 
tope than another. We have also found large differences 
using extended LEPS potential-energy surfaces.30 The 
consequences for the theoretical interpretation of ki- 
netic isotope effects are very serious: one cannot always 
assume that the isotope effect is the result of changing 
the masses but not changing the force field of the ac- 
tivated complex. 
Conclusion 

We believe that variational transition-state theory 
provides useful insight into the successes and failures 
of the conventional theory. It also provides useful 
quantitative estimates of possible errors in the predic- 
tions of conventional transition-state theory. Finally 
it provides a means for removing or reducing these 
errors so that it is the most accurate theory now 

(60) L. Melander and W. H. Saunders, “Reaction Rates of Isotopic 
Molecules”, Wiley, New York, 1980. 
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available for the practical calculations of chemical re- 
action rates and thermochemical and structural inter- 
pretations of rate processes. 
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The quest for reaction pathways which are stereo- 
specific and not merely stereoselective continues to 
intrigue the synthetic chemist. This is an area which 
is particularly susceptible to the tools of physical or- 
ganic chemistry, since it is the structure of the transition 
state of the reaction (probed by means of kinetics, 
isotope effects, modeling, etc) which is important in 
determining the initial product formed. A rational 
approach to synthesis then depends to a large extent 
on an understanding of the factors which control tran- 
sition-state structure. 

The concept of stereoelectronic control of organic 
reactions has received a new impetus from the work of 
Des1ongchamps.l These ideas are particularly useful 
when applied to the problem of which way a short-lived 
intermediate is likely to break down to products. It 
appears that the preferred mode of cleavage is deter- 
mined by the necessity of having one (or more) electron 
pairs on an adjacent heteroatom arranged antiperi- 
planar to the leaving group to "assist" its departure. 
This important factor must now be routinely taken into 
account when determining the course of organic reac- 
tions (or in devising a successful synthetic scheme). The 
driving force for reaction in the stereoelectronically 
controlled direction may outweigh other factors (e.g., 
steric) in the transition state, leading to products with 
less stable (but desirable) geometries. 

The question arises as to whether the same factors 
apply to the addition of nucleophiles to unsaturated 
systems and whether this can be reflected in the pre- 
ferred geometries of the product(s). Thus addition to 
a protonated ketone (1, XZ = OH) could, in theory, lead 

" 
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L 
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initially to 2 or 3 (or indeed any intermediate geometry). 
However, because of rapid C-0 bond rotation, one can 
only surmise the stereochemistry of the initial addition 
from the way in which the adduct (2 or 3) further re- 
acts.l The same problem arises in additions to the 
carbon-carbon double bond (1, XZ = CR2) and the 
carbon-nitrogen double bond (1, XZ = NRJ; in each 
case the bond order of the C-X bond is decreased from 
two to one. 

This problem is less severe in the addition of nu- 
cleophiles to alkynes 4, nitrilium ions 5,  and diazonium 
ions 6. Here just two geometries can arise when a 
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nucleophile is added, but again inversion of the car- 
banion (from addition to the alkyne 4) or of the imino 
(in 8) or azo (in 9) nitrogen may be so rapid as to ob- 
scure stereospecificity. There are indications in the case 
of diazonium ion adducts2 and nucleophilic addition to 
alkynes3 that the formation of one isomer may be pre- 
ferred and, indeed, certain conditions (dependent on 
the nucleophile Y- and the substituents) only one iso- 
mer of 7 and 9 is actually formed. 

Our interest in this area stemmed from a study of 
displacement reactions at the carbon-nitrogen double 
bond. We were struck by the ease with which nitrilium 
ion intermediates (5 )  are formed in these reactions (see 
below). The step which determines the product is es- 
sentially the trapping of this nitrilium ion by a nu- 
cleophile. The marked stereospecificity noted in these 
trapping reactions has wide implications not only for 
our understanding of the factors which control transi- 
tion-state geometry but also in the selective formation 
of reactive synthons of known stereochemistry. 
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